
Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554

 542

AN OPTIMIZED ALGORITHM FOR COMPUTING
THE VORONOI SKELETON

Dmytro Kotsur, Vasyl Tereshchenko

Taras Shevchenko National University of Kyiv, 4d Academician Glushkov Avenue, Kyiv, Ukraine, 03680

dkotsur@gmail.com, vtereshch@gmail.com

Paper history:

Received 26 February 2019
Received in revised form 10 May 2019

Accepted 25 May 2020

Available online 30 December 2020

Keywords:

Voronoi diagram;

Voronoi graph;
skeleton;

polygon;

shape simplification;
heuristic;

optimization.

Abstract: The skeleton-based representation is widely used in such fields as

computer graphics, computer vision and image processing. Therefore, efficient

algorithms for computing planar skeletons are of high relevance. In this paper,

we propose an optimized algorithm for computing the Voronoi skeleton of a

planar object with holes, which is represented by a set of polygons. Such

skeleton allows us to use efficiently the properties of the underlying Voronoi

diagram data structure. It was shown that the complexity of the proposed

Voronoi-based skeletonization algorithm is O(N log N), where N is the number

of polygon’s vertices. We have also proposed theoretically justified optimization

heuristic based on polygon/polyline simplification algorithms. In order to

evaluate and prove the efficiency of the heuristic, a series of computational

experiments were conducted involving the polygons obtained from MPEG 7 CE-

Shape-1 dataset. We have measured the execution time of the skeletonization

algorithm, computational overheads related to the introduced heuristics and also

the influence of the heuristic onto accuracy of the resulting skeleton. As a result,

we have established the criteria, which allow us to choose the optimal heuristics

for our skeletonization algorithm depending on the system’s requirements.

Copyright © Research Institute for Intelligent Computer Systems, 2020.

All rights reserved.

1. INTRODUCTION

The skeletal representation of the planar object is

essential for many problems of computer vision and

pattern recognition, computer graphics and

visualization [1]. For example, skeletons are widely

used for shape matching [2, 3], optical character

recognition [4] and image retrieval [2, 5]. In the

biological image processing, skeletonization

methods are extensively applied to extract the

central line of thin objects. For example, based on

the image data one can obtain the skeletal graph

representing the retinal blood vessels topology [6,

7]. Similarly, this technique is applied for

segmenting the biological neurons [8] and for

extracting thin subcellular structures [9, 10] based

on microscopy data.

Related work. There are different

skeletonization methods depending on a type of

input data. Morphological thinning techniques are

extensively used for computing the skeleton of a

binary image [11-13]. They allow us to obtain a

pixel-based representation of the skeleton. In order

to obtain the topology of the underlying graph, graph

vectorization methods can be applied [14, 15].

Another type of techniques is based on central

line tracing. They are commonly used to segment

thin-structures depicted on an image (e.g., axons and

dendrites of neurons [16], blood vessels [17],

filamentous structures [17, 18]). These methods can

directly represent the skeleton as a connected graph.

However, due to an iterative nature of these

methods, the execution time may vary significantly.

A different type of methods is used to compute a

skeleton of an object, whose shape is represented by

polygonal contours (with holes). Such contours are

extracted from a binary image using tracing

techniques (e.g., Marching squares [19]).

Alternatively, these methods can compute a skeleton

of primitives obtained from a vector graphic

representation.

Methods to construct the straight skeleton based

on shrinking technique with O(N log N) complexity

are described in papers [20, 21]. A linear complexity

computing@computingonline.net

www.computingonline.net

Print ISSN 1727-6209

On-line ISSN 2312-5381

International Journal of Computing

Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554

 543

method for a simple polygon without holes was

introduced in [22].

Another approach for constructing the skeleton of

an object with polygonal representation is by using

the Voronoi diagram [23, 24]. This class of methods

allows us to obtain a graph representation of the

skeleton directly and use the advantages of the

Voronoi diagram data structure allowing for

solutions of many related problems [25] (e.g.,

finding a convex hull, nearest neighbor, maximal

inscribed disk). However, the main drawback of

such methods is high computational costs due to

processing the vast number of simple primitives

(points, line segments).

Therefore, in this paper, we propose an approach

to decrease the computational costs related to the

Voronoi-based skeletonization algorithms by

introducing the novel preprocessing step based on

shape simplification heuristics. Our primary focus is

on investigation the suitable optimization heuristics,

empirical validation of such heuristics and

determining their properties.

The paper is organized as follows: The first

section gives an overview of the problem and related

state-of-the-art literature. In the second section, we

outline the theoretical background and formulate the

skeletonization problem. The third section is devoted

to the description of the skeletonization algorithm,

its main steps, and vertex/edge labeling procedure.

In Section 4 we introduce theoretical background

related to the optimization heuristics, we formulate

the shape simplification requirement and analyze

suitable shape simplification algorithms. In Section

5 we show the main results of our empirical study of

the optimized skeletonization algorithm; we

illustrate the computational overheads related to

optimization heuristics and demonstrate the

algorithm’s performance improvements. Section 6

is devoted to the analysis of the obtained results. It

establishes the criteria allowing the selection of the

optimal heuristics for Voronoi-based skeletonization

algorithm depending on the system’s requirements.

Finally, the paper concludes with a summary of the

main results.

2. PROBLEM STATEMENT

We assume that the planar object has

continuously-differentiable boundaries (called G1-

continuous) except for a finite number of critical

points, where contour is continuous, but not

differentiable (G0-continuous points). The object’s

boundaries are represented by a set of simple

polygons 𝒮: = {𝒫1, 𝒫2, … , 𝒫𝑚}, where polygon 𝒫𝑘 is

defined as an ordered set of points 𝑝1
𝑘 , 𝑝2

𝑘 , … , 𝑝𝑀𝑘

𝑘 .

The set of open line segments corresponding to

the polygon 𝒫𝑘 is denoted by ℒ𝑘: = ℒ(𝒫𝑘) =

{𝑙𝑖
𝑘 ≔ (𝑝

𝑖
𝑘, 𝑝

𝑖+1
𝑘) | 𝑖 = 1, … , 𝑀𝑘, 𝑝

𝑀𝑘+1
𝑘 = 𝑝

1
𝑘}. The

set of all vertices of the polygon (line segment’s

endpoints) is denoted by 𝒬 = ⋃ ⋃ {𝑝𝑖
𝑘}

𝑀𝑘
𝑗=1

𝑚
𝑘=0 .

Let us denote by ℒ ≔ ⋃ ℒ𝑘
𝑚
𝑘=1 the set of all line

segments representing the planar object. We also

assume that the polygon 𝒫0 represents the outer

contour of the object and polygons 𝒫1, … 𝒫𝑚

correspond to the inner holes. Thus, 𝑅 ≔
𝒫0\ ⋃ 𝒫𝑖

𝑚
𝑖=1 defines the object's region (domain).

Definition 1. The Voronoi cell corresponding to

an element 𝑢 ∈ ℒ ∪ 𝒬 is a locus of points:

𝒱𝒞(𝑢) = {𝑝 ∈ ℝ2|‖𝑝 − 𝑢‖ ≤ ‖𝑝 − 𝑤‖, 𝑤 ≠ 𝑢,
𝑤 ∈ ℒ ∪ 𝒬}

(1)

Definition 2. The Voronoi diagram of a set of

line segments ℒ (with endpoints 𝒬) is defined as a

set of all Voronoi cells:

𝒱𝒟(ℒ, 𝒬) = ⋃ {𝒱𝒞(𝑢)}

𝑢∈ℒ∪𝒬

 (2)

Remark 1. Note that the Voronoi diagram of line

segments ℒ (with endpoints 𝒬) is defined by the

boundaries between the neighboring Voronoi cells.

The most of the computational algorithms (e.g.,

“Divide and Conquer” [26], Fortune's algorithm

[27]) represent such boundaries in terms of the

Voronoi graph [28-29] 𝐺𝒮 = (𝑉𝒮 , 𝐸𝒮) with a set of

the Voronoi vertices 𝑉𝒮 and a set of Voronoi edges

𝐸𝒮 ⊆ 𝑉𝒮 × 𝑉𝒮.

Definition 3. A finite set of polygon’s 𝒫 points,

where the object is G0-continouous (but not G1-

continouous) are called critical points (vertices) of

the polygon 𝒫.

Remark 2. Note that the vertices of the polygon

𝒫, which correspond to G1-continouous part of the

object’s boundary, induce redundant edges of the

Voronoi diagram – the bisectors between two

consecutive line segments 𝑙𝑖 and 𝑙𝑖+1, which share a

common non-critical vertex 𝑝𝑖. In order to obtain an

approximate Voronoi diagram of an object

represented by 𝒮, such redundant edges

corresponding to all non-critical points of 𝒮 should

be removed.

Definition 4. The approximate Voronoi diagram

𝒱𝒟𝑎(𝒮) for a planar object represented by a set of

polygons 𝒮 is obtained as a subgraph 𝐺𝒮
𝑎 of the

Voronoi graph 𝐺𝒮 obtained by removing the edges

of 𝐺𝒮 corresponding to the bisectors between two

Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554

 544

consecutive line segments 𝑙𝑖 and 𝑙𝑖+1, which share a

common non-critical vertex 𝑝𝑖.

Definition 5. The Voronoi skeleton of a planar

object represented by a set of polygons 𝒮 is a subset

of the approximate Voronoi diagram 𝒱𝒟𝑎(𝒮)

positioning inside the object’s region 𝑅.

Remark 3. Thus, the Voronoi skeleton of 𝒮 is

obtained by removing (or trimming) the edges of

𝐺𝒮
𝑎, which do not belong to 𝑅

Problem statement: Given a set of polygons 𝒮,

which represent a planar object, construct the

Voronoi skeleton of 𝒮.

3. SKELETONIZATION METHOD

In this section, we provide a description of the

Voronoi skeletonization algorithm and Voronoi

graph processing routine. We also analyze the

algorithm’s complexity (see Subsection 3.3).

3.1 SKELETONIZATION ALGORITHM

The input of the algorithm and its main steps are

the following:

Input: 𝒮: = {𝒫1, 𝒫2, … , 𝒫𝑚} – the set of polygons,

each vertex 𝑝𝑖
𝑘 of the polygon 𝒫𝑘 has a bool

attribute 𝑖𝑠𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙[𝑝𝑖
𝑘] ∈ {0,1}. Polygon 𝒫𝑘 is

oriented such that the interior of the object is to the

right for any line segment 𝑙 ∈ 𝒫𝑘.

Algorithm:

Step 1: Construct the Voronoi diagram of a line

segments ℒ with endpoints 𝒬 (Fig. 1).

Obtain the Voronoi graph 𝐺𝒮 = (𝑉𝒮 , 𝐸𝒮)

represented as a doubly-connected edge list

(DCEL);

Figure 1 – Examples of the Voronoi diagram

(gray, black) for polygon’s (blue) edges

Step 2: Run the breadth-first search (BFS)

algorithm, traverse graph 𝐺𝒮 and label its

edges and vertices (Fig. 2) as described in

Subsection 3.2;

Figure 2 – Examples of the labeled Voronoi

vertices and edges

Step 3: Remove all “Redundant”, “Outer” edges and

“Boundary”, “Outer” vertices of 𝐺𝒮 (Fig. 3);

Figure 3 – Examples of the Voronoi skeleton (red

lines and black vertices)

Step 4: Remove isolated vertices of 𝐺𝒮 if any exist;

3.2 LABELING THE VORONOI GRAPH

We traverse the edges and vertices of the

Voronoi graph 𝐺𝒮 and mark them according to

their role in a resulting graph of the Voronoi

skeleton.

Definition 6. The Voronoi vertex is called:

▪ Inner, if it is inside the object’s polygon;

▪ Outer, if it is outside the object’s

polygon;

▪ Critical, if it coincides with one of the

critical vertices of the object’s polygon;

▪ Boundary, if it coincides with one of the

non-critical vertices of the polygon;

Definition 7. The Voronoi edge is called:

▪ Inner, if it is located inside object’s

region and doesn’t touch its boundaries;

▪ Critical, if it is located inside object’s

region and adjacent to a critical vertex;

▪ Outer, if the edge is located outside the

object’s polygon;

Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554

 545

▪ Redundant, if it is located inside object’s

polygon and touches polygon’s non-

critical vertex;

Therefore, the labels for Voronoi vertices are (see

Fig. 2) Inner – “I” Critical – “C”, Outer – “O”,

Boundary – “B”; The labels for Voronoi edges are

Inner – “I”, Critical – “C”, Outer – “O”, Redundant

– “R” (see Fig. 2). The types of the Voronoi cells are

Endpoint – “EP” and Line segment – “LS”;

Note that Outer and Boundary vertices are absent

in the final Voronoi skeleton and therefore should be

removed from the Voronoi graph together with

Outer and Redundant edges.

We label the edges and vertices of 𝐺𝒮 iteratively

using the breadth-first search procedure (BFS)

Firstly, we initialize the queue of BFS algorithm by

infinite edges of a Voronoi graph. The pseudocode

for the BFS initialization procedure is shown in the

listing below:

function InitQueue(Q):

Q := EmptyQueue();

for edge e do

Label[e] = “None”;

if isInfinite(e) then

EnQueue(e, Q);

v := non-null vertex of e;

Label[v] = “None”;

else

v1, v2 := non-null vertices of e;

Label[v1] = Label[v2] = “None”;

end;

end;

return Q;

end;

Label [•] is a data structure storing the labels of

edges and vertices. Using the BFS we traverse all

edges of the Voronoi graph starting from the infinite

edges. At each iteration we label current edge and

the adjacent non-labeled vertex. See the listing

below:

procedure TraverseBFS(Q):

while not Empty(Q) do

e := DeQueue(Q);

v := Null;

if isInfinite(e) then

v := non-null vertex of e;

LabelInfinite(e); // Classify the edge and incident vertex

else

v := vertex of e with “None” label;

LabelFinite(e); // Classify the edge and incident vertex

end;

for edge e incident to v do

// Add non-labeled edges to queue

if Label[e] = “None” then

EnQueue(e, Q);

end;

end;

end;

end;

The following function determines the label of an

infinite edge and the corresponding vertex:

procedure LabelInfinite(e):

c1, c2 := cells corresponding to e and Twin(e);

v := non-null vertex of e;

if Type(c1) = “EP” and Type(c2) = “EP” then

Label[e] = “O”; // Outer

Label[v] = “O”; // Outer

else // Edge between line segment’s interior and its

endpoint

p := is a unique endpoint of line segment;

if v coincides with p then

if isCritical[p] then

Label[v] := “C”; // Critical

else

Label[v] := “B”; // Boundary

end;

Label[e] := “O”; // Outer

else

Label[v] := “I”; // Inner

if isCritical[p] then

Label[e] := “C”; // Critical

Trim e to p;

else

Label[e] := “R”; // Redundant

end;

end;

end;

The following function determines the label of

finite edges and adjacent non-labeled vertex:

procedure LabelFinite(e):

v0 := labeled vertex of e;

v1 := unlabeled vertex of e; // Label[v1] is “None”

c1, c2 := cells corresponding to e and Twin(e);

if Label[v0] = “I” or Label[v0] = “O” then

if Type(c1) = “LS” and Type(c2) = “LS” then

if line segments in c1 and c2 share endpoint p then

if isCritical[p] then

Label[v1] := “C”; // Critical

Label[e] := if Label[v0] = “I” then “C” else “O”;

else

Label[v1] := “B”; // Boundary

Label[e] := if Label[v0] = “I” then “R” else “O”;

end;

else

Label[v1] := Label[v0];

Label[e] := Label[v0];

end;

else // Edge between LS and EP

if c1 and c2 belong to the same LS then

p := line segment’s endpoint; // Bisector is LS

if p coincides with v1 then

Label[v1] := if isCritical[p] then “C” else “B”;

if Label[v0] = “O” then

Label[e] := “O”; // Outer

else

Label[e] := if isCritical[p] then “C” else “R”;

end;

else

Insert new vertex v with position p into GS

Replace e by two edges e0 := (v, v0) and e1 := (v, v1);

Label[v] := if isCritical[p] then “C” else “B”;

if Label[v0] = “O” then

Label[v1] := “I”;

Label[e1] := if isCritical[p] then “C” else “R”;

Label[e0] := “O”;

Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554

 546

else

Label[v1] := Label[e1] := “O”;

Label[e0] := if isCritical[p] then “C” else “R”;

end;

end;

else // bisector is a parabolic arc

Label[v1] := Label[v0];

if Label[v0] = “O” then

Label[e] = “O”;

else

Label[e] = “I”;

end;

end;

end;

else // Critical or Boundary

if v1 is located to the right of c1 or c2 then

Label[v1] := “Inner”;

Label[e] := if Label[v0] = “C” then “C” else “R”;

else

Label[v1] := “Outer”;

Label[e] := if Label[v0] = “C” then “C” else “O”;

end;

end;

3.3 COMPLEXITY ANALYSIS

The total complexity of the skeletonizing

algorithm above is described in Theorem 1, which

uses Lemmas 1-3 to establish the complexities of

each individual step of the algorithm.

Lemma 1. The complexity of Step 1 of the

skeletonizing algorithm is O(N log N), where N is a

number of points in a polygon.

Proof. The Step 1 is about the construction of the

Voronoi diagram for a line segments, which are

extracted from the input polygons. The complexity

of the Fortune’s algorithm for Voronoi diagram

construction algorithm according to [27] is O(M log

M), where M is a number of line segments. Since N

is proportional to M, the complexity of the Step 1 is

O(N log N). ■

Lemma 2. The complexity of Step 2 of the

skeletonizing algorithm is O(N), where N is a

number of the points in an input polygon.

Proof. Step 2 is about labeling the edges and

vertices of the Voronoi graph using BFS traverse

algorithm. Note that the Voronoi graph is a planar

connected graph. Therefore, Euler’s formula |𝑉| −
|𝐸| + 𝑓 = 2 takes place, where |𝑉|, |𝐸|, 𝑓 is a

number of vertices, edges and faces of a graph. If
|𝑉| = 𝑁, then the number of edges |𝐸| = 𝑂(𝑁).

The BFS algorithm traverses all edges of the

Voronoi graph. Since all operations within one BFS

iteration can be performed in O(1), the complexity

of BFS routine is O(|𝐸| + |𝑉|) = O(N).

Thus, the complexity of Step 2 is O(N). ■

Lemma 3. The complexity of Steps 3-4 of the

skeletonizing algorithm is O(N), where N is a

number of the points in an input polygon.

Proof. One edge can be removed from DCEL in

O(1) by reassigning the pointers [25, 28]. According

to Lemma 2, the number of edges |𝐸| = 𝑂(𝑁).

Therefore, the complexity of Step 3 is 𝑂(𝑁). A

single isolated vertex can be removed from DCEL in

O(1). Therefore, the complexity of Step 4 is 𝑂(𝑁). ■

Theorem 1. The complexity of the skeletonizing

algorithm is O(N log N), where N is a number of the

points in an input polygon.

Proof. According to analysis of the complexities

of each algorithm’s step provided in Lemmas 1-3,

the total complexity of skeletonizing algorithm is

O(N log N). ■

4. OPTIMIZATION

The purpose of this section is to introduce an

optimization heuristic algorithm, which allow us to

compute fast the Voronoi skeleton by reducing the

number of vertices of input polygons. The main idea

behind the optimized Voronoi skeleton construction

algorithm is illustrated by the following lemma.

Lemma 4. Let 𝒫 = {𝑝1, 𝑝2, … , 𝑝𝑁} be a polygon

and 𝑙𝑖 denotes the line segment between points 𝑝𝑖

and 𝑝𝑖+1, 𝑖 = 1, … , 𝑁, 𝑝𝑁+1 = 𝑝0 of a polygon 𝒫.

The polygon 𝒫′ is obtained by subdividing line

segments 𝑙𝑖, 𝑖 = 1, … 𝑁 of a polygon 𝒫 such that the

line segment 𝑙𝑖 is replaced by a polyline formed by

points 𝑝𝑖,1, 𝑝𝑖,2 … , 𝑝𝑖,𝑅𝑖
 sampled on 𝑙𝑖, 𝑖 = 1,2, … , 𝑁

(𝑝𝑖,1 = 𝑝𝑖, 𝑝𝑖,𝑅𝑖
= 𝑝𝑖+1). Then the Voronoi skeletons

𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) constructed using the

skeletonizing algorithm above are equal (in terms of

the Hausdorff distance between the corresponding

Voronoi graphs).

Figure 4 – Illustration for case 1 of Lemma 4: blue

lines correspond to an input polygon, red edges are

final Voronoi skeleton, gray and red edges compose

Voronoi diagram for line segments

Proof. The Voronoi diagram of line segments of

𝒫 and 𝒫′ consists of the bisectors of the following

types: a bisector between two line segment interiors,

a bisector between a line segment interior and an

endpoint and a bisector between two endpoints. Let

us consider these cases separately:

Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554

 547

Figure 5 – Illustration for case 2 of Lemma 4: blue

lines correspond to an input polygon, red edges are

final Voronoi skeleton, gray and red edges compose

Voronoi diagram for line segments

Case 1 (see Fig. 4). The bisector between two

line segment interiors 𝑙1 and 𝑙2 is a line segment 𝑙′
[27, 28]. Let us suppose that in 𝒫′ line segment 𝑙2

remains the same and 𝑙1 is subdivided into two parts

𝑙1,1 and 𝑙1,2 connected by a shared endpoint 𝑞. Then,

the Voronoi cell corresponding to 𝑙1 in 𝒱𝒟(𝒫) will

be split into two Voronoi cells (correspondingly 𝑙1,1

and 𝑙1,2) of 𝒱𝒟(𝒫′) by the Voronoi edge 𝑒 such that

𝑒 is a bisector between 𝑙1,1 and 𝑙1,2 which passes

through 𝑞 and is perpendicular to 𝑙1 (and therefore,

𝑙1,1 and 𝑙1,2). Thus, the Voronoi edge 𝑒 will divide

bisector line segment 𝑙′ in 𝒱𝒟(𝒫) into two parts 𝑙′1

and 𝑙′2 in 𝒱𝒟(𝒫′) such that 𝑙′1 is a Voronoi edge of

the Voronoi cell of 𝑙1,1 and 𝑙′2 is the Voronoi edge

of the Voronoi cell of 𝑙1,2. Note that 𝑙′1, 𝑙′2 and edge

𝑒 are connected together by a newly introduced

Voronoi vertex 𝑣′. The remaining part of the

Voronoi diagrams for 𝒫′ and 𝒫 stays the same.

The BFS labeling procedure (see Step 2 of the

algorithm above) for Voronoi edges and vertices of

𝒱𝒟(𝒫′) will split the introduced in 𝒱𝒟(𝒫′) Voronoi

edge 𝑒 into two parts 𝑒1 and 𝑒2: one part will be

labeled as “Outer” and the other part will be labeled

as “Redundant”. Therefore, both parts will be

removed at Step 3 of the skeletonizing algorithm and

the resulting Voronoi skeleton 𝒱𝒮(𝒫′) will contain

the line segment edges 𝑙′1, 𝑙′2 connected by 𝑣′.
Case 2. In case of a line segment interior 𝑙 and an

endpoint 𝑝, two possible scenarios take place. First

scenario is when 𝑝 is an endpoint of 𝑙. In this case

Voronoi diagram contains an edge 𝑒′ coming

through 𝑝 and perpendicular 𝑙. The edge 𝑒′ can be

either removed or not by BFS procedure depending

on the type of 𝑝. Subdividing 𝑙 into two parts 𝑙𝑎 and

𝑙𝑏 which share an endpoint 𝑞 will introduce a new

edge 𝑒 parallel to 𝑒′, which will be classified as

“Redundant” and removed from the final skeleton.

The second scenario (see Fig. 5) is when 𝑝 is not an

endpoint of 𝑙. Then the bisector between 𝑝 and 𝑙 is a

parabolic arc 𝑙𝑝, which is subdivided into two parts

𝑙𝑝,1, 𝑙𝑝,2 if we split 𝑙 into 𝑙𝑎 and 𝑙𝑏. The analysis in

this case is the similar to the Case 1 except that now

𝑙′1 and 𝑙′2 are parabolic arcs 𝑙𝑝,1 and 𝑙𝑝,2,

respectively.

Figure 6 – The Voronoi skeletons (red) for polygon 𝓟

(blue) and its subdivided version 𝓟′ (blue) and

respective Voronoi diagrams (gray)

Case 3. The bisector between two different

endpoints of 𝒱𝒟(𝒫′) or 𝒱𝒟(𝒫) is an infinite edge

(ray), which is classified at Step 2 of the algorithm

above as “Outer” and, therefore, removed from both

𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) at Step 3.

The case of single subdivision (𝐿 = 1) of the

polygon line segment for different possible bisectors

of the Voronoi diagram is covered above. The

general case for several subdivisions 𝐿 can be

proved by induction on L as described below.

Let us assume that for 𝐿 = 𝑛 subdivisions of 𝒫

hold that 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) are equal. The polygon

𝒫′′ is obtained from 𝒫′ by subdividing an arbitrary

line segment of 𝒫′ into two line segments.

Therefore, we can apply one of the proved cases for

a single subdivision above and obtain that Voronoi

skeletons 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′′) are equal. Thus, by

induction 𝒱𝒮(𝒫) and 𝒱𝒮(𝒫′) are equal for any 𝐿 >
0. ■

Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554

 548

Table 1. The overview of polygon (polyline)

simplification algorithms

Name of

algorithm

Avg.

complexity

Worst-case

complexity

Simpl.

Req.

Ramer-Douglas-

Peucker [30]
O(N log N) O(N2) yes

Visvalingam-

Whyatt [31]
O(N log N) O(N log N) yes

Reumann-

Witkam [32]
O(N) O(N) yes

Opheim [33] O(N) O(N) yes

Lang [34] O(NK) O(NK2) yes

Zhao-Saalfeld [35] O(N) O(N) yes

Rapso [36] O(N) O(N) no

Li-Openshaw [37] O(N) O(N) no

Nth point [38] O(N) O(N) no

Circle [38] O(N) O(N) no

Perpendicular

distance [38]
O(NK) O(N) yes

Remark. It follows from Lemma 4 that the

Voronoi skeleton 𝒱𝒮(𝒫′) for a subdivided polygon

𝒫′ is the same (w.r.t. Hausdorff distance) as the

Voronoi skeleton 𝒱𝒮(𝒫) for the original polygon 𝒫

(see Fig. 6). However, in comparison to 𝒱𝒮(𝒫),

𝒱𝒮(𝒫′) is represented with a larger number of

Voronoi edges and vertices. Therefore, the concept

of the Voronoi skeleton with a minimal number of

vertices and edges take place. By applying Lemma 4

in the reverse direction, one aims to reduce the

number of vertices and edges in the Voronoi

skeleton. This in turn allows us to reduce the

execution time of Voronoi skeletonization algorithm

and also to compress the resulting graph

representation of a skeleton preserving its

geometrical properties.

Table 2. Suitable polygon simplification algorithms, their parameter and heuristics

Algorithm name Abbr. Parameter(s) Heuristics for 2nd parameter

Ramer-Douglas-Peucker DP 𝜀 > 0 – tolerance parameter; No

Visvalingam-Whyatt VW 𝐴 > 0 – minimum effective triangle area; No

Reumann-Witkam RW 𝜀 > 0 – perpendicular distance tolerance; No

Opheim OP 𝜀𝑚𝑖𝑛, 𝜀𝑚𝑎𝑥 > 0 – distance tolerances; 𝜀𝑚𝑎𝑥 = +∞ (large number)

Lang LA 𝜀 > 0 – perpendicular distance tolerance;

𝑅 ∈ ℕ – fixed size search region;

𝑅 = 𝜃 ∙ 𝑁, 𝑁 – number of points;

𝜃 ∈ {0.05,0.1,0.2,0.25, 0.5, 1.0}.

Zhao-Saalfeld ZS 𝜀 > 0 – sector bound error; No

Perpendicular distance PD 𝜀 > 0 – perpendicular distance tolerance;

𝐾 ∈ ℕ – number of repetitions;

𝑅 = 𝜃 ∙ 𝑁, 𝑁 – number of points;

𝜃 ∈ {0.05,0.1,0.2,0.25, 0.5, 1.0}.

Therefore, the operation reverse to subdivision –

simplification, should be applied to polygon 𝒫′ in

order to obtain 𝒫. According to Lemma 4

simplification procedure (algorithm) should meet the

following requirement:

Simplification requirement: The polygon

simplification heuristic should reduce the points

corresponding to colinear consecutive line segments

of the polygon. The polylines formed by such points

should be replaced by a single line segment.

Thus, we introduce the Step 0 in the

skeletonizing algorithm: simplify each polygon of a

set 𝒮 by reducing the points associated with colinear

consecutive line segments of the corresponding

polygon. This operation can be performed using one

of the existing polygon simplification algorithms,

which satisfies the simplification requirement above.

Analysis of simplification algorithms. We have

analyzed the most commonly used algorithms for

polygon (polyline) simplification and summarized

the results in Table 1.

The aim of the mentioned in Table 1

simplification algorithms is to reduce the number of

points representing the polygon (polyline). However,

certain simplification strategies do not agree with the

simplification requirement derived from Lemma 4.

For example, a naive Nth point simplification [38]

method merely removes each Nth point from a

polygon ignoring its geometry. Another algorithm –

Circle simplification [38], aims to group together

points forming spatial clusters based on the distance

Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554

 549

threshold and replace these clusters by a single

representative. Li-Openshaw [37] and Rapso [36]

algorithms simplify polyline based on spatial pixel

(or hexagon-based) grid. The latter two algorithms

rather solve the problem of polyline digitization

(useful, for example, for solving the problem of

optimal map rescaling). Therefore, we considered

only the algorithms fulfilling the simplification

requirement above (see Table 2). Note that most

algorithms in Table 1 have linear complexity (except

Ramer-Douglas-Peucker [30] and Visvalingam-

Whyatt [31], which have O(N log N) complexity).

The open issue is to choose the simplification

algorithm, which would allow us to achieve the best

performance improvement showing the minimum

influence on the resulting skeleton. This issue is

empirically investigated in the following evaluation

section.

5. ALGORITHM EVALUATION

In this section we evaluate the performance of

skeletonization algorithm in terms of execution time

and measure the influence of the heuristic

optimization step onto the accuracy and execution

time of the overall algorithm. We also evaluate the

computational overheads related to suitable line

simplification algorithms.

Figure 7 – Distribution of polygon’s sizes (number

of vertices)

Dataset. In order to empirically evaluate the

performance of the overall skeletonization algorithm

and individual heuristic simplification algorithms we

used polygons obtained from the dataset MPEG 7

CE-Shape-1. These polygons were extracted from

binary images using Marching Squares algorithm

[19]. In total our dataset contains 1282 polygons.

The distribution of polygon sizes (number of

vertices) is shown in Fig. 7.

Measures. In the performed experiments we have

measured the following quantities:

1. Execution time (ms) of each simplification

algorithm, skeletonizing algorithm with (without)

the mentioned heuristics and the total execution

time. The experiments were carried out on Intel Core

i7, 2.2GHz, 16Gb RAM.

2. Hausdorff distances 𝑑𝐻 (errors) [39]

between the simplified polygon and original polygon

and also between the ground truth skeleton and the

skeleton obtained using the skeletonization with a

simplification heuristic;

3. Simplification rate (%) of the polygon is

computed as follows:

𝑆𝑅(𝑃, 𝑃′) =
|𝑃|−|𝑃′|

|𝑃|
∙ 100% , (3)

where 𝑃 is an original polygon, 𝑃′ is a simplified

polygon and |𝑃| is a number of vertices of a polygon

𝑃. High simplification rate means that simplified

polygon has a small number of vertices in

comparison to the original one.

Parameters. The parameters of the simplification

algorithms (see Table 2) were chosen using the line

search method such that the maximum simplification

rate is achieved for a given threshold value of the

Hausdorff error 𝑑𝐻 – the distance between

simplified polygon 𝑃′ and an original polygon 𝑃.

This allows us to compare different simplification

algorithms with respect to the maximum allowed

error. The established parameters of the

simplification algorithms for the respective values of

𝑑𝐻 are shown in Table 3.

Figure 8 – Execution time of the simplification

algorithms

For the algorithms with two parameters we

applied the heuristics to choose the value of the

second parameter as described in Table 2. These

Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554

 550

heuristics were designed to achieve the maximum

simplification rate for a given Hausdorff error

threshold 𝑑𝐻. It was established that for the

algorithms of Lang and “Perpendicular distance” the

optimal value of 𝜃 is 0.25 and for 𝜃 > 0.25 the

simplification rate does not increase (however, the

execution time of these simplification algorithms

increases leading to additional overhead).

Evaluation results. Using the polygons from the

dataset MPEG 7 CE-Shape-1 we have measured the

execution time of each suitable simplification

algorithm in relation to the Hausdorff error threshold

𝑑𝐻 (see Fig. 8). These measurements can be

considered as a computational overhead related to

the optimization step of our skeletonizing algorithm.

Figure 9 – Simplification rates depending on the error

threshold. Nearly identical curves are:

(LA, ZS); (PD, VW, DP); (OP, RW)

In order to compare the quality of the

simplification algorithms, we have measured the

dependence of the simplification rate on the error

threshold value 𝑑𝐻.

Figure 10 – Execution time of skeletonization routine

with heuristics, horizontal dash line (NO) shows

execution time of skeletonization without optimization

Figure 11 – Overall execution time. Horizontal

dash line (NO) shows execution time of skeletonization

without optimization

Fig. 9 shows that in general the largest polygon

simplification for a given 𝑑𝐻 is achieved by the

algorithms LA and ZS, which have approximately

identical dependency curves. Slightly smaller

simplification is accomplished using the algorithms

PD, VW and PD, which show also almost

undistinguishable behavior (except for the algorithm

VW, which overperforms all other algorithms for

small values of 𝑑𝐻 < 0.002). The lowest

simplification rates are attained by OP and RW

algorithms with nearly identical dependency curves.

Figure 12 – The Hausdorff error of skeletonization

algorithm in relation to the simplification error

achieved by different simplification algorithms (curves

for RW and OP are nearly identical)

As we can observe from Fig. 9 and Fig. 10, the

fastest algorithms OP and RW achieve the smallest

simplification rate and, therefore, cannot guarantee

the fastest performance of the skeletonization

algorithm. Thus, we have measured the execution

time of the proposed skeletonization algorithm using

the simplified polygons. The results are shown in

Fig. 8.

In order to take into account the overhead

execution time of the simplification algorithms, we

Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554

 551

have measured the total execution time of the

skeletonization algorithm including the respective

simplification routines (see Fig. 11).

Fig. 11 allows us to choose the fastest version of

the optimization heuristics. However, we need to

consider that the heuristic optimization step might

affect the accuracy of the resulting skeleton.

Therefore, we have also calculated the error of the

optimized skeletonization algorithm. Such error is

measured as the Hausdorff distance between the

ground truth skeleton and the result of the optimized

skeletonization algorithm (see Fig. 10).

6. DISCUSSION

Fig. 11 shows that Ramer-Douglas-Peucker (DP)

and Visvalingam-Whyatt (VW) algorithms allow us

to speed-up our skeletonization method to the

greatest extent. These two algorithms (only)

overperform the optimization-free approach (NO) in

case of small values of 𝑑𝐻 ≤ 0.001.

The skeletonization based on Opheim and

Reumann-Witkam algorithms exposes the smallest

error among the other approaches (see Fig. 12).

However, for 𝑑𝐻 < 0.002 these algorithms have a

large computational overhead eliminating the effect

of the optimization. Therefore, it is reasonable to

apply them only for 𝑑𝐻 > 0.002. Note that the

difference between skeletonizing errors decreasing

as 𝑑𝐻 becomes smaller (see Fig. 12).

We have computed 2-sample t-test to validate the

hypothesis that algorithms DP and VW produce

different average skeletonization errors. The

hypothesis testing (see Table 4) showed that the

skeletonizing errors produced by DP and VW are

undistinguishable.

Table 3. Parameters of the simplification algorithms

Hausdorff

distance 𝑑𝐻

Algorithm parameters

DP VW RW OP LA (0.25) ZS PD (0.25)

0.001 0.001 0.0007 0.001 0.001 0.001 0.001 0.001

0.005 0.005 0.0025 0.005 0.005 0.005 0.005 0.005

0.01 0.01 0.005 0.009 0.009 0.01 0.01 0.01

0.05 0.05 0.025 0.04 0.04 0.05 0.05 0.05

0.1 0.1 0.05 0.08 0.08 0.1 0.1 0.1

0.5 0.5 0.25 0.4 0.4 0.5 0.5 0.5

1.0 1 0.5 0.8 0.8 1 1 1

Another hypothesis testing was performed to

distinguish between the execution time between DP

and VW algorithms. Table 5 and Fig. 11 show that

for the most of the cases (except 𝑑𝐻 = 0.001) DP

algorithm executes faster than VW.

Speed-accuracy trade-off. Since none of the

tested algorithms minimizes the accuracy and

execution time of the skeletonizing method at the

same time, the optimal heuristic choice should base

on the trade-off between accuracy and the speed.

Thus, based on the performed computational

experiments the following conclusions can be

drawn:

1. If accuracy of the resulting skeleton is critical,

then for 𝑑𝐻 > 0.002 the optimization can be

performed using OP or RW algorithms.

However, for 𝑑𝐻 < 0.002 the only reasonable

optimization is using the DP or VW algorithms;

2. If execution time of the algorithm is more critical

than the accuracy, then optimization can be

performed using DP or VW algorithms, which

according to the provided experiments give 1.7

times less accurate result then RW and OP

heuristics;

Pruning effect of polygon simplification. It was

experimentally discovered, that the introduced

optimization heuristics influences the skeleton in a

similar way as pruning methods [40]. Fig. 13 shows

that for large values of 𝑑𝐻 simplification heuristics

tends to regularize shape of the object in a way that

the branches of the skeleton corresponding to small

shape perturbation disappear. Therefore, such

optimization allows us not only to speed-up the

execution of the skeletonization, but also to achieve

a pruning effect and remove the noisy brunches of

skeleton.

Table 4. Testing the hypothesis that DP and VW produce different average Hausdorff errors (curved p-

values are above the significance level 0.05, underlined – below).

t-Test
Level threshold 𝑑𝐻 > 0

0.001 0.005 0.01 0.05 0.1 0.5 1.0

t-statistic /

p-value

-1.09 /

0.2779

8.40 /

1.13·10-16

8.01 /

2.43·10-15

1.90 /

0.0580

1.04 /

0.2974

0.59 /

0.5544

0.56 /

0.5751

Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554

 552

Table 5. Testing the hypothesis that DP and VW have different average execution time (curved p-values are

above the significance level 0.05, underlined – below).

t-Test
Level threshold 𝑑𝐻 > 0

0.001 0.005 0.01 0.05 0.1 0.5 1.0

t-statistic /

p-value

0.26 \

0.7912

-2.21 \

0.0275

-2.48 \

0.01323

-4.73 \

2.34·10-6

-6.01 \

2.2·10-9

-13.25 \

8.46·10-39

-19.34 \

6.51·10-78

Figure 13 – Examples of optimized Voronoi skeletons for arbitrary shapes from MPEG 7 CE-Shape-1 dataset.

Optimization heuristics is DP. 𝐝𝐇 = 𝟎. 𝟎𝟎𝟏 for the top row of images, 𝐝𝐇 = 𝟏. 𝟎 for the bottom row of images

6. CONCLUSION

In this paper, we proposed an optimized

algorithm for computing the Voronoi skeleton based

on polygonal data. This topic is of relevance because

of its direct relation to the optimization tasks in

image processing and computer graphics (in

particular, the efficient processing of vectorized

images). We have illustrated in detail the main steps

of the proposed skeletonization algorithm. It was

established that the complexity of the algorithm is

O(N log N), where N is the number of vertices in a

polygon. We have also proposed theoretically

justified optimization heuristic, which is based on

polygon/polyline simplification algorithms. In order

to evaluate and prove the efficiency of such

heuristic, a series of computational experiments

were conducted based on the polygons obtained

from MPEG 7 CE-Shape-1 dataset, which represent

the most commonly observed shapes in computer

graphics and vision. In order to determine the most

suitable optimization heuristic, we have evaluated

seven different appropriate state-of-the-art

simplification algorithms. We have measured the

execution time of the skeletonization algorithm with

and without the optimization and determined the

computational overheads related to such

optimizations. Also, we determined the accuracy of

the optimized skeletonization algorithm depending

on the applied optimization. As a result, we have

established the criteria, which allow us to choose the

optimal heuristics depending on the system’s

requirements.

7. REFERENCES

[1] P. K. Saha, G. Borgefors, G. S. Baja, “A survey

on skeletonization algorithms and their

applications,” Pattern Recognition Letters, vol.

76, pp. 3-12, 2016.

[2] H. Sundar, D. Silver, N. Gagvani, S. Dickinson,

“Skeleton based shape matching and retrieval,”

2003 Shape Modeling International, Seoul,

South Korea, 2003, pp. 130-139.

[3] J. Xie, P. Heng, M. Shah, “Shape matching and

modeling using skeletal context,” Pattern

Recognition, vol. 41, issue 5, pp. 1756-1767,

2008. doi:10.1016/j.patcog.2007.11.005.

[4] A. Chaudhuri, K. Mandaviya, P. Badelia, S.

Ghosh, Optical Character Recognition,

Springer, Cham, 2017, 248 p.

[5] R. S. Torres, A.X. Falcão, “Contour salience

descriptors for effective image retrieval and

analysis,” Image and Vision Computing, vol.

25, issue 1, pp. 3-13, 2007.

Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554

 553

[6] K. Rezaee, J. Haddadnia, A. Tashk, “Optimized

clinical segmentation of retinal blood vessels

by using combination of adaptive filtering,

fuzzy entropy and skeletonization,” Applied

Soft Computing, vol. 52, pp. 937-951, 2017.

doi: 10.1016/j.asoc.2016.09.033.

[7] W. Lasso, Y. Morales and C. Torres, “Image

segmentation blood vessel of retinal using

conventional filters, Gabor transform and

skeletonization,” Proceedings of the 19th

Symposium on Image, Signal Processing and

Artificial Vision, Armenia, Colombia,

September 17-19, 2014, pp. 1-4. doi:

10.1109/STSIVA.2014.7010170

[8] Y. Al‐Kofahi, N. Dowell‐Mesfin, C. Pace, W.

Shain, J. N. Turner, B. Roysam, “Improved

detection of branching points in algorithms for

automated neuron tracing from 3D confocal

images”, Cytometry, vol. 73, pp. 36-43, 2008.

doi: 10.1002/cyto.a.20499

[9] C. Faulkner, J. Zhou, A. Evrard, G. Bourdais,

D. MacLean, H. Häweker, P. Eckes, S.

Robatzek, “An automated quantitative image

analysis tool for the identification of

microtubule patterns in plants,” Traffic, vol. 18,

pp. 683–693, 2017. doi: 10.1111/tra.12505

[10] M. Beil, H. Braxmeier, F. Fleischer, V.

Schmidt, P. Walther, “Quantitative analysis of

keratin filament networks in scanning electron

microscopy images of cancer cells,” Journal of

Microscopy, Vol. 220, pp. 84-95, 2005. doi:

10.1111/j.1365-2818.2005.01505.x

[11] S. Changxian, M. Yulong, “Morphological

thinning based on image's edges,” Proceedings

of the 1998 International Conference on

Communication Technology, Beijing, China,

October 22-24, 1998, pp. 5-10. doi:

10.1109/ICCT.1998.743232

[12] T. Y. Zhang, C. Y. Suen, “A fast parallel

algorithm for thinning digital patterns,”

Communications of the ACM, vol. 27, issue 3,

pp. 236-239, 1984.

[13] T. Q. Yan, C. X. Zhou, “A continuous

skeletonization method based on distance

transform,” in: D. S. Huang, P. Gupta, X.

Zhang, P. Premaratne (Eds.), Emerging

Intelligent Computing Technology and

Applications. Communications in Computer

and Information Science, Springer, Berlin,

2012, pp. 251-258. doi: 10.1007/s00371-018-

1549-z

[14] J. Chen, M. Du, X. Qin, “An improved

topology extraction approach for vectorization

of sketchy line drawings,” The Visual

Computer, vol. 34, issue 12, pp. 1633–1644,

2018.

[15] X. Hilaire, K. Tombre, “Robust and accurate

vectorization of line drawings,” IEEE

Transactions on Pattern Analysis and Machine

Intelligence, vol. 28, issue 6, pp. 890-904,

2006. doi: 10.1109/TPAMI.2006.127

[16] L. Acciai, P. Soda, G. Iannello, “Automated

neuron tracing methods: An updated account,”

Neuroinformatics, Vol. 14, Issue 4, pp. 353–

367, 2016.

[17] L. Cheng, J. De, X. Zhang, F. Lin, H. Li, K. H.

Ong, W. Yu, Y. Yu, S. Ahmed, “A graph-

theoretical approach for tracing filamentary

structures in neuronal and retinal images,”

IEEE Transactions on Medical Imaging,

vol. 35, issue 1, pp. 257-272, 2016.

[18] A. M. Stein, D. A. Vader, L. M. Jawerth, D. A.

Weitz, L. M. Sander, “An algorithm for

extracting the network geometry of three‐

dimensional collagen gels,” Journal of

Microscopy, vol. 232, pp. 463-475, 2008.

[19] C. Maple, “Geometric design and space

planning using the marching squares and

marching cube algorithms,” Proceedings of the

2003 International Conference on Geometric

Modeling and Graphics, London, UK, July 16-

18, 2003, pp. 90–95.

[20] O. Aichholzer, F. Aurenhammer, D. Alberts, B.

Gärtner, “A novel type of skeleton for

polygons,” Journal of Universal Computer

Science, vol. 1, issue 12, pp. 752-761, 1995.

[21] D. Eppstein, J. Erickson, “Raising roofs,

crashing cycles, and playing pool: applications

of a data structure for finding pairwise

interactions,” Discrete & Computational

Geometry, vol. 22, issue 4, pp. 569-592, 1999.

[22] F. Chin, J. Snoeyink, C. A. Wang, “Finding the

medial axis of a simple polygon in linear time,”

Proceedings of the 6th Annual International

Symposium on Algorithms and Computation,

Cairns, Australia, December 4-6, 1995, pp.

382-391.

[23] R. Ogniewicz, M. Ilg, “Voronoi skeletons:

theory and applications,” Proceedings of the

1992 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition,

Champaign, USA, 1992, pp. 63-69. doi:

10.1109/CVPR.1992.223226

[24] G. Székely, “Voronoi skeletons,” in: K.

Siddiqi, S. M. Pizer (Eds.), Medial

Representations. Computational Imaging and

Vision, Springer, Dordrecht, 2008, pp. 191-221.

[25] F. P. Preparata, M. I. Shamos, Computational

Geometry: An introduction, first ed., Springer,

Berlin, Heidelberg, 1985, 390 p.

[26] M. I. Shamos, D. Hoey, “Closest-point

problems,” Proceedings of the 16th Annual

IEEE Symposium on Foundations of Computer

Dmytro Kotsur, Vasyl Tereshchenko / International Journal of Computing, 19(4) 2020, 542-554

 554

Science, Berkley, USA, October 13-15, 1975,

pp. 151-162.

[27] S. Fortune, “A sweepline algorithm for

Voronoi diagrams,” Algorithmica, vol. 2,

pp.153-174, 1987. doi:10.1007/BF01840357

[28] M. Berg, O. Cheong, M. Kreveld, M.

Overmars, Computational Geometry:

Algorithms and Applications, third ed.,

Springer, Berlin, 2008, 386 p. doi:10.1007/978-

3-540-77974-2

[29] A. Okabe, B. Boots, K. Sugihara, Spatial

Tessellations, Concepts and Applications of

Voronoi diagrams, second ed., John Wiley &

Sons, New York, 2000, 696 p.

[30] D. Douglas, T. Peucker, “Algorithms for the

reduction of the number of points required to

represent a digitized line or its caricature,” The

Canadian Cartographer, vol. 10, issue 2,

pp. 112–122, 1973.

[31] M. Visvalingam, J. D. Whyatt, “Line

generalisation by repeated elimination of

points,” Cartographic Journal, Vol. 30, pp. 46-

51, 1993.

[32] K. Reumann, A. P. M. Witkam, Optimizing

curve segmentation in computer graphics, in A.

Gunther, B. Levrat, H. Lipps (Eds.),

International Computing Symposium,

American Elsevier, North Holland, 1973, pp.

467–472.

[33] H. Opheim. “Fast data reduction of a digitized

curve,” Geo-Processing, vol. 2, pp. 33-40,

1982.

[34] T. Lang, “Rules for robot draughtsman,”

Geographical Magazine, vol. 42, pp. 50-51,

1969.

[35] Z. Zhao, A. Saalfeld, “Linear-time sleeve-

fitting polyline simplification algorithms,”

Proceedings of the Annual Convention and

Exposition Technical Papers, Seattle, USA,

April 7-10, 1997, pp. 214-223.

[36] P. Raposo, “Scale-specific automated line

simplification by vertex clustering on a

hexagonal tessellation,” Cartography and

Geographic Information Science, vol. 40, issue

5, pp. 427-443, 2013.

[37] Z. Li, S. Openshaw. “Linear Feature's Self-

Adapted Generalization Algorithm Based on

Impersonality Generalized Natural Law,”

Translation of Wuhan Technical University of

Surveying and Mapping, vol. 1, pp. 49-58,

1994.

[38] J. Song, R. Miao, “A novel evaluation approach

for line simplification algorithms towards

vector map visualization,” International

Journal of Geo-Information, vol. 5, issue 12,

pp. 223-236, 2016.

[39] A. A. Taha, A. Hanbury, “An efficient

algorithm for calculating the exact Hausdorff

distance,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 37,

issue 11, pp. 2153-2163, 2015.

[40] A. Beristain, M. Graña, A. I. Gonzalez, “A

pruning algorithm for stable voronoi

skeletons,” Journal of Mathematical Imaging

and Vision, vol. 42, pp. 225-237, 2012.

M.Sc., Dmytro Kotsur, Post
graduate student at the
department of Mathematical
Informatics, Faculty of Com-
puter Science and Cybernetics,
Taras Shevchenko National
University of Kyiv. Graduated in
2014 at Faculty of Computer
Science and Cybernetics at
Taras Shevchenko National

University of Kyiv, specialty – informatics. Areas of
scientific interests: computational geometry,
computer graphics, computer vision, pattern
recognition, theory of algorithms, medical image
processing, machine learning.

Prof. Vasyl Tereshchenko,
Head of the department of
Mathematical Informatics at
Faculty of Computer Science
and Cybernetics of Taras
Shevchenko National University
of Kyiv. Graduated in 1986
Mathematics and Mechanics
Faculty at Taras Shevchenko
National University of Kyiv,

specialty – applied mathematics and mechanics.
Areas of scientific interests: simulation and
visualization, computational geometry, computer
graphics, computer vision, pattern recognition,
theory of algorithms, parallel algorithms and
programming, information systems, database,
nonlinear integral and differential equations, thermo
mechanics inhomogeneous solids.

