
Vasyl Tereshchenko, Yaroslav Tereshchenko / International Journal of Computing, 16(3) 2017, 160-165 

 

 160

 
 
 

TRIANGULATING A REGION BETWEEN ARBITRARY POLYGONS 
 

Vasyl Tereshchenko 1), Yaroslav Tereshchenko 2) 
 

Taras Shevchenko National University of Kyiv 
4d Academician Glushkov avenue, Kyiv, Ukraine, 03680 

1) vtereshch@gmail.com, http://tvm.unicyb.kiev.ua/ 
2) y_ter@ukr.net, http://mi.unicyb.kiev.ua/ 

 
Abstract: The paper presents an optimal algorithm for triangulating a region between arbitrary polygons on the plane 
with time complexity �(�����). An efficient algorithm is received by reducing the problem to the triangulation of 
simple polygons with holes. A simple polygon with holes is triangulated using the method of monotone chains and 
keeping overall design of the algorithm simple. The problem is solved in two stages. In the first stage a convex hull for 
m polygons is constructed by Graham’s method. As a result, a simple polygon with holes is received. Thus, the problem 
of triangulating a region between arbitrary polygons is reduced to the triangulation of a simple polygon with holes.  In 
the next stage the simple polygon with holes is triangulated using an approach based on procedure of splitting polygon 
onto monotone polygons using the method of chains [15]. An efficient triangulating algorithm is received. The 
proposed algorithm is characterized by a very simple implementation, and the elements (triangles) of the resulting 
triangulation can be presented in the form of simple and fast data structure: a tree of triangles [17]. 
Copyright © Research Institute for Intelligent Computer Systems, 2017. All rights reserved. 
 
Keywords: Triangulation, simple polygon, holes, region, reducible problem, monotone polygon. 

 
 

1. INTRODUCTION 

The problem of optimal triangulation of a region 
between arbitrary polygons on the plane is 
considered. There are a few efficient algorithms to 
the solution of this problem [1, 2]. However, 
searching for an optimal way of solution is still an 
actual task today. On the other hand, triangulation of 
simple polygons is widely used in many 
applications, in particular, engineering applications, 
and can refer to different disciplines such as 
microbiology, geodesy and others [3, 4]. 

By analyzing existing approaches to solving the 
discussed problem, we can note the following. 
Goodman showed the possibility of triangulating a 
region between k polyhedra with N vertices in 
�(� + ��) time [5]. As a result of further research, 
Chazelle pointed out that complexity of the solution 
depends on a shape of area between polyhedra [1]. 
Later, Joe has proposed a new approach, which is 
associated with a local polyhedra transformation that 
improves Delaunay triangulation [6]. However, the 
performance of this algorithm is O(�� + ��), that is 
far from desirable. In the work [2] authors proposed 
the method of the modified Delaunay triangulation 
with limitations for d-dimensional space in O(��) 
time. Tarjan and Van Wyk in [7] had proposed an 

algorithm for triangulating a simple polygon with 
time complexity O(� log log�) and later it was 
simplified by Kirkpatrick [8]. Clarkson [9], Devilers 
[10] and Seydel [11] proposed a randomized 
algorithm, which has execution time	O(�log∗�).  

All algorithms mentioned above give good 
results in the case of convex polygons 
(polyhedrons), however, it is desirable to have an 
optimal solution to the general case. Naturally, the 
next question arises: whether it is possible to 
develop an algorithm that would give high efficiency 
and have a simple enough implementation. It is 
especially important in terms of practical 
applications of the algorithm. For instance, it can be 
a triangulation of a simple polygon with holes of 
arbitrary shape using a model of a unified 
algorithmic environment, which can significantly 
increase efficiency of interaction between parts of 
the entire set of algorithms (sub-algorithms, 
procedures, functions), and therefore reduce the total 
algorithm execution time [12]. In this paper, we 
propose a new approach to solving the problem of 
triangulating a region between simple polygons 
using reduction of the problem of triangulating a 
simple polygon with holes and using the method of 
monotone chains. 

 

computing@computingonline.net 
www.computingonline.net 

Print ISSN 1727-6209 
On-line ISSN 2312-5381 

International  Journal  of  Computing 

 



Vasyl Tereshchenko, Yaroslav Tereshchenko / International Journal of Computing, 16(3) 2017, 160-165 

 

 161

2. PROBLEM AND METHOD OF 
SOLUTION 

Problem. The given m arbitrary k-vertex 
polygons on the plane are shown in Fig. 1. It is 
necessary to triangulate the region that is bounded 
by these polygons and their convex hull, Fig. 2. 

 

 

Fig. 1 – The given set of polygons 

 

Fig. 2 – The area for triangulation 

To solve the problem we apply the reduction 
method [3], reducing our problem to the problem of 
triangulating a simple polygons with holes. We 
recall some concepts [1]. 

Definition 1. A polygon is simple if there is no 
pair of nonconsecutive edges sharing a point or in 
other words: connected boundary without self-
intersections. 

Definition 2. A simple polygon � is called 
monotonous relatively to a diagonal	� (if it exists), if 
� divides polygon onto two monotone chains. 

Theorem 1. Let there be given m polygons, and 
n1, n2, …, nm – number of vertices for each polygon 
respectively. The problem of triangulating a region 
between m polygons (not necessarily convex) is 
reduced to the problem of triangulating a simple 

polygon with m-holes (where N= n1+ n2+ ...+ nm) in 
linear time. 

Proof. Let there be given m polygons, and n1, n2, 
…, nm – be a number of vertices of each polygon 
respectively, then N= n1+ n2 +... + nm – the total 
number of vertices for given polygons. We construct 
the convex hull for this set of polygons. As a result, 
we will get a simple polygon with m holes. 
Therefore, triangulation of a region between m 
arbitrary polygons in this case is reduced to 
triangulation of a simple polygon with holes. 
According to the theorem about existence of a 
simple polygon triangulation [13], such a 
triangulation always exists. 

 

2.1 TRIANGULATION OF SIMPLE 
POLYGONS 

Before turning to triangulating a simple polygon 
with holes we consider triangulation of a usual 
simple polygon without holes. Today, there are 
several methods for triangulating such simple 
polygons. The most famous method is offered in 
[13, 16] with complexity O(N2). In addition, one of 
the most promising approaches today is the method 
of selection of monotone polygons, which is 
considered in papers [1, 3, 9, 11, 14]. The simplest 
of these methods, which has complexity O(NlogN) 
[1] offers some additional restrictions: the 
triangulated region is a rectangle that contains all 
vertices. In [11] Seidel proposes a randomized 
algorithm, in which the monotonicity and splitting 
on trapezes are used, resulting in average time 
complexity O(NlogN). In [14] Chazelle suggests a 
triangulation algorithm for a monotone polygon in 
linear time, which is the best result to date. All of the 
algorithms are similar to a certain extent and differ 
only in complexity of implementation. Below is a 
comparison chart for existing methods of 
triangulation. 

Table 1. Comparison of triangulation methods 

Method Time complexity 

Brute force method[14] O(N^4) 

Ear clipping method[17] O(N^2) 

Seidel’s method [11] O(N log N) 

Tarjan’s method [7] O(N log log N) 

Chazelle’s method [14] O(N) 

 

2.2 TRIANGULATION OF SIMPLE 
POLYGONS WITH HOLES 

Problem. Can we triangulate a simple N – vertex 
polygon that has k holes inside without introducing 
additional points in O(NlogN) optimal time? 

To solve the problem we use a chain method 
[15]. Let us consider the basic algorithm. 



Vasyl Tereshchenko, Yaroslav Tereshchenko / International Journal of Computing, 16(3) 2017, 160-165 

 

 162

Algorithm 
1. Preliminary preparation. We represent a 

polygon with holes as a graph and orient it in order 
of ascending ordinate values for vertices (from 
smaller to larger y), Fig. 3. In the same way, we sort 
vertices, Fig. 4. 
 

 

Fig. 3 – Representation of a polygon with holes as an 
oriented graph; b) Graph regularization 

 

Fig. 4 – Graph regularization 

2. Regularization. By sweeping plane in two 
passes we connect vertices that do not have input or 
output edges from the previous (following) vertices. 
So we get a graph, in which each vertex (except the 
first and last vertices) has an ordered set of input 
edges IN (v) (clockwise) and output edges OUT (v) 
(counterclockwise), Fig. 4. 

3. Pushing flow. We push flow in two stages. 
In the first stage, we push total unbalanced flow of 
the upper edges through the lower left edge. In the 
second stage we push the flow from the bottom to up 
through the upper left edge. Thus, we get at each 
vertex v (except the first and last vertices) balanced 
by weights graph G: WIN (v) = WOUT (v) (Fig. 5). 
This allows to build a complete set of m monotone 
chains Z = Z(C1, C2, ..., Cm) relatively OY. 

 

Fig. 5 – Pushing flow stage 

 

Fig. 6 – Bind chain ranges 

4. Determination of intervals for chains. For 
each edge and vertex we define a number of chains 
to which they belong while passing from top to 
bottom (Fig. 6.). 

5. Splitting in monotone polygons. Using 
sweeping plane method, based on information 
obtained at the previous stage, we divide our graph 
onto monotone polygons. We discard polygons that 
belong to holes (Fig. 7). 

6. Triangulation of monotone polygons. We 
triangulate polygons by method described in [1], 
(Fig. 8). 

 
Fig. 7 – Splitting in monotone polygons. Triangulation 

of monotone polygons 



Vasyl Tereshchenko, Yaroslav Tereshchenko / International Journal of Computing, 16(3) 2017, 160-165 

 

 163

 

Fig. 8 – Triangulation of monotone polygons 

 

3. SUBSTANTIATION OF COMPLEXITY 
ESTIMATION 

Theorem 2. Triangulation of simple N- vertex 
polygon with holes on a plane can be performed in 
O(NlogN) time for the worst case using O(N) 
memory. 

Proof. Let us consider time complexity for each 
step of the proposed algorithm: 

Preliminary preparation. Analysis of time 
complexity: sorting gives O(NlogN) and one pass for 
creating and orientating the mentioned graph gives 
O(N) in the worst case. 

Regularization. In regularization stage we pass 
through all vertices in O(NlogN) time in the worst 
case. 

Pushing flow. The pushing flow in two directions 
(from the bottom to up and from the top to down) 
gives O(N) in the worst case. 

Computing intervals for chains. In this stage all 
edges and vertices are selected only once: O(N) 
time. 

Splitting on monotone polygons. One pass 
through all vertices and incidental edges takes O(N) 
time in the worst case. 

Triangulation of monotone polygons. According 
to [1, 13] triangulating of each of M monotone 
polygons can be performed in O(K) time, where K is 
the number of vertices for the monotone polygon. In 
general, passing through all monotone polygons 
gives O(N) in the worst case. 

Theorem 3. The problem of triangulating a 
region between m polygons with total of N vertices 
can be solved in O(� log�) time. 

Proof. Summing up complexity of all stages 
described above and taking into account the result of 
the Theorem 2, we get the total time �(�(�)) for 
triangulation: 

�(�(�)) = �(� ����)
+ �(� ����) + �(�)

= �(� ����) 

 

4. IMPLEMENTATION 

Program implementation is executed on the Java 
platform and includes two components: interactive 
input data tasks and a conversion triangulation 
module. Conversion is performed in parallel with 
data entry and immediately displayed after changing 
data. The program contains controls that allow to 
upload and store configuration polygons on the 
screen. 

The main modules of the program: Main, 
PointsPanel, Point, ConvexHull, TRIANGTree, 
TRIANGNode, ComparableComparator, 
PolarAngleComparator, Generate random. 

Main starts the main window. It contains 
polygon generation and processing algorithms 
results. 

PointsPanel – drawing points, convex hull and 
triangulation. 

Point – stores the point coordinates and color. 
ConvexHull – builds convex hull and supports 

the corresponding data structure. 
TRIANGTree – implements and supports data 

structure: a tree of triangles. 
TRIANGNode – stores information about the 

class point TRIANGTree. 
ComparableComparator – standard comparator 

used in TRIANGTree. 
PolarAngleComparator – comparator that sorts 

points by polar angle TRIANGTree. 
Generate random generates m of k- vertices. 
 
One feature of the proposed algorithm is a very 

simple implementation, and the elements (triangles) 
of the resulting triangulation can be presented in the 
form of simple and fast data structure: a tree of 
triangles [17]. This makes the algorithm convenient 
for solving a wide range of applied and research 
problems, in particular, those referring to 
computational geometry and computer graphics, 
meshing and rendering [18], pattern recognition and 
image segmentation [19, 20], approximation and 2D 
(3D) simulation. In particular, the example of 
application of the algorithm is geo-information 
systems (GIS) for the surface reconstruction from 
input data captured by satellites.  

We have tested the algorithm for different input 
data. In particular, Fig. 9 shows an example of 
triangulating a region between 100 polygons, and 
Fig. 10, Fig. 11 (a, b) demonstrate time complexity 
for different number of unique polygons and points. 



Vasyl Tereshchenko, Yaroslav Tereshchenko / International Journal of Computing, 16(3) 2017, 160-165 

 

 164

 

Fig. 9 – An example of triangulation algorithm is a 
region between 100 polygons 

 

Fig. 10 – Time comlexity of the algorithm both for 
points and polygons 

 

a) 

 

b) 

Fig. 11 – Time comlexity for a) points with 1000 
polygons; b) polygons with 1000 points 

5. CONCLUSION 

In this paper, we propose the method of 
triangulating a region between m polygons (star or 
simple polygons) having N vertices in total in 
O(NlogN) time. The main idea of the described 
method is in the fact that it consists of two stages: 
reducing the problem to triangulating a simple 
polygon with holes and triangulating of the polygon 
by splitting it onto monotone polygons using the 
method of chains [15]. The suggested method allows 
successful balancing between performance and 
complexity of implementation. Another advantage 
of the proposed algorithm is that it can solve an 
extended problem: the case of “nested holes”. 
 

6. REFERENCES 

[1] B. Chazelle, N. Shouraboura, “Bounds on the 
size of tetrahedralizations,” J. Discrete & 
Computational Geometry, vol. 14, no. 1, 
pp. 429-444, 1995. 

[2] V. Tereshchenko, S. Pilipenko, A. Fisunenko, 
“Domain triangulation between convex 
polytopes,” J. Procedia Computer Science, 
vol. 18, pp. 2500–2503, 2013.  

[3] F. Preparata, M. I. Shamos, Computational 
Geometry: An Introduction, Springer-Verlag, 
Berlin, 1985, 398 p. 

[4] V. S. Bileckiy, Small Mine Encyclopedia, 
vol. 1-3, Shidniy Vidavnichiy Dim, Donetsk, 
2013, 1936 p. (in Ukrainian) 

[5] J. E. Goodman, J. O’Rourke, Handbook of 
Discrete and Computational Geometry, 2nd ed., 
CRC, A CRC Press Company, Boca Raton, 
London, 2004, 1453 p. 

[6] B. Joe, “Construction of three-dimensional 
Delaunay triangulations using local 
transformations,” J. Computer Aided 
Geometric Design, no. 8, pp. 123-142, 1991. 

[7] R. E. Tarjan, C. J. Van Wyk, “An O(nlog 
logn)-time algorithm for triangulating a simple 
polygon,” SIAM J. Comput, vol. 17, pp. 143–
178, 1988. 

[8] D. G. Kirkpatrick, M. M. Klawe, R. E. Tarjan, 
“Polygon triangulation in O(nlog logn) time 
with simple data structures,” J. Discrete 
Comput. Geom., vol. 7, pp. 329–346, 1992. 

[9] K. L. Clarkson, R. E. Tarjan, C. J. Van Wyk, 
“A fast Las Vegas algorithm for triangulating a 
simple polygon,” J. Discrete Comput. Geom., 
vol. 4, pp. 423–432, 1989. 

[10] O. Devillers, “Randomization yields simple 
O(nlogn) algorithms for difficult Ω(n) 
problems,” Internat. J. Comput. Geom. Appl., 
vol. 2, pp. 97–111, 1992. 

[11] R. Seidel, “A simple and fast incremental 
randomized algorithm for computing 



Vasyl Tereshchenko, Yaroslav Tereshchenko / International Journal of Computing, 16(3) 2017, 160-165 

 

 165

trapezoidal decompositions and for 
triangulating polygons,” J. Comput. Geom. 
Theory Appl., vol. 1, pp. 51–64, 1991. 

[12] V. Tereshchenko, I. Budjak, A. Fisunenko, 
“The unified algorithmic platform for solving 
complex problems of computational geometry,” 
J. Parallel Computing Technologies, vol. 7979, 
pp. 424-428, 2013. 

[13] M. de Berg, M. van Kreveld, M. Overmars, 
O. Cheong, Computational Geometry, 3rd ed., 
Springer-Verlag, Berlin, 2008, 398 p. 

[14] B. Chazelle, “Triangulating a simple polygon in 
linear time,” J. Discrete Comput. Geom., vol. 6, 
pp. 485-524, 1991. 

[15] E. Edelsbrunner, L. J. Guibas, J. Stolfi, 
“Optimal point location a monotone 
subdivision,” SIAM J. Comput., vol. 15, no. 2, 
pp. 317–340, 1986.  

[16] G. H. Meisters, “Polygons have ears,” J. 
American Mathematical Monthly, vol. 82, 
pp. 648–651, 1975. 

[17] V. Tereshchenko, Y. Tereshchenko, D. Kotsur, 
“Point triangulation using Graham’s scan,” in 
Proceedings of the 5-th IEEE International 
Conference on Innovative Computing, Galicia, 
Spain, May 20-22, 2015, pp. 148-151. 

[18] U. Grossmann, M. Schauch, S. Hakobyan, 
“The accuracy of algorithms for WLAN indoor 
positioning and the standardization of signal 
reception for diferent mobile devices”, 
International Journal of Computing, vol. 6, 
issue 1, pp. 103-109, 2007. 

[19] D. Zahorodnia, Y. Pigovsky, P. Bykovyy, 
“Canny-based method of image contour 
segmentation,” International Journal of 
Computing, vol. 15, issue 3, pp. 200-205, 2016. 

[20] N. I. Korsunov, D. A. Toropchin, “The method 
of finding the spam images based on the hash 
of the key points of the image,” International 
Journal of Computing, vol. 16, issue 4, pp. 259-
264, 2016. 

 

 

 

Prof. Vasyl Tereshchenko, 
Graduated in 1986 Mathematics 
and Mechanics Faculty at Taras 
Shevchenko National University 
of Kyiv, speciality – applied 
mathematics and mechanics. 
Now he works as Head of the 
Department of Mathematical 
Informatics. 

Areas of scientific interests: simulation and 
visualization, computational geometry, computer 
graphics, computer vision, pattern recognition, 
theory of algorithms, parallel algorithms and 
programming, information systems, database, 
nonlinear integral and differential equations, thermo 
mechanics inhomogeneous solids. 

 

 

Yaroslav Tereshchenko is a 
student at the student of 
second year Master's Program, 
at the Department of 
Mathematical Informatics, 
Faculty of Computer Science 
and Cybernetics (computer 
sciences specialty), Taras 
Shevchenko National University 
of Kyiv. 

Areas of scientific interests: simulation and 
visualization, computational geometry,  computer 
graphics, computer vision, pattern recognition, 
theory of algorithms. 

 


