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ABSTRACT Leading large language models have demonstrated impressive capabilities in reasoning-intensive tasks,
such as standardized educational testing. However, they often require extensive training in low-resource settings with
inaccessible infrastructure. Small or compact models, though more efficient, frequently lack sufficient support for
underrepresented languages, leaving a performance gap in critical domains. This work explores the potential of
parameter-efficient fine-tuning of compact open-weight language models to handle reasoning-intensive tasks in the
underrepresented Ukrainian language, building on the findings of the ZNO-Eval benchmark. Parameter-efficient fine-
tuning of LLaMA 3.1 (8 billion parameters), LLaMA 3.2 (3 billion parameters), and Gemma 2 (9 billion parameters)
models on chain-of-thought solutions resulted in a modest test score improvement of up to 17.4% on complex matching
tasks and 1.6% overall compared to tuning on answer letters alone, offering enhanced interpretability and robustness.
In addition, the proposed tuning method with joint task topic and step-by-step solution generation outperforms standard
chain-of-thought tuning in matching tasks and provides a 5.4% gain over the best LLaMA 3.2 model due to guiding the
model to recall and apply domain-relevant information. Contrasting obtained results with zero-shot evaluations of
leading open-weight and proprietary models such as Qwen, DeepSeek R1, OpenAl ol and 03, Gemini, and Claude,
highlights that fine-tuning LLaMA and Gemma models with 2,032 step-by-step solutions and 20 to 50 million trainable
parameters on a single A100 GPU lets them outperform GPT-40 mini, Mistral Large, and larger open-weight models.
This research also evaluates how merging the quantized adapter with the base model influences the generation quality.

KEYWORDS LLM; LLaMA; Gemma; PEFT; Chain-of-Thought, fine-tuning, reasoning, Ukrainian, information
technology.

I. INTRODUCTION
n recent years, Large Language Models (LLMs) have
demonstrated remarkable proficiency in language
understanding tasks, surpassing human-level performance on
multiple benchmarks with narrow text understanding tasks,
including traditional GLUE [1] and SQuAD [2], as well as
challenging reasoning benchmarks like the Massive Multitask
Language Understanding (MMLU) benchmark, which
encompasses a wide array of subjects and requires advanced
reasoning skills [3]. Moreover, in addition to unprecedented
accuracy in complex linguistic challenges, giant models like
PalLM empower new discoveries in mathematical sciences [4].
At the same time, multimodal solutions like GPT-40 or LLaMA
excel in integrating visual and textual information, enabling
sophisticated image captioning and visual question-answering
[5].
With the advent of the Transformer architecture [6],
enhanced attention mechanisms [7], and neural scaling laws
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[8], language models have revolutionized a wide range of
fields, including search, recommendation systems, real-time
coding assistance, and even robotics [9], fundamentally
reshaping how information is processed and utilized across
domains and industries.

Technologies like these serve as a foundation for
developing information systems that can be implemented
across various domains and integrated with other neural
network architectures and machine learning methods. This
approach enables the solution of complex, semi-formalized
practical tasks that require flexible adaptation and the
combination of different intelligent methods [10].

Despite their impressive achievements, LLMs often
demonstrate  limited capabilities in underrepresented
languages. Studies highlight that these models, predominantly
trained on high-resource languages like English, struggle to
generalize effectively to low-resource languages, resulting in
degraded accuracy and robustness [11]. In particular, the ZNO-
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Eval benchmark based on standardized exams for Ukrainian
school graduates showcased zero-shot strength in factual recall
and general knowledge across all models in the National multi-
subject test (NMT) subsets for history and geography [12].
However, answer quality drops substantially when dealing with
intricate language and specialized terminology of Ukrainian
language exam tasks (Table 1). Moreover, the substantial
computational resources required to train and deploy large

language models introduce additional complexity. The
enormous model sizes, exceeding tens or hundreds of billions
of parameters, require extensive hardware capabilities, which
makes them less suitable for organizations and individuals with
limited resources. This scalability issue highlights the
importance of more efficient, compact models that deliver
relatively high performance without the associated
computational overhead.

Table 1. Sample tasks from the Ukrainian language exam along with their English translations

Task description

English translation of task description

3aBraHHs 3 BUOOPOM OJHI€T IPAaBUIILHOT BIATIOBII:

Cydikc -MH- Mae 0JJHaKOBE 3Ha4eHHs B ycix cnoBax, OKPIM
A - conomuHa

b - GagunrHa

B - Bucounna

T - creGnuna

Single correct answer task:

The suffix -un- has the same meaning in all of the following words EXCEPT
A — conomuHa (straw piece)

B — 6amununa (leafy-stalk piece)

C — Bucounna (height / highland)

D — cTebmnuna (stem piece)

3aBaaHHs Ha BCTAHOBJICHHS BiMOBITHOCTI (JIOTIUHI MapH):

3’sicyiiTe, SKUMH YaCTHHAMH MOBH € BHUJUICHI ciloBa B pedeHHI (1udpa
M03HAYa€ HACTYITHE CIIOBO).

CyvacHa moguHa, mo6 O6ytu (l)ycmimHoro, Mae BuuTHCS (2)BIPOIOBK
(3)ycboro >xutTs, (4)0naHoBYIOYH HOBI ray3i 3HAHb.

A - 3aiiMEeHHUK

b - npukmeTHHK

B - dpopma niecnoBa (mienpUKMETHHK)
I - dhopma niecnoBa (mienpucTiBHUK)

J1 - mpuitMeHHUK

Matching task (logical pairs):

Determine which parts of speech the highlighted words are in the following
sentence (the number indicates the word that follows).

A modem person, in order to be (l)successful, must keep studying
(2)throughout (3)their entire life, (4)mastering new fields of knowledge.

A — pronoun

B — adjective

C — verb form (participle)

D — verb form (adverbial participle)

E — preposition

Due to these challenges, the research community has
shifted its focus toward developing smaller language models
that maintain competitive performance levels [13]. This
ongoing effort includes advancements in model training, such
as promising parameter-efficient fine-tuning methods (PEFT)
that significantly reduce the number of trainable parameters
[14], alongside innovative prompting techniques that augment
input with instructions to boost performance [15].

By employing these strategies, smaller models can be fine-
tuned to approach or even match the performance of their larger
competitors in English tasks while mitigating the
computational demands [16]. Consequently, there is a growing
interest in exploring whether these efficient models can be
improved in low-resource setups for underrepresented
languages to achieve comparable performance on specific
tasks, thereby democratizing access to Al capabilities.

This paper explores the efficacy of fine-tuning compact
open-source language models, specifically LLaMA and
Gemma, combining PEFT and prompt tuning methods to
enhance performance on Ukrainian exam tasks.

. RELATED WORKS

A. COMPACT LANGUAGE MODELS

Compact language models have gained attention due to their
ability to deliver robust performance while requiring fewer
computational resources than larger models. With
advancements in mobile computing, these compact yet
powerful models are increasingly favored for edge device
deployment [17]. They offer enhanced privacy and reduced
network dependency, making them an attractive option for a
wide range of applications. Notable among these compact
LLMs are the Gemma 2 and LLaMA 3 model families.
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Google's Gemma 2 open-source models are decoder-only
large language models designed for text-to-text generation
tasks. They are available in multiple parameter sizes,
specifically 2 billion (2B), 9 billion (9B), and 27 billion (27B)
parameters. The architecture introduces several technical
modifications to the Transformer framework, such as
interleaving  local-global and  group-query attention,
contributing to improved performance and efficiency [18].

Gemma 2 models have demonstrated exceptional
benchmark results across various natural language processing
tasks. Notably, these models outperform some larger open
models, showcasing their efficiency and effectiveness despite
a relatively small parameter count. The instruction-tuned
variants of Gemma 2 are reliable at following user prompts and
generating coherent, contextually relevant responses [18].

The LLaMA series of open-source LLMs, developed by
Meta, has seen significant advancements with the introduction
of LLaMA 3, LLaMA 3.1, LLaMA 3.2, and LLaMA 3.3
models. These iterations have progressively enhanced
capabilities, model sizes, and functionalities to support diverse
Al applications.

Released in April 2024, LLaMA 3 marked a substantial
upgrade in Meta's language model offerings. It was introduced
in two parameter sizes: 8 billion (8B) and 70 billion (70B). The
70B model was trained on approximately 15 trillion tokens,
enabling it to outperform competitors like Gemini Pro 1.5 and
Claude 3 Sonnet on various benchmarks [19].

In July 2024, Meta released LLaMA 3.1, expanding the
model sizes to include 8B, 70B, and a new 405 billion (405B)
parameter model. The 405B model featured an extended
context window of up to 128,000 tokens, allowing it to process
longer inputs effectively. LLaMA 3.1 aimed to boost
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efficiency, addressing the limitations of its predecessor [20].

The introduction of LLaMA 3.2 in September 2024 brought
significant advancements, particularly in multimodal
processing. This version included models with 1B, 3B, 11B,
and 90B parameters suitable for various use cases. The 11B and
90B parameter models were designed for joint text and image
tasks, while the 1B and 3B models were optimized for
deployment on edge devices, supporting real-time processing
[21].

B. EFFICIENT FINE-TUNING OF LLM

Full-parameter fine-tuning of large language models can
demand substantial computational resources, especially for
tasks with long input or output sequences. Multiple parameter-
efficient fine-tuning techniques, such as Adapter-based tuning,
Prefix tuning, and Low-Rank Adaptation (LoRA), have been
developed to address this. With adapter-based tuning, small,
trainable layers are being added between the frozen layers of a
pre-trained model. This dramatically reduces the number of
resources required for the model fine-tuning, while mitigating
the issues of forgetting knowledge acquired during pre-training
[22]. Prefix tuning also freezes the model and learns a small set
of task-specific continuous vectors (prefix), approaching full
fine-tuning performance with a minimal number of added
prefix parameters [23].

A more recent and elastic technique that consistently
achieves full fine-tuning performance with minimal effort in
hyperparameter tuning is Low-Rank Adaptation [24]. LoRA
reduces the number of trainable parameters by introducing
trainable low-rank matrices into each layer of the Transformer
architecture, allowing for efficient adaptation of pre-trained
models to specific tasks without full model retraining [25]. In
addition to high quality and simple parameter selection, this
approach also provides efficient inference without additional
latency, as the tuned adapter weights can be merged back into
the original model after training.

The quantization method is another option to enhance the
efficiency of model training or inference. Quantization reduces
the precision of the model's weights (e.g., from 32-bit to 8-bit
or 4-bit), thereby decreasing memory usage and increasing
computation speed. This process can be applied post-training
(Post-Training Quantization, or PTQ), which is simple but
reduces inference latency at a cost of accuracy degradation
[26], or during training (Quantization-Aware Training, or
QAT), which is more complex but usually preserves
performance [27].

The combination of LoRA and quantization methods has
led to significant advancements in model performance. For
example, QLoRA enables fine-tuning a 65-billion parameter
model on a single 48GB GPU by quantizing the base model to
4-bit and then using LoRA to fine-tune on top of the quantized
weights [28]. This technique preserves full 16-bit fine-tuning
task performance while being way more memory-efficient.
These advancements make deploying sophisticated LLMs in
environments with limited computational resources feasible.

C. PROMPTING TECHNIQUES

Prompting techniques have become crucial tools for effectively
guiding large language models to perform a wide range of
natural language processing tasks and produce the desired
output. These methods enable users to configure LLMs for
specific behavior without modifying their internal parameters,
making them suitable for various applications in low-resource
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environments. A list of common strategies includes the
following.

1. Zero-shot prompting, where the model is given a task
description without any examples and is expected to generate
the correct output based solely on the prompt [15], leverages
the model's pre-existing knowledge to handle tasks on which it
has not explicitly been trained. Although it is a simple
technique, its performance can be unreliable, particularly on
complex reasoning tasks or in languages underrepresented in
the pre-training data.

2. Few-shot prompting involves providing the model with a
few input-output examples within the prompt to illustrate the
task, enabling it to infer and apply the desired pattern to new
inputs and typically improving robustness and accuracy [29].
The main limitations of Few-Shot Prompting include the
extensive use of the model's limited context window and its
high sensitivity to the quality and format of selected examples.

3. Chain-of-thought (CoT) prompting encourages the
model to decompose complex problems into a series of
intermediate reasoning steps before printing the final answer.
This method enhances the model's ability to perform tasks that
require logical reasoning and multi-step problem-solving [30].
Despite being an effective strategy, CoT significantly increases
the length of the generated output, thus resulting in higher
computational costs and increased inference latency. Key
variations of this technique include zero-shot CoT, which adds
a simple phrase like "think step-by-step" to the prompt, and
few-shot CoT, where the provided examples contain detailed
reasoning steps.

4. Instruction prompting empowers the model with explicit
instructions or guidelines on how to approach a task. Clear and
detailed instructions can significantly improve the model's
performance by aligning its outputs with user expectations.
This technique is the foundation for instruction fine-tuning, a
common training phase for modern language models, where
they learn to follow diverse user commands from a large dataset
of instruction-answer pairs.

5. Generated knowledge prompting forces the model to
generate relevant background information before addressing
the main task. By first generating this context, the model is
generally able to provide more robust and contextually
appropriate responses [31]. However, the primary risk is that
the model may hallucinate, generating plausible-sounding but
incorrect knowledge, which leads to an incorrect final answer.

6. Self-consistency technique is an extension of the chain-
of-thought that generates multiple, diverse reasoning paths for
the same prompt and then selects the most frequent or
"consistent" final answer. This majority-voting approach
makes the model's reasoning more robust and less sensitive to
arithmetic errors [32]. Its primary weakness is the significant
increase in computational cost and time to answer, as it requires
running the same prompt multiple times to get a single answer.

7. Tree-of-thoughts is another advanced extension of CoT.
With this technique, instead of exploring a single reasoning
chain, the model explores multiple different reasoning paths
simultaneously [33]. This empowers tree-of-thoughts to solve
complex planning or search problems that standard chain-of-
thought cannot. However, this power comes with a very high
computational cost and implementation complexity.

In general, prompt engineering is a crucial skill for building
LLM-powered solutions. It can effectively guide LLMs toward
improved generalization and reduced hallucinations,
particularly for underrepresented languages and complex
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problem domains. Furthermore, the strategies mentioned are
not mutually exclusive. This research demonstrates that
techniques like chain-of-thought and generated knowledge
prompting can be combined with parameter-efficient fine-
tuning to create highly specialized and efficient models.

D. EXPLAINABLE Al

Explainable Artificial Intelligence is a set of information
technologies, models, and methods that help users understand
and trust the results produced by machine learning algorithms.
Some simple models, such as regression or decision trees, can
be explained without additional effort. In earlier knowledge-
processing approaches, explanations were provided based on
the fragments of knowledge used to obtain prediction results
[34]. Modern machine learning methods, such as deep neural
networks, are often viewed as "black boxes" due to
sophisticated inner workings that are hard to interpret.
However, even for these complex models, there are now
model-agnostic methods and frameworks for explainability.
These typically involve three stages of explanation: pre-
modeling (which includes dataset explorations of all kinds),
during modeling (where explanations become part of the
model's internal functioning), and post-modeling (providing
explanations for the prediction results) [35].

Attention visualization is another valuable tool for
Transformer-based architectures, especially in natural
language processing tasks, where it can highlight the input
segments with a high effect on the model’s outputs. However,
an even more promising strategy is the chain-of-thought
prompting. CoT not only improves the accuracy of predictions
but also explicitly presents intermediate steps to unveil the
intuition behind any intermediate decision. This detailed
explanation simplifies a deeper evaluation of the model’s
performance, allowing users to verify that the reasoning aligns
with domain-specific rules and principles. This interpretability
is crucial for various applications — from academic assessments
to healthcare diagnostics — where understanding the motivation
behind a decision is no less important than the decision itself.

E. SOLVING EXAM TASKS WITH LLM

The application of LLMs to standardized exam tasks serves as
a vital benchmark for their reasoning abilities. For the English
language, benchmarks like MMLU, GSM8K, and BIG-Bench
provide comprehensive datasets for evaluating model
performance on academic examinations:

- MMLU (Massive Multitask Language Understanding)
benchmark assesses a model's knowledge and reasoning
abilities across over 57 tasks spanning diverse academic
disciplines, including mathematics, history, and literature [3];

- GSMS8K (Grade School Math 8K) is a widely used
benchmark for evaluating multi-step reasoning and arithmetic
capabilities, consisting of 8,000 math problems designed to test
logical deduction and numerical accuracy [36];

- BIG-Bench (Beyond the Imitation Game Benchmark) — a
large-scale benchmark featuring over 200 diverse tasks, such
as logic, mathematics, common sense reasoning, and language
generation, aimed at pushing models to exhibit deeper
cognitive understanding and reasoning [37].

Beyond these foundational benchmarks, other research has
explored language model performance on high-school exams
in different contexts. For instance, the cross-lingual EXAMS
dataset established a strong baseline for scientific question
answering with early foundational encoder-only models
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assessed in 16 languages and 24 subjects from high school
examinations [38]. With the advancements of language models,
further research has centered on their zero-shot capabilities,
demonstrating superficial performance of LLMs in high-
resource English language comprehension compared to an
average student [39]. For low-resource setups, evaluation of
generative models in Latvian centralized exams for school
graduates has highlighted the minor difference between leading
open-weight and proprietary LLMs [40].

Another notable area of research in the educational domain
is the automatic review of human-written answers to
assessments. At first, this task may seem unrelated to exam
problem-solving, due to its focus on generating rationales
justifying the grades assigned to students' responses. However,
the model must be aware of the correct solution to provide fair
feedback on student answers. Recent studies indicate that
combining few-shot or chain-of-thought prompting strategies
with contextual item stems and rubrics significantly improves
the quality of assessments [41].

As for the Ukrainian language, ZNO-Eval benchmark with
real exam tasks from Ukraine's standardized educational testing
system, including the External Independent Evaluation and the
National Multi-subject Test, comprises single-answer options,
matching, correct sequence, and open-ended questions across
diverse subjects, delivering a thorough analysis of proprietary
LLMs' reasoning capabilities in Ukrainian [12].

At the same time, the UNLP 2024 Shared Task initiative
made significant contributions to the benchmarking of open-
weight models [42]. This initiative aimed to support the
development of models with a deep understanding of the
Ukrainian language, literature, and history. It showcased fine-
tuning results for numerous promising models and strategies,
highlighting advancements in adapting LLMs for Ukrainian-
specific tasks [43].

The ZNO-Vision benchmark further extends the evaluation
of large language models to multimodal contexts by
incorporating over 4,300 expert-crafted questions spanning 12
academic disciplines, including mathematics, physics,
chemistry, and humanities [44]. This dataset includes visual
elements, enabling the assessment of models' capabilities in
handling both text and images.

However, both the UNLP Shared Task and ZNO-Vision
evaluations, much like the broader EXAMS dataset, focused
solely on questions with a single correct answer. While this
prior work provides crucial context, it leaves a gap in
understanding how models handle higher-complexity problems
requiring structured output in low-resource languages. In
contrast, ZNO-Eval tasks involving matching or correct
sequences offer a deeper test of reasoning skills. Therefore,
these tasks provide a valuable opportunity to investigate
whether parameter-efficient fine-tuning can unlock the
specialized reasoning required for complex exam formats.

F. THE PURPOSE OF THE RESEARCH

The primary aim of this work is to increase LLM performance
on complex Ukrainian language exam tasks in a low-resource
setup by employing parameter-efficient chain-of-thought fine-
tuning. An important aspect of this research is to check
whether, under resource constraints, enhanced fine-tuning and
prompting methods can yield performance levels that rival
those of larger proprietary models, ultimately advancing the
application of cutting-edge information technologies in
software engineering for the educational domain.
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This research includes the following tasks:

- development of a comprehensive baseline with parameter-
efficient fine-tuning of selected open-source language models
on a complete set of Ukrainian language exam problems,
including multiple-choice and matching tasks;

- assessment of the impact of step-by-step reasoning by
comparing models tuned solely for single-letter output with
those tuned for chain-of-thought generation;

- comparison of the tuned models against leading
proprietary and open-weight models.

lll. MATERIAL AND METHODS

A. DATA PREPARATION

For training and evaluation, the complete Ukrainian language
and literature dataset from the ZNO-Eval benchmark was used.
This set consists of single-correct-answer questions and
matching tasks, pairing numbered options with lettered options
based on the question. The dataset combined 49 ZNO/EIE
(External independent evaluation) and NMT exams, totaling
2,746 questions. 32 EIE tests were sampled for training, 13 EIE
exams were chosen for validation, and 4 NMT exams were
reserved for testing. The NMT exams were chosen for testing
to align with the test set used in ZNO-Eval benchmarking and
to avoid tasks requiring manual assessment. The training and
validation sets included tasks from both the Ukrainian language
and literature categories to evaluate generalization capabilities
and prevent catastrophic forgetting caused by suboptimal
hyperparameter tuning. The test set, however, contained only
language tasks. The original ZNO-Eval task schema with the
question, answer options, a correct answer, and a comment
specifying the task topic was left unchanged (Fig. 1).

€ OAHaKOBe 3HauyeHHA B yCix

Figure 1. ZNO-Eval schema for sample tasks from Table 1

818

Prior to sampling, the dataset was cleaned by removing
duplicate tasks (381), paraphrased tasks (52), tasks without
answers (4), tasks missing a topic (48), and tasks containing
photos in question or answer options (97). This preprocessing
resulted in a final dataset of 1,740 tasks for training, 292 tasks
for validation, and 108 tasks for testing.

B. TOPIC-GUIDED CHAIN-OF-THOUGHT FINE-TUNING
ZNO-Eval benchmark and baseline evaluations conducted in
this research demonstrate that language models often struggle
with complex, reasoning-intensive tasks that require structured
outputs, especially when dealing with the intricate logic of
Ukrainian language tasks [12]. Utilizing the chain-of-thought
for prompting and fine-tuning may enhance reasoning abilities
[30]. This approach also reveals intermediate thinking steps,
which can be audited and analyzed. However, chain-of-thought
is time-consuming and computationally demanding during
both inference and full-parameter fine-tuning stages. This
technique substantially increases the length of the generated
output, leading to higher memory consumption and increased
generation latency.

Lower-precision parameter-efficient fine-tuning techniques
like QLoRA, which leverage 4-bit quantization, have become
an effective solution to the resource problem. However, the
reduction in resource consumption can lead to reasoning
instability, particularly in smaller models [45]. For instance,
hallucinations at the beginning of a reasoning chain can cause
an "accumulated error" effect, where a single incorrect step
fails the entire reasoning process, leading to a completely
different final answer.

To address the problem of achieving robust reasoning in a
low-resource setting, this research proposes an enhanced
parameter-efficient fine-tuning method. This method distills
expert-level reasoning capabilities into compact, 4-bit
quantized language models by fine-tuning on a structured,
multi-part target. Rather than simply outputting an answer
word or letter often seen in zero-shot prediction setups, the
model is trained to generate, in sequence, two components
detailed below.

1. Task topic (e.g., "TOPIC: Morphology. Parts of speech™).
This component acts as a form of generated knowledge, but it
is based on expert-provided ground truth, not model-
hallucinated facts. This step explicitly guides the model to
recall and apply the correct domain-specific rules before
attempting to solve the problem, narrowing the solution space
and reducing the chance of early-stage hallucinations that could
lead to wrong answers.

2. Step-by-step solution. The model is trained to generate
not only the task topic but also the complete reasoning path,
including the final answer. Chain-of-thought here provides the
intermediate steps needed for pairwise alignment and format-
compliant outputs.

By forcing the model to answer both the "what" (the topic)
and the "why" (the reasoning), this method aims to build robust
and interpretable reasoning capabilities within a low-resource,
4-bit quantized fine-tuning setup.

For each exam task in the training dataset, expert-curated
topics and step-by-step solutions were extracted from the
Osvita.ua portal [46], which provides educational materials and
exam resources along with commentary written by subject-
matter specialists. Table 2 illustrates a sample task topic with
its detailed step-by-step solution.
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Table 2. Topic and solution from the Osvita.ua portal for sample tasks from Table 1 with English translation

Step-by-step solution

English translation of step-by-step solution

Kowmentap
TEMA: Cnosotsip. Cydikcansuuii croci6.

3aBmaHHS TepeBips€ Balle BMIiHHSA pO3MI3HABaTH BHBYCHI CIIOCOOU

CJIOBOTBOpY Ta aHaJ’IiByBaTI/I JICKCUYHC 3HAYCHHSA CJIOBA.

B yxpaincekilf MOBi 3a JOmOMOTroi0 cydikca -HH- yTBODIOIOTH 3HAUHY
KIJBKICTh IMEHHUKIB jkiHOYoro poxay I Bigminu. Lle cioBa Ha mo3HaueHHs
YaCTHH pociuHK (6anguianHa, CTeO/IMHA, CONOMHUHA), a TAKOXK Ha MO3HAYCHHS
TepHTOPil, penbedy (BUCOUHHA).

Bignosins — B.

Comment
TOPIC: Word formation. Suffix-Based method.

This task tests your ability to recognize common word-formation processes
and to analyze a word’s lexical meaning.

In Ukrainian, the suffix -un- is used to create many first-declension feminine
nouns. These words either refer to plant parts (GamwiauHa, creGnuHa,
cooMuHa) or to geographical features/terrain (Bucounsa).

Answer — C.

Kowmentap
TEMA: Mopdosoris. YacTHHH MOBH.
3aB/aHHS MepeBipsie Balle BMiHHS IPaBUIIbHO BU3HAYAaTH YACTHHH MOBH.

HeobxinHo OyTH gyke yBaKHHM, TOMY IO YaCTHHOMOBHA NPUHAIICKHICTH
KOHKPETHOTO CJIOBA YACTO 3aJIE)KHUTh BiJl KOHTEKCTY.

Jlo cioBa yCHIIIHOIO MOXKHA MOCTaBUTU IHMTAHHS SKOI0?, BOHO BKa3ye Ha
03HaKy. lle NpHKMeTHHK.

Jlo ci10Ba BIPOOBIK HE MOYKHA OCTABUTH IIUTAHHS, BOHO JIHIIE CITyXKUTh VIS
3B’S3KY CJIOBA JKUTTA 3 IHIIMMH B peucHHi. Lle mpuiiMeHHNK.

Jlo ci1oBa ychOro MOXKHA MOCTABUTH [TMTAHHSI SIKOT0?, ajie BOHO JIHILE BKAa3ye
Ha 03HaKy, He HasuBatou ii. e 3aiiMeHHHK.

A CIOBO ONAHOBYIOYM BIJNOBifa€ Ha NMHUTAHHS WO PoOITYN?, yKazye Ha
nomaTkoBy Airo. Lle ocobmuBa dopma miecnoBa AienpHCIiBHUK.

Binnosins — BJIAT.

Comment
TOPIC: Morphology. Parts of speech.
This task tests your ability to correctly identify parts of speech.

It’s important to be very attentive, because a word’s part of speech often
depends on the context.

You can ask "skoro?” (“which one?”) about “ycmimHoro” (“successful”),
indicating a quality. That makes it an adjective.

You cannot form a question for “Bnpogos:x” (“throughout”); it simply links
the word “xurtsa” (“life”) to other parts of the sentence. Therefore, it is a
preposition.

You can ask “sxoro?” (“which one?”) about “ycporo” (“‘all of”), but it only
points to a characteristic without naming it. Hence, it is a pronoun.

The word “omanoBytoun” (“mastering” / “while mastering”) answers “mo
pobmsran?” (“while doing what?”), indicating an additional action. It is a
special verb form called an adverbial participle.

Answer — BEAD.

As shown in the table above, after CoT tuning, the model is
expected to generate a relevant hierarchical topic, prefixed with
the keyword "TEMA:" ("TOPIC:"), followed by a detailed
step-by-step solution. The solution includes a review of all
answer options or pairs for the exam task, concluding with the
keyword "Biamosigs:" ("Answer:") and providing either a
single answer letter for multiple-choice questions or a sequence
of number-letter pairs for matching tasks. This structured
approach ensures that the fine-tuned model delivers
interpretable and accurate responses while maintaining
alignment with task-specific requirements.

C. DATA CONTAMINATION AND LEAKAGE

Data contamination and leakage occur when information from
the evaluation dataset inadvertently influences model training,
leading to polluted performance metrics [47]. This problem
questions the reliability of model evaluation, as it does not
accurately reflect its ability to generalize to unseen data.
Contamination, common for large language models trained on
billions of texts, can arise from various sources, such as shared
content between datasets or pre-training on datasets containing
evaluation tasks.

In this research, two types of data contamination and
leakage were addressed. Pre-training data contamination
explores the possibility that the large language model was pre-
trained on test-exam tasks. However, this issue is mitigated by
several factors. The availability of webpages with Ukrainian
exam data is limited, and Ukrainian was not a primary language
in the LLM's pre-training dataset. Furthermore, in most cases,
the correct answer or problem solution is not directly available
alongside the question definition. Accessing the solution often
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requires additional actions, such as logging in or revealing
answers embedded as images rather than text.

To further reduce the impact of potential contamination on
evaluation results, the answer numbers, letters, and texts were
shuffled for the test set. This measure prevents straightforward
answer memorization from contaminating the results.

The second type aims to check whether some tasks within
the dataset contained exact or partial matches of questions or
answer options across training, validation, and test sets. These
duplicates were identified based on matching questions or
answer option text in case they were not common generic
statements. Generic statements, such as "match options on the
left with texts on the right" for questions or part-of-speech
keywords for answers, were excluded from duplicate
identification.

All duplicates between the validation and training sets were
removed from the validation set. Similarly, duplicates between
the test set and either the training or validation sets were
removed from the train/validation to ensure that the test set
remained unchanged. Final manual sample screening identified
40 tasks in the validation set and 12 tasks in the test set that
contained rephrased questions or answer options. Although
these instances are not exact duplicates, they were removed to
prevent data leakage and minimize any potential impact on the
evaluation scores.

D. MODEL SELECTION

To align with the low-resource goal of this research, the
selection of models was limited to compact options that could
be efficiently trained on a single A100 GPU with 80 GB of
VRAM. The chosen models include Meta's LLaMA 3.1 with 8
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billion parameters, LLaMA 3.2 with 3 billion parameters, and
Gemma 2 with 9 billion parameters. These models were
selected due to their balance between performance and
computational efficiency, making them suitable for resource-
constrained environments.

Each model comes in two versions: a base pre-trained and
a fine-tuned with instructions to follow user commands in a
chat-like manner. This research focuses solely on instruction-
tuned versions since pre-trained models did not provide any
improvement during initial evaluations.

To further optimize training and inference processes, all
models were quantized to 4-bit with the Bits and Bytes library
[48]. This quantization significantly reduced memory usage,
enabling faster training and inference. The combination of
compact architecture and quantization ensured efficient use of
computational ~ resources, allowing for  effective
experimentation under low-resource conditions.

E. MODEL TUNING AND EVALUATION
Parameter-efficient fine-tuning was performed on the selected

instruction-tuned models ("it" in the model name) versions,
using two variations: one with the correct answer represented
as a letter or a sequence of letters, and the other incorporating
the proposed chain-of-thought approach with and without
topics. Models were fine-tuned over four epochs, with a
learning rate of 3e-04, a gradient accumulation of 4 to mimic
large batch sizes on GPUs, and checkpoints saved after each
epoch. The best checkpoint was identified based on the
validation metric that produced the highest overall score on
validation exams.

The loss was not used as the validation metric because it is
based on the model's perplexity, which does not account for the
importance of generating the correct answer letter. Perplexity
treats all characters in the generation equally and does not
consider the variability in phrasing step-by-step solutions.
Instead, validation accuracy, calculated as the sum of all scores
on the validation exams, was used to find the best checkpoint.

Data preparation, model configs, and PEFT scripts are
available at github.com/NLPForUA/ZNO. Table 3 shows all
promising experimental parameters.

Table 3. Experiment parameters

Model Tuning Par?m.leters, Tramed.pz.lrameters, Batch size Accumulation
billions millions
Tuned for answer letter generation

LLaMA-3.2-3B-it-tune-al letter 3 22 8 4
LLaMA-3.1-8B-it-tune-al letter 8 44 4 4
Gemma-2-9B-it-tune-al letter 9 52 4 4

Tuned for chain-of-thought (step-by-step solution) generation
LLaMA-3.2-3B-it-tune-cot solution 3 22 8 4
LLaMA-3.1-8B-it-tune-cot solution 8 44 4 4
Gemma-2-9B-it-tune-cot solution 9 52 4 4

Tuned for chain-of-thought (topic and step-by-step solution) generation

LLaMA-3.2-3B-it-tune-cot-wt topic + solution 3 22 8 4
LLaMA-3.1-8B-it-tune-cot-wt topic + solution 8 44 4 4
Gemma-2-9B-it-tune-cot-wt topic + solution 9 52 4 4

For evaluation, baseline scores were established using
random guessing and zero-shot evaluations of models without
CoT output. The evaluation used greedy decoding with a
maximum generation length of 2,048 tokens. Generated
answers were extracted from the last occurrence of the
"Bignosins:" ("Answer:") keyword. The scoring approach
followed the same rules for both EIE and NMT exams.
Multiple-choice questions were scored 1 point for each correct
prediction, while matching tasks were scored up to 4 points,
with 1 point awarded for each correct logical pair. For single-
answer questions, a score of zero was given if multiple letters
were generated, even if the first answer was correct. The score
for the matching task was also zeroed if the response contained
more than four answer letters, motivating confident solution
generation. This methodology ensured consistent evaluation
across all models and tasks.

IV. RESULTS

In general, the experimental results prove the effectiveness
of parameter-efficient fine-tuning combined with quantization
for compact open-source models. For all configurations, tuned
models demonstrated substantial improvements over the
baseline, with joint topic generation and step-by-step reasoning
contributing moderately to performance gains.

The added benefit of chain-of-thought tuning (LLaMA and
Gemma models with "cot" suffix) becomes clearer when
applied to more complex tasks, including matching and
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literature assignments (scores shown in parentheses for
literature tasks in Table 4). In these scenarios, the
implementation of step-by-step reasoning enhances the
steerability and clarity of the model’s thought process, making
it easier to follow the logic it employs to arrive at conclusions.
However, despite these gains, the validation set did not
consistently show anticipated improvement when comparing
chain-of-thought to letter-only generation. Several factors
appear to affect the result. Firstly, the validation set primarily
consists of older exam tasks with no answer option shuffling,
thus increasing the chance of data contamination. Secondly, the
approach taken to remove duplicate and rephrased tasks has
inadvertently led to an uneven distribution of task types and
topics. Some appear only once or twice, whereas others are
overrepresented. Lastly, adapters were merged with base
models for wvalidation scoring due to time and cost
considerations. This could lead to a score drop for CoT models.
Nevertheless, the validation scores remain valuable for
selecting the optimal training epoch. It has been empirically
observed that higher single-answer, matching, and total
validation scores directly correlate with better performance on
a more representative test set. In contrast to the validation set,
the test data includes more recent exams with answer options
shuffling and a fair balance of question types and topics.
Detailed experiment results are demonstrated in Tables 4
and 5. All models are available at huggingface.co/NLPForUA.
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Table 4. Evaluation results on the validation set with 4-bit quantization

Model Name Generates Scores for language tests Scores for language and literature
Single answer Matching Total Single answer Matching Total
Max possible score - 233 72 305 260 (+27) 88 (+16) 348
Random guess letter 53.3 14.4 67.7 58.8 (+5.5) 17.6 (+3.2) 76.4
Baseline: zero-shot answer letter generation
LLaMA-3.2-3B-it letter 0 1 1 1(+1) 1 (+0) 2
Qwen2.5-7B-it letter 52 5 57 57 (+5) 8 (+3) 65
LLaMA-3.1-8B-it letter 66 10 76 71 (+5) 11 (+1) 82
Gemma-2-9B-it letter 31 16 47 36 (+5) 18 (+2) 54
Qwen2.5-14B-it letter 69 16 85 81 (+12) 19 (+3) 100
Gemma-2-27B-it letter 79 20 99 88 (+9) 22 (+2) 110
Qwen2.5-32B-it letter 40 12 52 48 (+8) 16 (+4) 64
LLaMA-3.3-70B-it letter 56 15 71 64 (+8) 18 (+3) 82
Qwen2.5-72B-it letter 61 12 73 74 (+13) 14 (+2) 88
Reasoning models baseline: zero-shot chain-of-thought generation
DeepSeek-R1 LLaMA-8B solution 9 0 9 11 (+2) 0 (+0) 11
DeepSeek-R1 Qwen-14B solution 25 13 38 35 (+10) 13 (+0) 48
DeepSeek-R1 Qwen-32B solution 43 29 72 51 (+8) 29 (+0) 80
LLaMA 3.2 3B
LLaMA-3.2-3B-it-tune-al letter 57 16 73 65 (+8) 17 (+1) 82
LLaMA-3.2-3B-it-tune-cot solution 54 17 71 63 (19) 18 (+1) 81
LLaMA-3.2-3B-it-tune-cot-wt topic+solution 53 8 61 60 (+7) 13 (+5) 73
LLaMA 3.1 8B
LLaMA-3.1-3B-it-tune-al letter 74 27 101 82 (+8) 31 (+4) 113
LLaMA-3.1-8B-it-tune-cot solution 82 28 110 94 (+12) 32 (+4) 126
LLaMA-3.1-8B-it-tune-cot-wt topic+solution 81 35 116 91 (+10) 38 (+3) 129
Gemma 2 9B
Gemma-2-9B-it-tune-al letter 104 37 141 118 (+14) 41 (+4) 159
Gemma-2-9B-it-tune-cot solution 96 41 137 109 (+13) 44 (+3) 153
Gemma-2-9B-it-tune-cot-wt topic+solution 94 37 131 110 (+16) 39 (+2) 149
Table 5. Evaluation results on the test set with 4-bit quantization
Model Name Generates Total scores Total scores after merge
Single answer Matching Total Single answer Matching Total
Max possible score - 92 64 156 - - -
Random guess letter 20.25 12.78 33.03 - - -
Baseline: zero-shot answer letter generation
LLaMA-3.2-3B-it letter 0 4 4 - - -
Qwen2.5-7B-it letter 26 5 31 - - -
LLaMA-3.1-8B-it letter 25 7 32 - - -
Gemma-2-9B-it letter 21 21 42 - - -
Qwen2.5-14B-it letter 25 16 41 - - -
Gemma-2-27B-it letter 30 24 54 - - -
Qwen2.5-32B-it letter 18 26 44 - - -
LLaMA-3.3-70B-it letter 25 13 38 - - -
Qwen2.5-72B-it letter 18 15 33 - - -
Reasoning models baseline: zero-shot chain-of-thought generation
DeepSeek-R1 LLaMA-8B solution 4 1 5 - - -
DeepSeek-R1 Qwen-14B solution 16 21 37 - - -
DeepSeek-R1 Qwen-32B solution 22 25 47 - - -
LLaMA 3.2 3B
LLaMA-3.2-3B-it-tune-al letter 24 11 35 27 10 37
LLaMA-3.2-3B-it-tune-cot solution 18 10 28 16 14 30
LLaMA-3.2-3B-it-tune-cot-wt topictsolution 24 15 39 14 5 19
LLaMA 3.1 8B
LLaMA-3.1-3B-it-tune-al letter 25 12 37 30 17 47
LLaMA-3.1-8B-it-tune-cot solution 19 13 32 26 13 39
LLaMA-3.1-8B-it-tune-cot-wt topic+solution 26 15 41 28 14 42
Gemma 2 9B
Gemma-2-9B-it-tune-al letter 33 23 56 41 22 63
Gemma-2-9B-it-tune-cot solution 37 27 64 28 29 57
Gemma-2-9B-it-tune-cot-wt topic+solution 29 30 59 28 26 54

The random guessing baseline, selecting one random
answer out of all provided options for questions with a single
correct answer and constructing a sequence of random letters
for matching tasks, achieved a total test score of 33.03, with
20.25 points on single-answer questions and 12.78 points on
matching tasks. The overall performance of baseline LLaMA
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3.1 and 3.2 models reflects the underrepresented nature of the
Ukrainian language, as the former fails to provide any
meaningful answer (total score of 4) and the latter struggles to
surpass random guessing in matching tasks (7 vs 12.78 points).
At the same time, Gemma-2-9B demonstrated high robustness
without any fine-tuning, securing 42 in total. In comparison, its
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3 times larger "relative" became a leader with 54 points.

An important consideration is the effect of merging a 4-bit
LoRA adapter with the base model. Directly merging in 4-bit
often degrades prediction quality due to rounding errors.
Another approach, a full precision merge with a subsequent
quantization, helped mitigate the issue. Interestingly, letter-
only models show substantial gains after merging as the impact
of numerical artifacts increases with the length of generation.

All instruct models tuned to generate answer letters or
sequences of letters (models with the "it-tune-al" suffix)
demonstrated reasonable improvements over the baseline. For
instance, the LLaMA-3.2-3B model tuned with topics and
solutions slightly exceeded the random guessing score (39 vs.
33 points), while LLaMA-3.1-8B-it-tune-al yielded 49.9%
improvement with a total score of 47 points, and Gemma-2-9B-
tune-al demonstrated the second-best result with 63 points.

Fine-tuning models with step-by-step reasoning solutions in
a chain-of-thought manner revealed nuanced outcomes. While
the CoT approach substantially improved performance across
all matching and literature tasks compared to letter-only

solutions, only Gemma-2-9B-it-tune-cot achieved a higher
total score with 14.3% and 1.6% gains over the letter-only
solution before and after model merge.

A proposed method, prefacing step-by-step reasoning with
a generated task topic, helped squeeze the solution space,
enhancing both interpretability and accuracy. With this
approach, the topic is kind of a knowledge prompt, guiding the
model to focus on relevant aspects of the task. That pseudo-
knowledge injection increases the likelihood of the domain-
specific terms and rules, helping the model "recall” information
memorized during pre-training or instruction tuning. Joint topic
and step-by-step solution generation ("cot-wt" suffix) allowed
to surpass the 30-point bar for matching tasks and secure 18
points for literature with Gemma model, while also showing
the highest score of 39 points across all LLaMA-3.2 solutions
with 5.4% and 30% increase over letter and CoT models.

Although chain-of-thought enhancements over a letter-only
generation are not always dramatic, this approach has
unquestionable benefits with improved matching scores and
interpretability (Table 6).

Table 6. Solutions for sample tasks by Gemma-2-9B-it-tune-cot-wt and their translations

Generated chain-of-thought solution

English translation of generated chain-of-thought solution

<bos><start of turn>user

Jaiite po3ropHyTy BiAIOBifb HA 3aBJAaHHS, IOYMHAIOYN 3 KIFOYOBOTO CIIOBA
"BianoBige:" Ta BUKOPUCTOBYIOUH JIMILIC HABE/ICH] HIDKYE BapiaHTH.
3aBnanns: CyQikce -HH- Mae 0ZIHAKOBE 3HAYEHHS B ycix cnoBax, OKPIM
Bapiantu Binnosini:

A - conoMuHa

b - 6agununa

B - Bucounna

I - crebnuna<end_of turn>

<start_of turn>model

Bignosine:

TEMA: Bynosa cioBa. CoBoTBip. 3HauyIlli YaCTHHH CJI0BA: KOPiHb, Ipedikc,
cydikc, 3aKiHICHHS

JUi1s1 BUKOHAHHS [[bOTO 3aBJaHHs TpeOa IpUragaTi MOHATTS 3HAYYIIHX YaCTHH
cioBa (Mopdem), 3okpeMa KopeHs # cydikca. Cydike -UH- Mae pizHe
3Ha4yeHHA. Tak y cloBax COJOMMHA, CTeOIMHA, OaJuIIMHA BiH MO3HAYaE
BiJlipBaHe BiJ 4OTOCh, BiJOUTOK, YIAMKH, APiOHI YACTUHKH YOTOCh.

A 0T y cJIOBi BUCOYMHA 1Ieii cydikc Mae 3HaYEHH 30ipHOCTI.

Binnosigs — B.<end of turn>

<bos><start of turn>user

Provide a detailed answer to the task, starting with the keyword “Bianosinp:”
and using only the options listed below.

Task: The suffix -un- has the same meaning in the following words EXCEPT
Answer options:

A — conomuHa (straw piece)

B — 6amununa (leafy-stalk piece)

C — Bucounna (height / highland)

D — crebmnuna (stem piece) <end of turn>

<start_of turn>model

TOPIC: Word Structure. Word Formation. Meaningful Parts of the Word:
Root, Prefix, Suffix, Ending

To complete this task, you need to recall the concept of the meaningful parts
of a word (morphemes), particularly the root and the suffix. The suffix -un-
has different meanings. In the words “coiomuua”, “crebmuna”, and
“bamunuua”, it indicates something torn off, a fragment, remainder, or small
part of something. However, in the word “Bucounna”, this suffix signifies
collectivity.

Answer — B. <end of turn>

<bos><start_of turn>user

Jlaiite po3ropHyTy BiAIOBiIb Ha 3aBJAaHHS, TOYMHAIOYN 3 KIIOYOBOTO CIIOBA
"BiamnoBiap:" Ta BUKOPUCTOBYIOUH JIMIIE HABE/ICHI HIDKYE BapiaHTH.
3apnanHs: 3’scyiiTe, SKMMH YaCTHUHAMHM MOBH € BHIUICHI CJIOBa B PEYCHHI
(uudpa nmo3HaYa€e HACTYIHE CIOBO).

CyvacHa momuHa, mo6 Oytu (1)ycmimHoro, Mae BUuTHCS (2)BIPOTOBK
(3)ycporo >kuTTs, (4)0NaHOBYIOYH HOBI raily3i 3HaHb.

BapianTu Bignosizai:

A — 3aliMeHHUK

b — npuxmeTHHK

B — dopma niecioBa (Ai€npHKMETHHK)

I" — popma niecioBa (AiEPUCITIBHUK)

1 — npuitMenank<end_of turn>

<start_of turn>model

Binnosins:

TEMA: Mopdomoris. YactuHE MOBI

3aB/iaHHS NepeBipsie Ballle BMiHHSA BUSHAYAaTH YaCTUHH MOBH.

HeoOxigHo OyTH QyXe YBaXHHM, TOMY L0 YaCTHHOMOBHA NMPUHAIICHKHICTH
KOHKPETHOTO CJI0BA 4acCTO 3aJICKUTh BiJ KOHTEKCTY. [IpoaHamizyiiMo KoxHe i3
3aIPOIIOHOBAHMX CIIB.

CioBo ycmilIHOI BiANOBiNa€e Ha INHUTAaHHS $Ka? Ta BKasye Ha O3HAKY
npeamera. OTxKe, 1€ IPUKMETHHK.

ClloBO BHPOAOB:K HE BiJNOBiJa€ HAa NUTaHHsA, a JIMIIC NOEAHYE CIOBAa B
peuenHi. OTxe, 11e MPUHMEHHUK.

CJ0BO ychOro BiINOBiga€ Ha NMUTAHHA 10?7 1 BKasye Ha MPEIMET, alie He
HasuBae oro. OTke, 11e 3aiiMEHHHUK.

A OT CJIOBO OMAHOBYIOUH BiZTIOBI/Ia€ HA MUTAHH 110 poOJIA4N? Ta BKa3ye Ha
OJAaTKOBY Aito miamera. OTxke, 11e ocodnuBa popma AiecaoBa AiENPUCITIBHUK.
Bignosige: 1 - 5,2 — 1,3 - A,4-—T'<end of turn>

<bos><start_of turn>user

Provide a detailed answer to the task, starting with the keyword “Bixnosigs:”
and using only the options listed below.

Task: Determine which parts of speech the highlighted words are in the
following sentence (the number indicates the word that follows).

A modern person, in order to be (1)successful, must keep studying
(2)throughout (3)their entire life, (4)mastering new fields of knowledge.
Answer options:

A — pronoun

B — adjective

C — verb form (participle)

D — verb form (adverbial participle)

E — preposition<end of turn>

<start_of turn>model

Answer:

TOPIC: Morphology. Parts of speech

This task checks your ability to identify parts of speech.

You must be very attentive, because the part of speech for a given word often
depends on the context. Let’s analyze each of the proposed words.

The word successful answers the question “which one?” and indicates a
characteristic of an object. So, it is an adjective.

The word throughout does not answer a question; it merely connects words in
the sentence. Therefore, it is a preposition.

The word their answers the question “whose?” and indicates an object without
naming it. So, it is a pronoun.

The word mastering answers the question “doing what?” and indicates an
additional action of the subject. Therefore, it is a special verb form known as
an adverbial participle.

Answer: 1 —B,2—-E,3—-A,4—-D.<end of turn>
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Gemma's solution presented above demonstrates several
strengths but also has some limitations. In the first task, the
model seems to apply a deep linguistic analysis with strong
reasoning. However, in the second task, the generated answer
explains the reasoning behind each matching decision,
clarifying the pairing of specific fragments without going
deeper into the morphological aspects behind each answer
option. Both answers are correct, so this result is still

substantial as less than 50% of graduates select a correct option
in tasks like the first problem, and only 28%, on average, strike
four out of four in problems similar to the second one [49].

In addition to a comparison between open-weight LLMs, it
is also crucial to check how close the obtained solutions are to
leading proprietary models widely used by the community and
enterprise. Fig. 2 presents a combined result chart of tuned
models and zero-shot LLMs.
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Figure 2. Evaluation results for tuned open-weight and zero-shot proprietary models

Despite these advancements, compact models still cannot
reach the performance level of leading reasoning models like
OpenAl ol or Claude 3.7 Sonnet, which benefit from extensive
multilingual datasets and demonstrate strong results in complex
tasks. However, fine-tuned models highlight that combining
parameter-efficient fine-tuning with CoT reasoning could
significantly narrow the performance gap in a low-resource
setup and even slightly outperform larger LLMs (GPT-40 mini
and Mistral Large). Moreover, Gemma secured 30 points for
matching tasks, getting relatively close to powerful GPT-40
and Gemini 2.0 Pro models (35 and 37 points).

V. CONCLUSIONS

This research provides several important contributions to the
field of natural language processing, particularly for low-
resource setups and underrepresented languages. Furthermore,
to the best of our knowledge, this work represents the first
comprehensive evaluation of large language models on
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matching tasks for Ukrainian language exams and extends the
Ukrainian language exam benchmark with common open-
weight and proprietary reasoning models.

The scientific novelty of this research lies in the proposed
topic-guided chain-of-thought fine-tuning method, which
represents a further development of both parameter-efficient
fine-tuning and the chain-of-thought methodology. This
method is designed to address reasoning instability in compact,
quantized models by training the model to jointly generate two
components: a task topic (expert label) that narrows the
solution space and aims to reduce early-stage hallucinations,
and the complete step-by-step reasoning path. This approach
not only improves quality on complex matching tasks
compared to standard answer letter generation and chain-of-
thought tuning in reasoning-intensive Ukrainian exam tasks for
open-weight LLaMA and Gemma models but also underscores
the potential for cost-effective alternatives to proprietary
LLMs.
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The practical significance of the research is the
demonstration of how compact models can be optimized to
perform well on complex tasks in low-resource environments.
By using a single A100 GPU, LoRA, and 4-bit quantization
techniques, the work underscores the possibility of training
advanced NLP systems in computationally constrained
environments. The findings are particularly relevant for
underrepresented languages, where access to proprietary
models and computational resources may be limited.

The limitation of this research is that the evaluation data
size, though representative, is relatively small and may not
fully capture the diversity of real-world tasks. Additionally,
unavoidable data contamination during pre-training and the
limited hyperparameter exploration in the experiments could
influence the generalization of the obtained results. Moreover,
the use of 4-bit quantization, while beneficial for efficiency,
might also introduce subtle degradation in model performance,
which requires further exploration.

The prospect for further research is to mitigate the
aforementioned limitations by expanding the evaluation dataset
to include more diverse tasks, exploring multimodal reasoning
capabilities, and experimenting with a broader range of
hyperparameters.
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