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Abstract: The skeleton-based representation is widely used in such fields as 

computer graphics, computer vision and image processing. Therefore, efficient 

algorithms for computing planar skeletons are of high relevance. In this paper, 

we propose an optimized algorithm for computing the Voronoi skeleton of a 

planar object with holes, which is represented by a set of polygons. Such 

skeleton allows us to use efficiently the properties of the underlying Voronoi 

diagram data structure. It was shown that the complexity of the proposed 

Voronoi-based skeletonization algorithm is O(N log N), where N is the number 

of polygon’s vertices. We have also proposed theoretically justified optimization 

heuristic based on polygon/polyline simplification algorithms. In order to 

evaluate and prove the efficiency of the heuristic, a series of computational 

experiments were conducted involving the polygons obtained from MPEG 7 CE-

Shape-1 dataset. We have measured the execution time of the skeletonization 

algorithm, computational overheads related to the introduced heuristics and also 

the influence of the heuristic onto accuracy of the resulting skeleton. As a result, 

we have established the criteria, which allow us to choose the optimal heuristics 

for our skeletonization algorithm depending on the system’s requirements. 
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1. INTRODUCTION 

The skeletal representation of the planar object is 

essential for many problems of computer vision and 

pattern recognition, computer graphics and 

visualization [1]. For example, skeletons are widely 

used for shape matching [2, 3], optical character 

recognition [4] and image retrieval [2, 5]. In the 

biological image processing, skeletonization 

methods are extensively applied to extract the 

central line of thin objects. For example, based on 

the image data one can obtain the skeletal graph 

representing the retinal blood vessels topology [6, 

7]. Similarly, this technique is applied for 

segmenting the biological neurons [8] and for 

extracting thin subcellular structures [9, 10] based 

on microscopy data. 

Related work. There are different 

skeletonization methods depending on a type of 

input data. Morphological thinning techniques are 

extensively used for computing the skeleton of a 

binary image [11-13]. They allow us to obtain a 

pixel-based representation of the skeleton. In order 

to obtain the topology of the underlying graph, graph 

vectorization methods can be applied [14, 15]. 

Another type of techniques is based on central 

line tracing. They are commonly used to segment 

thin-structures depicted on an image (e.g., axons and 

dendrites of neurons [16], blood vessels [17], 

filamentous structures [17, 18]). These methods can 

directly represent the skeleton as a connected graph. 

However, due to an iterative nature of these 

methods, the execution time may vary significantly. 

A different type of methods is used to compute a 

skeleton of an object, whose shape is represented by 

polygonal contours (with holes). Such contours are 

extracted from a binary image using tracing 

techniques (e.g., Marching squares [19]). 

Alternatively, these methods can compute a skeleton 

of primitives obtained from a vector graphic 

representation. 

Methods to construct the straight skeleton based 

on shrinking technique with O(N log N) complexity 

are described in papers [20, 21]. A linear complexity 
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method for a simple polygon without holes was 

introduced in [22].  

Another approach for constructing the skeleton of 

an object with polygonal representation is by using 

the Voronoi diagram [23, 24]. This class of methods 

allows us to obtain a graph representation of the 

skeleton directly and use the advantages of the 

Voronoi diagram data structure allowing for 

solutions of many related problems [25] (e.g., 

finding a convex hull, nearest neighbor, maximal 

inscribed disk). However, the main drawback of 

such methods is high computational costs due to 

processing the vast number of simple primitives 

(points, line segments). 

Therefore, in this paper, we propose an approach 

to decrease the computational costs related to the 

Voronoi-based skeletonization algorithms by 

introducing the novel preprocessing step based on 

shape simplification heuristics. Our primary focus is 

on investigation the suitable optimization heuristics, 

empirical validation of such heuristics and 

determining their properties. 

The paper is organized as follows: The first 

section gives an overview of the problem and related 

state-of-the-art literature. In the second section, we 

outline the theoretical background and formulate the 

skeletonization problem. The third section is devoted 

to the description of the skeletonization algorithm, 

its main steps, and vertex/edge labeling procedure. 

In Section 4 we introduce theoretical background 

related to the optimization heuristics, we formulate 

the shape simplification requirement and analyze 

suitable shape simplification algorithms. In Section 

5 we show the main results of our empirical study of 

the optimized skeletonization algorithm; we 

illustrate the computational overheads related to 

optimization heuristics and demonstrate the 

algorithm’s performance improvements.  Section 6 

is devoted to the analysis of the obtained results. It 

establishes the criteria allowing the selection of the 

optimal heuristics for Voronoi-based skeletonization 

algorithm depending on the system’s requirements. 

Finally, the paper concludes with a summary of the 

main results. 

 

2. PROBLEM STATEMENT 

We assume that the planar object has 

continuously-differentiable boundaries (called G1-

continuous) except for a finite number of critical 

points, where contour is continuous, but not 

differentiable (G0-continuous points). The object’s 

boundaries are represented by a set of simple 

polygons 𝒮: = {𝒫1, 𝒫2, … , 𝒫𝑚}, where polygon 𝒫𝑘 is 

defined as an ordered set of points 𝑝1
𝑘 , 𝑝2

𝑘 , … , 𝑝𝑀𝑘

𝑘 .  

The set of open line segments corresponding to 

the polygon 𝒫𝑘 is denoted by ℒ𝑘: = ℒ(𝒫𝑘) =

{𝑙𝑖
𝑘 ≔ (𝑝

𝑖
𝑘, 𝑝

𝑖+1
𝑘 ) | 𝑖 = 1, … , 𝑀𝑘, 𝑝

𝑀𝑘+1
𝑘 = 𝑝

1
𝑘}. The 

set of all vertices of the polygon (line segment’s 

endpoints) is denoted by 𝒬 = ⋃ ⋃ {𝑝𝑖
𝑘}

𝑀𝑘
𝑗=1

𝑚
𝑘=0 . 

Let us denote by ℒ ≔ ⋃ ℒ𝑘
𝑚
𝑘=1  the set of all line 

segments representing the planar object. We also 

assume that the polygon 𝒫0 represents the outer 

contour of the object and polygons 𝒫1, … 𝒫𝑚 

correspond to the inner holes. Thus, 𝑅 ≔
𝒫0\ ⋃ 𝒫𝑖

𝑚
𝑖=1  defines the object's region (domain). 

Definition 1. The Voronoi cell corresponding to 

an element 𝑢 ∈ ℒ ∪ 𝒬 is a locus of points: 
 

𝒱𝒞(𝑢) = {𝑝 ∈ ℝ2|‖𝑝 − 𝑢‖ ≤ ‖𝑝 − 𝑤‖, 𝑤 ≠ 𝑢,
𝑤 ∈ ℒ ∪ 𝒬} 

(1) 

 

Definition 2. The Voronoi diagram of a set of 

line segments ℒ (with endpoints 𝒬) is defined as a 

set of all Voronoi cells:  
 

𝒱𝒟(ℒ, 𝒬) = ⋃ {𝒱𝒞(𝑢)}

𝑢∈ℒ∪𝒬

 (2) 

 

Remark 1. Note that the Voronoi diagram of line 

segments ℒ (with endpoints 𝒬) is defined by the 

boundaries between the neighboring Voronoi cells. 

The most of the computational algorithms (e.g., 

“Divide and Conquer” [26], Fortune's algorithm 

[27]) represent such boundaries in terms of the 

Voronoi graph [28-29] 𝐺𝒮 = (𝑉𝒮 , 𝐸𝒮) with a set of 

the Voronoi vertices 𝑉𝒮 and a set of Voronoi edges 

𝐸𝒮 ⊆ 𝑉𝒮 × 𝑉𝒮. 

Definition 3. A finite set of polygon’s 𝒫 points, 

where the object is G0-continouous (but not G1-

continouous) are called critical points (vertices) of 

the polygon 𝒫. 

Remark 2. Note that the vertices of the polygon 

𝒫, which correspond to G1-continouous part of the 

object’s boundary, induce redundant edges of the 

Voronoi diagram – the bisectors between two 

consecutive line segments 𝑙𝑖 and 𝑙𝑖+1, which share a 

common non-critical vertex 𝑝𝑖. In order to obtain an 

approximate Voronoi diagram of an object 

represented by 𝒮, such redundant edges 

corresponding to all non-critical points of 𝒮 should 

be removed. 

Definition 4. The approximate Voronoi diagram 

𝒱𝒟𝑎(𝒮) for a planar object represented by a set of 

polygons 𝒮 is obtained as a subgraph 𝐺𝒮
𝑎 of the 

Voronoi graph 𝐺𝒮 obtained by removing the edges 

of 𝐺𝒮 corresponding to the bisectors between two 



Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554 

 

 544 

consecutive line segments 𝑙𝑖 and 𝑙𝑖+1, which share a 

common non-critical vertex 𝑝𝑖. 

Definition 5. The Voronoi skeleton of a planar 

object represented by a set of polygons 𝒮 is a subset 

of the approximate Voronoi diagram 𝒱𝒟𝑎(𝒮) 

positioning inside the object’s region 𝑅. 

Remark 3. Thus, the Voronoi skeleton of 𝒮 is 

obtained by removing (or trimming) the edges of 

𝐺𝒮
𝑎, which do not belong to 𝑅 

Problem statement: Given a set of polygons 𝒮, 

which represent a planar object, construct the 

Voronoi skeleton of 𝒮.  

 

3. SKELETONIZATION METHOD 

In this section, we provide a description of the 

Voronoi skeletonization algorithm and Voronoi 

graph processing routine. We also analyze the 

algorithm’s complexity (see Subsection 3.3). 

 

3.1 SKELETONIZATION ALGORITHM 

The input of the algorithm and its main steps are 

the following: 

Input: 𝒮: = {𝒫1, 𝒫2, … , 𝒫𝑚} – the set of polygons, 

each vertex 𝑝𝑖
𝑘 of the polygon 𝒫𝑘 has a bool 

attribute 𝑖𝑠𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙[𝑝𝑖
𝑘] ∈ {0,1}. Polygon 𝒫𝑘 is 

oriented such that the interior of the object is to the 

right for any line segment 𝑙 ∈ 𝒫𝑘. 

Algorithm:  

Step 1: Construct the Voronoi diagram of a line 

segments ℒ with endpoints 𝒬 (Fig. 1). 

Obtain the Voronoi graph 𝐺𝒮 = (𝑉𝒮 , 𝐸𝒮) 

represented as a doubly-connected edge list 

(DCEL); 

 

 
Figure 1 – Examples of the Voronoi diagram 

(gray, black) for polygon’s (blue) edges 

 

Step 2: Run the breadth-first search (BFS) 

algorithm, traverse graph 𝐺𝒮 and label its 

edges and vertices (Fig. 2) as described in 

Subsection 3.2; 
 

 

Figure 2 – Examples of the labeled Voronoi 

vertices and edges 

 

Step 3: Remove all “Redundant”, “Outer” edges and 

“Boundary”, “Outer” vertices of 𝐺𝒮 (Fig. 3);  
 

 
 

Figure 3 – Examples of the Voronoi skeleton (red 

lines and black vertices) 
 

Step 4: Remove isolated vertices of 𝐺𝒮 if any exist; 

 

3.2 LABELING THE VORONOI GRAPH 

We traverse the edges and vertices of the 

Voronoi graph 𝐺𝒮 and mark them according to 

their role in a resulting graph of the Voronoi 

skeleton.  

Definition 6. The Voronoi vertex is called: 

▪ Inner, if it is inside the object’s polygon; 

▪ Outer, if it is outside the object’s 

polygon; 

▪ Critical, if it coincides with one of the 

critical vertices of the object’s polygon;  

▪ Boundary, if it coincides with one of the 

non-critical vertices of the polygon; 

Definition 7. The Voronoi edge is called: 

▪ Inner, if it is located inside object’s 

region and doesn’t touch its boundaries;  

▪ Critical, if it is located inside object’s 

region and adjacent to a critical vertex; 

▪ Outer, if the edge is located outside the 

object’s polygon; 
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▪ Redundant, if it is located inside object’s 

polygon and touches polygon’s non-

critical vertex; 

Therefore, the labels for Voronoi vertices are (see 

Fig. 2) Inner – “I” Critical – “C”, Outer – “O”, 

Boundary – “B”; The labels for Voronoi edges are 

Inner – “I”, Critical – “C”, Outer – “O”, Redundant 

– “R” (see Fig. 2). The types of the Voronoi cells are 

Endpoint – “EP” and Line segment – “LS”; 

Note that Outer and Boundary vertices are absent 

in the final Voronoi skeleton and therefore should be 

removed from the Voronoi graph together with 

Outer and Redundant edges. 

We label the edges and vertices of 𝐺𝒮 iteratively 

using the breadth-first search procedure (BFS) 

Firstly, we initialize the queue of BFS algorithm by 

infinite edges of a Voronoi graph. The pseudocode 

for the BFS initialization procedure is shown in the 

listing below: 
 

function InitQueue(Q): 

Q := EmptyQueue(); 

for edge e do 

Label[e] = “None”; 

if isInfinite(e) then 

EnQueue(e, Q); 

v := non-null vertex of e; 

Label[v] = “None”; 

else 

v1, v2 := non-null vertices of e; 

Label[v1] = Label[v2] = “None”; 

end; 

end; 

return Q; 

end; 
 

Label [•] is a data structure storing the labels of 

edges and vertices. Using the BFS we traverse all 

edges of the Voronoi graph starting from the infinite 

edges. At each iteration we label current edge and 

the adjacent non-labeled vertex. See the listing 

below: 
 

procedure TraverseBFS(Q): 

while not Empty(Q) do 

e := DeQueue(Q); 

v := Null; 

if isInfinite(e) then 

v := non-null vertex of e; 

LabelInfinite(e); // Classify the edge and incident vertex 

else 

v := vertex of e with “None” label; 

LabelFinite(e); // Classify the edge and incident vertex 

end; 

for edge e incident to v do  

// Add non-labeled edges to queue 

if Label[e] = “None” then 

EnQueue(e, Q); 

end; 

end; 

end; 

end; 

The following function determines the label of an 

infinite edge and the corresponding vertex: 
 

procedure LabelInfinite(e): 

c1, c2 := cells corresponding to e and Twin(e); 

v := non-null vertex of e; 

if Type(c1) = “EP” and Type(c2) = “EP” then  

Label[e] = “O”; // Outer 

Label[v] = “O”; // Outer 

else // Edge between line segment’s interior and its 

endpoint 

p := is a unique endpoint of line segment; 

if v coincides with p then 

if isCritical[p] then 

Label[v] := “C”; // Critical 

else 

Label[v] := “B”; // Boundary 

end; 

Label[e] := “O”; // Outer 

else 

Label[v] := “I”; // Inner 

if isCritical[p] then 

Label[e] := “C”; // Critical 

Trim e to p; 

else 

Label[e] := “R”; // Redundant 

end; 

end; 

end; 
 

The following function determines the label of 

finite edges and adjacent non-labeled vertex: 
 

procedure LabelFinite(e): 

v0 := labeled vertex of e; 

v1 := unlabeled vertex of e; // Label[v1] is “None” 

c1, c2 := cells corresponding to e and Twin(e); 

if Label[v0] = “I” or Label[v0] = “O” then 

if Type(c1) = “LS” and Type(c2) = “LS” then 

if line segments in c1 and c2 share endpoint p then 

if isCritical[p] then 

Label[v1] := “C”; // Critical 

Label[e] := if Label[v0] = “I” then “C” else “O”; 

else 

Label[v1] := “B”; // Boundary 

Label[e] := if Label[v0] = “I” then “R” else “O”; 

end; 

else 

Label[v1] := Label[v0]; 

Label[e] := Label[v0]; 

end;  

else // Edge between LS and EP 

if c1 and c2 belong to the same LS then   

p := line segment’s endpoint;  // Bisector is LS 

if p coincides with v1 then 

Label[v1] := if isCritical[p] then “C” else “B”; 

if Label[v0] = “O” then 

Label[e] := “O”; // Outer 

else 

Label[e] := if isCritical[p] then “C” else “R”; 

end; 

else 

Insert new vertex v with position p into GS  

Replace e by two edges e0 := (v, v0) and e1 := (v, v1); 

Label[v] := if isCritical[p] then “C” else “B”; 

if Label[v0] = “O” then 

Label[v1] := “I”;  

Label[e1] := if isCritical[p] then “C” else “R”; 

Label[e0] := “O”; 
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else 

Label[v1] := Label[e1] := “O”; 

Label[e0] := if isCritical[p] then “C” else “R”; 

end; 

end; 

else // bisector is a parabolic arc 

Label[v1] := Label[v0]; 

if Label[v0] = “O” then 

Label[e] = “O”; 

else 

Label[e] = “I”; 

end; 

end; 

end; 

else // Critical or Boundary  

if v1 is located to the right of c1 or c2 then 

Label[v1] := “Inner”; 

Label[e] := if Label[v0] = “C” then “C” else “R”; 

else 

Label[v1] := “Outer”; 

Label[e] := if Label[v0] = “C” then “C” else “O”; 

end; 

end; 

 

3.3 COMPLEXITY ANALYSIS 

The total complexity of the skeletonizing 

algorithm above is described in Theorem 1, which 

uses Lemmas 1-3 to establish the complexities of 

each individual step of the algorithm. 

Lemma 1. The complexity of Step 1 of the 

skeletonizing algorithm is O(N log N), where N is a 

number of points in a polygon.  

Proof. The Step 1 is about the construction of the 

Voronoi diagram for a line segments, which are 

extracted from the input polygons. The complexity 

of the Fortune’s algorithm for Voronoi diagram 

construction algorithm according to [27] is O(M log 

M), where M is a number of line segments. Since N 

is proportional to M, the complexity of the Step 1 is 

O(N log N). ■ 

Lemma 2. The complexity of Step 2 of the 

skeletonizing algorithm is O(N), where N is a 

number of the points in an input polygon. 

Proof. Step 2 is about labeling the edges and 

vertices of the Voronoi graph using BFS traverse 

algorithm. Note that the Voronoi graph is a planar 

connected graph. Therefore, Euler’s formula |𝑉| −
|𝐸| + 𝑓 = 2 takes place, where |𝑉|, |𝐸|, 𝑓 is a 

number of vertices, edges and faces of a graph. If 
|𝑉| = 𝑁, then the number of edges |𝐸| = 𝑂(𝑁).  

The BFS algorithm traverses all edges of the 

Voronoi graph. Since all operations within one BFS 

iteration can be performed in O(1), the complexity 

of BFS routine is O(|𝐸| + |𝑉|) = O(N).  

Thus, the complexity of Step 2 is O(N). ■ 

Lemma 3. The complexity of Steps 3-4 of the 

skeletonizing algorithm is O(N), where N is a 

number of the points in an input polygon. 

Proof. One edge can be removed from DCEL in 

O(1) by reassigning the pointers [25, 28]. According 

to Lemma 2, the number of edges |𝐸| = 𝑂(𝑁). 

Therefore, the complexity of Step 3 is 𝑂(𝑁). A 

single isolated vertex can be removed from DCEL in 

O(1). Therefore, the complexity of Step 4 is 𝑂(𝑁). ■ 

Theorem 1. The complexity of the skeletonizing 

algorithm is O(N log N), where N is a number of the 

points in an input polygon. 

Proof. According to analysis of the complexities 

of each algorithm’s step provided in Lemmas 1-3, 

the total complexity of skeletonizing algorithm is 

O(N log N). ■ 

 

4. OPTIMIZATION 

The purpose of this section is to introduce an 

optimization heuristic algorithm, which allow us to 

compute fast the Voronoi skeleton by reducing the 

number of vertices of input polygons. The main idea 

behind the optimized Voronoi skeleton construction 

algorithm is illustrated by the following lemma. 

Lemma 4. Let 𝒫 = {𝑝1, 𝑝2, … , 𝑝𝑁} be a polygon 

and 𝑙𝑖 denotes the line segment between points 𝑝𝑖 

and 𝑝𝑖+1, 𝑖 = 1, … , 𝑁, 𝑝𝑁+1 = 𝑝0 of a polygon 𝒫. 

The polygon 𝒫′ is obtained by subdividing line 

segments 𝑙𝑖, 𝑖 = 1, … 𝑁 of a polygon 𝒫 such that the 

line segment 𝑙𝑖 is replaced by a polyline formed by 

points 𝑝𝑖,1, 𝑝𝑖,2 … , 𝑝𝑖,𝑅𝑖
  sampled on 𝑙𝑖, 𝑖 = 1,2, … , 𝑁 

(𝑝𝑖,1 = 𝑝𝑖, 𝑝𝑖,𝑅𝑖
= 𝑝𝑖+1). Then the Voronoi skeletons 

𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) constructed using the 

skeletonizing algorithm above are equal (in terms of 

the Hausdorff distance between the corresponding 

Voronoi graphs). 

 

 
Figure 4 – Illustration for case 1 of Lemma 4: blue 

lines correspond to an input polygon, red edges are 

final Voronoi skeleton, gray and red edges compose 

Voronoi diagram for line segments 

 

Proof. The Voronoi diagram of line segments of 

𝒫 and 𝒫′ consists of the bisectors of the following 

types: a bisector between two line segment interiors, 

a bisector between a line segment interior and an 

endpoint and a bisector between two endpoints. Let 

us consider these cases separately: 



Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554 

 

 547 

 
Figure 5 – Illustration for case 2 of Lemma 4: blue 

lines correspond to an input polygon, red edges are 

final Voronoi skeleton, gray and red edges compose 

Voronoi diagram for line segments 

 

Case 1 (see Fig. 4). The bisector between two 

line segment interiors 𝑙1 and 𝑙2 is a line segment 𝑙′ 
[27, 28]. Let us suppose that in 𝒫′ line segment 𝑙2 

remains the same and 𝑙1 is subdivided into two parts 

𝑙1,1 and 𝑙1,2 connected by a shared endpoint 𝑞. Then, 

the Voronoi cell corresponding to 𝑙1 in 𝒱𝒟(𝒫) will 

be split into two Voronoi cells (correspondingly 𝑙1,1 

and 𝑙1,2) of 𝒱𝒟(𝒫′) by the Voronoi edge 𝑒 such that 

𝑒 is a bisector between 𝑙1,1 and 𝑙1,2 which passes 

through 𝑞 and is perpendicular to 𝑙1 (and therefore, 

𝑙1,1 and 𝑙1,2). Thus, the Voronoi edge 𝑒 will divide 

bisector line segment 𝑙′ in 𝒱𝒟(𝒫) into two parts 𝑙′1 

and 𝑙′2 in 𝒱𝒟(𝒫′) such that 𝑙′1 is a Voronoi edge of 

the Voronoi cell of 𝑙1,1 and 𝑙′2 is the Voronoi edge 

of the Voronoi cell of 𝑙1,2. Note that 𝑙′1, 𝑙′2 and edge 

𝑒 are connected together by a newly introduced 

Voronoi vertex 𝑣′. The remaining part of the 

Voronoi diagrams for 𝒫′ and 𝒫 stays the same. 

The BFS labeling procedure (see Step 2 of the 

algorithm above) for Voronoi edges and vertices of 

𝒱𝒟(𝒫′) will split the introduced in 𝒱𝒟(𝒫′) Voronoi 

edge 𝑒 into two parts 𝑒1 and 𝑒2: one part will be 

labeled as “Outer” and the other part will be labeled 

as “Redundant”. Therefore, both parts will be 

removed at Step 3 of the skeletonizing algorithm and 

the resulting Voronoi skeleton 𝒱𝒮(𝒫′) will contain 

the line segment edges 𝑙′1, 𝑙′2 connected by 𝑣′.  
Case 2. In case of a line segment interior 𝑙 and an 

endpoint 𝑝, two possible scenarios take place. First 

scenario is when 𝑝 is an endpoint of 𝑙. In this case 

Voronoi diagram contains an edge 𝑒′ coming 

through 𝑝 and perpendicular 𝑙. The edge 𝑒′ can be 

either removed or not by BFS procedure depending 

on the type of 𝑝. Subdividing 𝑙 into two parts 𝑙𝑎 and 

𝑙𝑏 which share an endpoint 𝑞 will introduce a new 

edge 𝑒 parallel to 𝑒′, which will be classified as 

“Redundant” and removed from the final skeleton. 

The second scenario (see Fig. 5) is when 𝑝 is not an 

endpoint of 𝑙. Then the bisector between 𝑝 and 𝑙 is a 

parabolic arc 𝑙𝑝, which is subdivided into two parts 

𝑙𝑝,1, 𝑙𝑝,2 if we split 𝑙 into 𝑙𝑎 and 𝑙𝑏. The analysis in 

this case is the similar to the Case 1 except that now 

𝑙′1 and 𝑙′2 are parabolic arcs 𝑙𝑝,1 and 𝑙𝑝,2, 

respectively. 

 

 
 

Figure 6 – The Voronoi skeletons (red) for polygon 𝓟 

(blue) and its subdivided version 𝓟′ (blue) and 

respective Voronoi diagrams (gray) 

 

Case 3. The bisector between two different 

endpoints of 𝒱𝒟(𝒫′) or 𝒱𝒟(𝒫) is an infinite edge 

(ray), which is classified at Step 2 of the algorithm 

above as “Outer” and, therefore, removed from both 

𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) at Step 3. 

The case of single subdivision (𝐿 = 1) of the 

polygon line segment for different possible bisectors 

of the Voronoi diagram is covered above. The 

general case for several subdivisions 𝐿 can be 

proved by induction on L as described below. 

Let us assume that for 𝐿 = 𝑛 subdivisions of 𝒫 

hold that 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) are equal. The polygon 

𝒫′′ is obtained from 𝒫′ by subdividing an arbitrary 

line segment of 𝒫′ into two line segments. 

Therefore, we can apply one of the proved cases for 

a single subdivision above and obtain that Voronoi 

skeletons 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′′) are equal. Thus, by 

induction 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) are equal for any 𝐿 >
0. ■ 
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Table 1. The overview of polygon (polyline) 

simplification algorithms 

Name of 

algorithm 

Avg. 

complexity 

Worst-case 

complexity 

Simpl. 

Req. 

Ramer-Douglas-

Peucker [30] 
O(N log N) O(N2) yes 

Visvalingam-

Whyatt [31] 
O(N log N) O(N log N) yes 

Reumann- 

Witkam [32] 
O(N) O(N) yes 

Opheim [33] O(N) O(N) yes 

Lang [34] O(NK) O(NK2) yes 

Zhao-Saalfeld [35] O(N) O(N) yes 

Rapso [36] O(N) O(N) no 

Li-Openshaw [37] O(N) O(N) no 

Nth point [38] O(N) O(N) no 

Circle [38] O(N) O(N) no 

Perpendicular 

distance [38] 
O(NK) O(N) yes 

 

Remark. It follows from Lemma 4 that the 

Voronoi skeleton 𝒱𝒮(𝒫′) for a subdivided polygon 

𝒫′ is the same (w.r.t. Hausdorff distance) as the 

Voronoi skeleton 𝒱𝒮(𝒫) for the original polygon 𝒫 

(see Fig. 6). However, in comparison to 𝒱𝒮(𝒫), 

𝒱𝒮(𝒫′) is represented with a larger number of 

Voronoi edges and vertices. Therefore, the concept 

of the Voronoi skeleton with a minimal number of 

vertices and edges take place. By applying Lemma 4 

in the reverse direction, one aims to reduce the 

number of vertices and edges in the Voronoi 

skeleton. This in turn allows us to reduce the 

execution time of Voronoi skeletonization algorithm 

and also to compress the resulting graph 

representation of a skeleton preserving its 

geometrical properties. 

 

 

 

Table 2. Suitable polygon simplification algorithms, their parameter and heuristics 

Algorithm name Abbr. Parameter(s) Heuristics for 2nd parameter 

Ramer-Douglas-Peucker DP 𝜀 > 0 – tolerance parameter; No 

Visvalingam-Whyatt VW 𝐴 > 0 – minimum effective triangle area; No 

Reumann-Witkam RW 𝜀 > 0 – perpendicular distance tolerance; No 

Opheim  OP 𝜀𝑚𝑖𝑛, 𝜀𝑚𝑎𝑥 > 0  – distance tolerances; 𝜀𝑚𝑎𝑥 = +∞ (large number) 

Lang LA 𝜀 > 0 – perpendicular distance tolerance; 

𝑅 ∈ ℕ – fixed size search region; 

𝑅 = 𝜃 ∙ 𝑁,  𝑁 – number of points; 

𝜃 ∈ {0.05,0.1,0.2,0.25, 0.5, 1.0}. 

Zhao-Saalfeld ZS 𝜀 > 0 – sector bound error; No 

Perpendicular distance PD 𝜀 > 0 – perpendicular distance tolerance; 

𝐾 ∈ ℕ – number of repetitions; 

𝑅 = 𝜃 ∙ 𝑁,  𝑁 – number of points; 

𝜃 ∈ {0.05,0.1,0.2,0.25, 0.5, 1.0}. 

 

Therefore, the operation reverse to subdivision – 

simplification, should be applied to polygon 𝒫′ in 

order to obtain 𝒫. According to Lemma 4 

simplification procedure (algorithm) should meet the 

following requirement: 

Simplification requirement:  The polygon 

simplification heuristic should reduce the points 

corresponding to colinear consecutive line segments 

of the polygon. The polylines formed by such points 

should be replaced by a single line segment. 

Thus, we introduce the Step 0 in the 

skeletonizing algorithm: simplify each polygon of a 

set 𝒮 by reducing the points associated with colinear 

consecutive line segments of the corresponding 

polygon. This operation can be performed using one 

of the existing polygon simplification algorithms, 

which satisfies the simplification requirement above. 

Analysis of simplification algorithms. We have 

analyzed the most commonly used algorithms for 

polygon (polyline) simplification and summarized 

the results in Table 1. 

The aim of the mentioned in Table 1 

simplification algorithms is to reduce the number of 

points representing the polygon (polyline). However, 

certain simplification strategies do not agree with the 

simplification requirement derived from Lemma 4. 

For example, a naive Nth point simplification [38] 

method merely removes each Nth point from a 

polygon ignoring its geometry. Another algorithm – 

Circle simplification [38], aims to group together 

points forming spatial clusters based on the distance 
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threshold and replace these clusters by a single 

representative. Li-Openshaw [37] and Rapso [36] 

algorithms simplify polyline based on spatial pixel 

(or hexagon-based) grid. The latter two algorithms 

rather solve the problem of polyline digitization 

(useful, for example, for solving the problem of 

optimal map rescaling). Therefore, we considered 

only the algorithms fulfilling the simplification 

requirement above (see Table 2). Note that most 

algorithms in Table 1 have linear complexity (except 

Ramer-Douglas-Peucker [30] and Visvalingam-

Whyatt [31], which have O(N log N) complexity). 

The open issue is to choose the simplification 

algorithm, which would allow us to achieve the best 

performance improvement showing the minimum 

influence on the resulting skeleton. This issue is 

empirically investigated in the following evaluation 

section. 

 

5. ALGORITHM EVALUATION 

In this section we evaluate the performance of 

skeletonization algorithm in terms of execution time 

and measure the influence of the heuristic 

optimization step onto the accuracy and execution 

time of the overall algorithm. We also evaluate the 

computational overheads related to suitable line 

simplification algorithms. 

 

 
Figure 7 – Distribution of polygon’s sizes (number 

of vertices) 

 

Dataset.  In order to empirically evaluate the 

performance of the overall skeletonization algorithm 

and individual heuristic simplification algorithms we 

used polygons obtained from the dataset MPEG 7 

CE-Shape-1. These polygons were extracted from 

binary images using Marching Squares algorithm 

[19]. In total our dataset contains 1282 polygons. 

The distribution of polygon sizes (number of 

vertices) is shown in Fig. 7. 

Measures. In the performed experiments we have 

measured the following quantities: 

1. Execution time (ms) of each simplification 

algorithm, skeletonizing algorithm with (without) 

the mentioned heuristics and the total execution 

time. The experiments were carried out on Intel Core 

i7, 2.2GHz, 16Gb RAM.  

2. Hausdorff distances 𝑑𝐻 (errors) [39] 

between the simplified polygon and original polygon 

and also between the ground truth skeleton and the 

skeleton obtained using the skeletonization with a 

simplification heuristic; 

3. Simplification rate (%) of the polygon is 

computed as follows: 

 

𝑆𝑅(𝑃, 𝑃′) =
|𝑃|−|𝑃′|

|𝑃|
∙ 100% , (3) 

 

where 𝑃 is an original polygon, 𝑃′ is a simplified 

polygon and |𝑃| is a number of vertices of a polygon 

𝑃. High simplification rate means that simplified 

polygon has a small number of vertices in 

comparison to the original one.  

Parameters. The parameters of the simplification 

algorithms (see Table 2) were chosen using the line 

search method such that the maximum simplification 

rate is achieved for a given threshold value of the 

Hausdorff error 𝑑𝐻 – the distance between 

simplified polygon 𝑃′ and an original polygon 𝑃. 

This allows us to compare different simplification 

algorithms with respect to the maximum allowed 

error. The established parameters of the 

simplification algorithms for the respective values of 

𝑑𝐻 are shown in Table 3. 

 

 
Figure 8 – Execution time of the simplification 

algorithms 

 

For the algorithms with two parameters we 

applied the heuristics to choose the value of the 

second parameter as described in Table 2. These 
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heuristics were designed to achieve the maximum 

simplification rate for a given Hausdorff error 

threshold 𝑑𝐻. It was established that for the 

algorithms of Lang and “Perpendicular distance” the 

optimal value of 𝜃 is 0.25 and for 𝜃 > 0.25 the 

simplification rate does not increase (however, the 

execution time of these simplification algorithms 

increases leading to additional overhead). 

Evaluation results. Using the polygons from the 

dataset MPEG 7 CE-Shape-1 we have measured the 

execution time of each suitable simplification 

algorithm in relation to the Hausdorff error threshold 

𝑑𝐻 (see Fig. 8). These measurements can be 

considered as a computational overhead related to 

the optimization step of our skeletonizing algorithm.  
 

 
Figure 9 – Simplification rates depending on the error 

threshold. Nearly identical curves are:  

(LA, ZS); (PD, VW, DP); (OP, RW) 
 

In order to compare the quality of the 

simplification algorithms, we have measured the 

dependence of the simplification rate on the error 

threshold value 𝑑𝐻. 
 

 
Figure 10 – Execution time of skeletonization routine 

with heuristics, horizontal dash line (NO) shows 

execution time of skeletonization without optimization 
 

 
Figure 11 – Overall execution time. Horizontal 

dash line (NO) shows execution time of skeletonization 

without optimization 
 

Fig. 9 shows that in general the largest polygon 

simplification for a given 𝑑𝐻 is achieved by the 

algorithms LA and ZS, which have approximately 

identical dependency curves. Slightly smaller 

simplification is accomplished using the algorithms 

PD, VW and PD, which show also almost 

undistinguishable behavior (except for the algorithm 

VW, which overperforms all other algorithms for 

small values of 𝑑𝐻 < 0.002). The lowest 

simplification rates are attained by OP and RW 

algorithms with nearly identical dependency curves.  
 

 
Figure 12 – The Hausdorff error of skeletonization 

algorithm in relation to the simplification error 

achieved by different simplification algorithms (curves 

for RW and OP are nearly identical) 

 

As we can observe from Fig. 9 and Fig. 10, the 

fastest algorithms OP and RW achieve the smallest 

simplification rate and, therefore, cannot guarantee 

the fastest performance of the skeletonization 

algorithm. Thus, we have measured the execution 

time of the proposed skeletonization algorithm using 

the simplified polygons. The results are shown in 

Fig. 8. 

In order to take into account the overhead 

execution time of the simplification algorithms, we 



Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554 

 

 551 

have measured the total execution time of the 

skeletonization algorithm including the respective 

simplification routines (see Fig. 11).  

Fig. 11 allows us to choose the fastest version of 

the optimization heuristics. However, we need to 

consider that the heuristic optimization step might 

affect the accuracy of the resulting skeleton. 

Therefore, we have also calculated the error of the 

optimized skeletonization algorithm. Such error is 

measured as the Hausdorff distance between the 

ground truth skeleton and the result of the optimized 

skeletonization algorithm (see Fig. 10). 

 

6. DISCUSSION 

Fig. 11 shows that Ramer-Douglas-Peucker (DP) 

and Visvalingam-Whyatt (VW) algorithms allow us 

to speed-up our skeletonization method to the 

greatest extent. These two algorithms (only) 

overperform the optimization-free approach (NO) in 

case of small values of 𝑑𝐻 ≤ 0.001.  

The skeletonization based on Opheim and 

Reumann-Witkam algorithms exposes the smallest 

error among the other approaches (see Fig. 12). 

However, for 𝑑𝐻 < 0.002 these algorithms have a 

large computational overhead eliminating the effect 

of the optimization. Therefore, it is reasonable to 

apply them only for 𝑑𝐻 > 0.002. Note that the 

difference between skeletonizing errors decreasing 

as 𝑑𝐻 becomes smaller (see Fig. 12). 

We have computed 2-sample t-test to validate the 

hypothesis that algorithms DP and VW produce 

different average skeletonization errors. The 

hypothesis testing (see Table 4) showed that the 

skeletonizing errors produced by DP and VW are 

undistinguishable.  

Table 3. Parameters of the simplification algorithms 

Hausdorff 

distance 𝑑𝐻 

Algorithm parameters 

DP VW RW OP LA (0.25) ZS PD (0.25) 

0.001 0.001 0.0007 0.001 0.001 0.001 0.001 0.001 

0.005 0.005 0.0025 0.005 0.005 0.005 0.005 0.005 

0.01 0.01 0.005 0.009 0.009 0.01 0.01 0.01 

0.05 0.05 0.025 0.04 0.04 0.05 0.05 0.05 

0.1 0.1 0.05 0.08 0.08 0.1 0.1 0.1 

0.5 0.5 0.25 0.4 0.4 0.5 0.5 0.5 

1.0 1 0.5 0.8 0.8 1 1 1 

 

Another hypothesis testing was performed to 

distinguish between the execution time between DP 

and VW algorithms. Table 5 and Fig. 11 show that 

for the most of the cases (except 𝑑𝐻 = 0.001) DP 

algorithm executes faster than VW. 

Speed-accuracy trade-off. Since none of the 

tested algorithms minimizes the accuracy and 

execution time of the skeletonizing method at the 

same time, the optimal heuristic choice should base 

on the trade-off between accuracy and the speed. 

Thus, based on the performed computational 

experiments the following conclusions can be 

drawn: 

1. If accuracy of the resulting skeleton is critical, 

then for 𝑑𝐻 > 0.002 the optimization can be 

performed using OP or RW algorithms. 

However, for 𝑑𝐻 < 0.002 the only reasonable 

optimization is using the DP or VW algorithms; 

2. If execution time of the algorithm is more critical 

than the accuracy, then optimization can be 

performed using DP or VW algorithms, which 

according to the provided experiments give 1.7 

times less accurate result then RW and OP 

heuristics; 

Pruning effect of polygon simplification. It was 

experimentally discovered, that the introduced 

optimization heuristics influences the skeleton in a 

similar way as pruning methods [40]. Fig. 13 shows 

that for large values of 𝑑𝐻 simplification heuristics 

tends to regularize shape of the object in a way that 

the branches of the skeleton corresponding to small 

shape perturbation disappear. Therefore, such 

optimization allows us not only to speed-up the 

execution of the skeletonization, but also to achieve 

a pruning effect and remove the noisy brunches of 

skeleton.
 

 

Table 4. Testing the hypothesis that DP and VW produce different average Hausdorff errors (curved p-

values are above the significance level 0.05, underlined – below). 

t-Test 
Level threshold 𝑑𝐻 > 0 

0.001 0.005 0.01 0.05 0.1 0.5 1.0 

t-statistic / 

p-value 

-1.09 / 

0.2779 

8.40 / 

1.13·10-16 

8.01 / 

2.43·10-15 

1.90 / 

0.0580 

1.04 / 

0.2974 

0.59 / 

0.5544 

0.56 / 

0.5751 
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Table 5. Testing the hypothesis that DP and VW have different average execution time (curved p-values are 

above the significance level 0.05, underlined – below). 

t-Test 
Level threshold 𝑑𝐻 > 0 

0.001 0.005 0.01 0.05 0.1 0.5 1.0 

t-statistic / 

p-value 

0.26 \ 

0.7912 

-2.21 \ 

0.0275 

-2.48 \ 

0.01323 

-4.73 \ 

2.34·10-6 

-6.01 \ 

2.2·10-9 

-13.25 \ 

8.46·10-39 

-19.34 \ 

6.51·10-78 

 

 
 

Figure 13 – Examples of optimized Voronoi skeletons for arbitrary shapes from MPEG 7 CE-Shape-1 dataset. 

Optimization heuristics is DP. 𝐝𝐇 = 𝟎. 𝟎𝟎𝟏 for the top row of images, 𝐝𝐇 = 𝟏. 𝟎 for the bottom row of images

 

6. CONCLUSION 

In this paper, we proposed an optimized 

algorithm for computing the Voronoi skeleton based 

on polygonal data. This topic is of relevance because 

of its direct relation to the optimization tasks in 

image processing and computer graphics (in 

particular, the efficient processing of vectorized 

images). We have illustrated in detail the main steps 

of the proposed skeletonization algorithm. It was 

established that the complexity of the algorithm is 

O(N log N), where N is the number of vertices in a 

polygon. We have also proposed theoretically 

justified optimization heuristic, which is based on 

polygon/polyline simplification algorithms. In order 

to evaluate and prove the efficiency of such 

heuristic, a series of computational experiments 

were conducted based on the polygons obtained 

from MPEG 7 CE-Shape-1 dataset, which represent 

the most commonly observed shapes in computer 

graphics and vision. In order to determine the most 

suitable optimization heuristic, we have evaluated 

seven different appropriate state-of-the-art 

simplification algorithms. We have measured the 

execution time of the skeletonization algorithm with 

and without the optimization and determined the 

computational overheads related to such 

optimizations. Also, we determined the accuracy of 

the optimized skeletonization algorithm depending 

on the applied optimization. As a result, we have 

established the criteria, which allow us to choose the 

optimal heuristics depending on the system’s 

requirements.  
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