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 ABSTRACT Leading large language models have demonstrated impressive capabilities in reasoning-intensive tasks, 
such as standardized educational testing. However, they often require extensive training in low-resource settings with 
inaccessible infrastructure. Small or compact models, though more efficient, frequently lack sufficient support for 
underrepresented languages, leaving a performance gap in critical domains. This work explores the potential of 
parameter-efficient fine-tuning of compact open-weight language models to handle reasoning-intensive tasks in the 
underrepresented Ukrainian language, building on the findings of the ZNO-Eval benchmark. Parameter-efficient fine-
tuning of LLaMA 3.1 (8 billion parameters), LLaMA 3.2 (3 billion parameters), and Gemma 2 (9 billion parameters) 
models on chain-of-thought solutions resulted in a modest test score improvement of up to 17.4% on complex matching 
tasks and 1.6% overall compared to tuning on answer letters alone, offering enhanced interpretability and robustness. 
In addition, the proposed tuning method with joint task topic and step-by-step solution generation outperforms standard 
chain-of-thought tuning in matching tasks and provides a 5.4% gain over the best LLaMA 3.2 model due to guiding the 
model to recall and apply domain‐relevant information. Contrasting obtained results with zero-shot evaluations of 
leading open-weight and proprietary models such as Qwen, DeepSeek R1, OpenAI o1 and o3, Gemini, and Claude, 
highlights that fine-tuning LLaMA and Gemma models with 2,032 step-by-step solutions and 20 to 50 million trainable 
parameters on a single A100 GPU lets them outperform GPT-4o mini, Mistral Large, and larger open-weight models. 
This research also evaluates how merging the quantized adapter with the base model influences the generation quality. 
 

 KEYWORDS LLM; LLaMA; Gemma; PEFT; Chain-of-Thought, fine-tuning, reasoning, Ukrainian, information 
technology. 
 

I. INTRODUCTION 
n recent years, Large Language Models (LLMs) have 
demonstrated remarkable proficiency in language 

understanding tasks, surpassing human-level performance on 
multiple benchmarks with narrow text understanding tasks, 
including traditional GLUE [1] and SQuAD [2], as well as 
challenging reasoning benchmarks like the Massive Multitask 
Language Understanding (MMLU) benchmark, which 
encompasses a wide array of subjects and requires advanced 
reasoning skills [3]. Moreover, in addition to unprecedented 
accuracy in complex linguistic challenges, giant models like 
PaLM empower new discoveries in mathematical sciences [4]. 
At the same time, multimodal solutions like GPT-4o or LLaMA 
excel in integrating visual and textual information, enabling 
sophisticated image captioning and visual question-answering 
[5]. 

With the advent of the Transformer architecture [6], 
enhanced attention mechanisms [7], and neural scaling laws 

[8], language models have revolutionized a wide range of 
fields, including search, recommendation systems, real-time 
coding assistance, and even robotics [9], fundamentally 
reshaping how information is processed and utilized across 
domains and industries. 

Technologies like these serve as a foundation for 
developing information systems that can be implemented 
across various domains and integrated with other neural 
network architectures and machine learning methods. This 
approach enables the solution of complex, semi-formalized 
practical tasks that require flexible adaptation and the 
combination of different intelligent methods [10]. 

Despite their impressive achievements, LLMs often 
demonstrate limited capabilities in underrepresented 
languages. Studies highlight that these models, predominantly 
trained on high-resource languages like English, struggle to 
generalize effectively to low-resource languages, resulting in 
degraded accuracy and robustness [11]. In particular, the ZNO-
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Eval benchmark based on standardized exams for Ukrainian 
school graduates showcased zero-shot strength in factual recall 
and general knowledge across all models in the National multi-
subject test (NMT) subsets for history and geography [12]. 
However, answer quality drops substantially when dealing with 
intricate language and specialized terminology of Ukrainian 
language exam tasks (Table 1). Moreover, the substantial 
computational resources required to train and deploy large 

language models introduce additional complexity. The 
enormous model sizes, exceeding tens or hundreds of billions 
of parameters, require extensive hardware capabilities, which 
makes them less suitable for organizations and individuals with 
limited resources. This scalability issue highlights the 
importance of more efficient, compact models that deliver 
relatively high performance without the associated 
computational overhead. 

 

Table 1. Sample tasks from the Ukrainian language exam along with their English translations 

Task description English translation of task description 

Завдання з вибором однієї правильної відповіді: 

Суфікс -ин- має однакове значення в усіх словах, ОКРІМ 

А - соломина 

Б - бадилина 

В - височина 

Г - стеблина 

Single correct answer task: 

The suffix -ин- has the same meaning in all of the following words EXCEPT 

A – соломина (straw piece) 

B – бадилина (leafy-stalk piece) 

C – височина (height / highland) 

D – стеблина (stem piece) 

Завдання на встановлення відповідності (логічні пари): 

З’ясуйте, якими частинами мови є виділені слова в реченні (цифра 
позначає наступне слово). 

Сучасна людина, щоб бути (1)успішною, має вчитися (2)впродовж 
(3)усього життя, (4)опановуючи нові галузі знань. 

А - займенник 

Б - прикметник 

В - форма дієслова (дієприкметник) 

Г - форма дієслова (дієприслівник) 

Д - прийменник 

Matching task (logical pairs): 

Determine which parts of speech the highlighted words are in the following 
sentence (the number indicates the word that follows). 

A modern person, in order to be (1)successful, must keep studying 
(2)throughout (3)their entire life, (4)mastering new fields of knowledge. 

A – pronoun 

B – adjective 

C – verb form (participle) 

D – verb form (adverbial participle) 

E – preposition 

 
Due to these challenges, the research community has 

shifted its focus toward developing smaller language models 
that maintain competitive performance levels [13]. This 
ongoing effort includes advancements in model training, such 
as promising parameter-efficient fine-tuning methods (PEFT) 
that significantly reduce the number of trainable parameters 
[14], alongside innovative prompting techniques that augment 
input with instructions to boost performance [15].  

By employing these strategies, smaller models can be fine-
tuned to approach or even match the performance of their larger 
competitors in English tasks while mitigating the 
computational demands [16]. Consequently, there is a growing 
interest in exploring whether these efficient models can be 
improved in low-resource setups for underrepresented 
languages to achieve comparable performance on specific 
tasks, thereby democratizing access to AI capabilities. 

This paper explores the efficacy of fine-tuning compact 
open-source language models, specifically LLaMA and 
Gemma, combining PEFT and prompt tuning methods to 
enhance performance on Ukrainian exam tasks.  

II. RELATED WORKS 
A.  COMPACT LANGUAGE MODELS 
Compact language models have gained attention due to their 
ability to deliver robust performance while requiring fewer 
computational resources than larger models. With 
advancements in mobile computing, these compact yet 
powerful models are increasingly favored for edge device 
deployment [17]. They offer enhanced privacy and reduced 
network dependency, making them an attractive option for a 
wide range of applications. Notable among these compact 
LLMs are the Gemma 2 and LLaMA 3 model families.  

Google's Gemma 2 open-source models are decoder-only 
large language models designed for text-to-text generation 
tasks. They are available in multiple parameter sizes, 
specifically 2 billion (2B), 9 billion (9B), and 27 billion (27B) 
parameters. The architecture introduces several technical 
modifications to the Transformer framework, such as 
interleaving local-global and group-query attention, 
contributing to improved performance and efficiency [18]. 

Gemma 2 models have demonstrated exceptional 
benchmark results across various natural language processing 
tasks. Notably, these models outperform some larger open 
models, showcasing their efficiency and effectiveness despite 
a relatively small parameter count. The instruction-tuned 
variants of Gemma 2 are reliable at following user prompts and 
generating coherent, contextually relevant responses [18]. 

The LLaMA series of open-source LLMs, developed by 
Meta, has seen significant advancements with the introduction 
of LLaMA 3, LLaMA 3.1, LLaMA 3.2, and LLaMA 3.3 
models. These iterations have progressively enhanced 
capabilities, model sizes, and functionalities to support diverse 
AI applications. 

Released in April 2024, LLaMA 3 marked a substantial 
upgrade in Meta's language model offerings. It was introduced 
in two parameter sizes: 8 billion (8B) and 70 billion (70B). The 
70B model was trained on approximately 15 trillion tokens, 
enabling it to outperform competitors like Gemini Pro 1.5 and 
Claude 3 Sonnet on various benchmarks [19]. 

In July 2024, Meta released LLaMA 3.1, expanding the 
model sizes to include 8B, 70B, and a new 405 billion (405B) 
parameter model. The 405B model featured an extended 
context window of up to 128,000 tokens, allowing it to process 
longer inputs effectively. LLaMA 3.1 aimed to boost 
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efficiency, addressing the limitations of its predecessor [20]. 
The introduction of LLaMA 3.2 in September 2024 brought 

significant advancements, particularly in multimodal 
processing. This version included models with 1B, 3B, 11B, 
and 90B parameters suitable for various use cases. The 11B and 
90B parameter models were designed for joint text and image 
tasks, while the 1B and 3B models were optimized for 
deployment on edge devices, supporting real-time processing 
[21]. 

B.  EFFICIENT FINE-TUNING OF LLM 
Full-parameter fine-tuning of large language models can 
demand substantial computational resources, especially for 
tasks with long input or output sequences. Multiple parameter-
efficient fine-tuning techniques, such as Adapter-based tuning, 
Prefix tuning, and Low-Rank Adaptation (LoRA), have been 
developed to address this. With adapter-based tuning, small, 
trainable layers are being added between the frozen layers of a 
pre-trained model. This dramatically reduces the number of 
resources required for the model fine-tuning, while mitigating 
the issues of forgetting knowledge acquired during pre-training 
[22]. Prefix tuning also freezes the model and learns a small set 
of task-specific continuous vectors (prefix), approaching full 
fine-tuning performance with a minimal number of added 
prefix parameters [23]. 

A more recent and elastic technique that consistently 
achieves full fine-tuning performance with minimal effort in 
hyperparameter tuning is Low-Rank Adaptation [24]. LoRA 
reduces the number of trainable parameters by introducing 
trainable low-rank matrices into each layer of the Transformer 
architecture, allowing for efficient adaptation of pre-trained 
models to specific tasks without full model retraining [25]. In 
addition to high quality and simple parameter selection, this 
approach also provides efficient inference without additional 
latency, as the tuned adapter weights can be merged back into 
the original model after training. 

The quantization method is another option to enhance the 
efficiency of model training or inference. Quantization reduces 
the precision of the model's weights (e.g., from 32-bit to 8-bit 
or 4-bit), thereby decreasing memory usage and increasing 
computation speed. This process can be applied post-training 
(Post-Training Quantization, or PTQ), which is simple but 
reduces inference latency at a cost of accuracy degradation 
[26], or during training (Quantization-Aware Training, or 
QAT), which is more complex but usually preserves 
performance [27]. 

The combination of LoRA and quantization methods has 
led to significant advancements in model performance. For 
example, QLoRA enables fine-tuning a 65-billion parameter 
model on a single 48GB GPU by quantizing the base model to 
4-bit and then using LoRA to fine-tune on top of the quantized 
weights [28]. This technique preserves full 16-bit fine-tuning 
task performance while being way more memory-efficient. 
These advancements make deploying sophisticated LLMs in 
environments with limited computational resources feasible. 

C.  PROMPTING TECHNIQUES 
Prompting techniques have become crucial tools for effectively 
guiding large language models to perform a wide range of 
natural language processing tasks and produce the desired 
output. These methods enable users to configure LLMs for 
specific behavior without modifying their internal parameters, 
making them suitable for various applications in low-resource 

environments. A list of common strategies includes the 
following. 

1. Zero-shot prompting, where the model is given a task 
description without any examples and is expected to generate 
the correct output based solely on the prompt [15], leverages 
the model's pre-existing knowledge to handle tasks on which it 
has not explicitly been trained. Although it is a simple 
technique, its performance can be unreliable, particularly on 
complex reasoning tasks or in languages underrepresented in 
the pre-training data. 

2. Few‐shot prompting involves providing the model with a 
few input‐output examples within the prompt to illustrate the 
task, enabling it to infer and apply the desired pattern to new 
inputs and typically improving robustness and accuracy [29]. 
The main limitations of Few-Shot Prompting include the 
extensive use of the model's limited context window and its 
high sensitivity to the quality and format of selected examples. 

3. Chain-of-thought (CoT) prompting encourages the 
model to decompose complex problems into a series of 
intermediate reasoning steps before printing the final answer. 
This method enhances the model's ability to perform tasks that 
require logical reasoning and multi-step problem-solving [30]. 
Despite being an effective strategy, CoT significantly increases 
the length of the generated output, thus resulting in higher 
computational costs and increased inference latency. Key 
variations of this technique include zero-shot CoT, which adds 
a simple phrase like "think step-by-step" to the prompt, and 
few-shot CoT, where the provided examples contain detailed 
reasoning steps. 

4. Instruction prompting empowers the model with explicit 
instructions or guidelines on how to approach a task. Clear and 
detailed instructions can significantly improve the model's 
performance by aligning its outputs with user expectations. 
This technique is the foundation for instruction fine-tuning, a 
common training phase for modern language models, where 
they learn to follow diverse user commands from a large dataset 
of instruction-answer pairs. 

5. Generated knowledge prompting forces the model to 
generate relevant background information before addressing 
the main task. By first generating this context, the model is 
generally able to provide more robust and contextually 
appropriate responses [31]. However, the primary risk is that 
the model may hallucinate, generating plausible-sounding but 
incorrect knowledge, which leads to an incorrect final answer. 

6. Self-consistency technique is an extension of the chain-
of-thought that generates multiple, diverse reasoning paths for 
the same prompt and then selects the most frequent or 
"consistent" final answer. This majority-voting approach 
makes the model's reasoning more robust and less sensitive to 
arithmetic errors [32]. Its primary weakness is the significant 
increase in computational cost and time to answer, as it requires 
running the same prompt multiple times to get a single answer. 

7. Tree-of-thoughts is another advanced extension of CoT. 
With this technique, instead of exploring a single reasoning 
chain, the model explores multiple different reasoning paths 
simultaneously [33]. This empowers tree-of-thoughts to solve 
complex planning or search problems that standard chain-of-
thought cannot. However, this power comes with a very high 
computational cost and implementation complexity. 

In general, prompt engineering is a crucial skill for building 
LLM-powered solutions. It can effectively guide LLMs toward 
improved generalization and reduced hallucinations, 
particularly for underrepresented languages and complex 
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problem domains. Furthermore, the strategies mentioned are 
not mutually exclusive. This research demonstrates that 
techniques like chain-of-thought and generated knowledge 
prompting can be combined with parameter-efficient fine-
tuning to create highly specialized and efficient models. 

D.  EXPLAINABLE AI 
Explainable Artificial Intelligence is a set of information 
technologies, models, and methods that help users understand 
and trust the results produced by machine learning algorithms. 
Some simple models, such as regression or decision trees, can 
be explained without additional effort. In earlier knowledge-
processing approaches, explanations were provided based on 
the fragments of knowledge used to obtain prediction results 
[34]. Modern machine learning methods, such as deep neural 
networks, are often viewed as "black boxes" due to 
sophisticated inner workings that are hard to interpret. 
However, even for these complex models, there are now 
model-agnostic methods and frameworks for explainability. 
These typically involve three stages of explanation: pre-
modeling (which includes dataset explorations of all kinds), 
during modeling (where explanations become part of the 
model's internal functioning), and post-modeling (providing 
explanations for the prediction results) [35]. 

Attention visualization is another valuable tool for 
Transformer-based architectures, especially in natural 
language processing tasks, where it can highlight the input 
segments with a high effect on the model’s outputs. However, 
an even more promising strategy is the chain-of-thought 
prompting. CoT not only improves the accuracy of predictions 
but also explicitly presents intermediate steps to unveil the 
intuition behind any intermediate decision. This detailed 
explanation simplifies a deeper evaluation of the model’s 
performance, allowing users to verify that the reasoning aligns 
with domain-specific rules and principles. This interpretability 
is crucial for various applications – from academic assessments 
to healthcare diagnostics – where understanding the motivation 
behind a decision is no less important than the decision itself. 

E.  SOLVING EXAM TASKS WITH LLM 
The application of LLMs to standardized exam tasks serves as 
a vital benchmark for their reasoning abilities. For the English 
language, benchmarks like MMLU, GSM8K, and BIG-Bench 
provide comprehensive datasets for evaluating model 
performance on academic examinations: 

- MMLU (Massive Multitask Language Understanding) 
benchmark assesses a model's knowledge and reasoning 
abilities across over 57 tasks spanning diverse academic 
disciplines, including mathematics, history, and literature [3]; 

- GSM8K (Grade School Math 8K) is a widely used 
benchmark for evaluating multi-step reasoning and arithmetic 
capabilities, consisting of 8,000 math problems designed to test 
logical deduction and numerical accuracy [36]; 

- BIG-Bench (Beyond the Imitation Game Benchmark) – a 
large-scale benchmark featuring over 200 diverse tasks, such 
as logic, mathematics, common sense reasoning, and language 
generation, aimed at pushing models to exhibit deeper 
cognitive understanding and reasoning [37]. 

Beyond these foundational benchmarks, other research has 
explored language model performance on high-school exams 
in different contexts. For instance, the cross-lingual EXAMS 
dataset established a strong baseline for scientific question 
answering with early foundational encoder-only models 

assessed in 16 languages and 24 subjects from high school 
examinations [38]. With the advancements of language models, 
further research has centered on their zero-shot capabilities, 
demonstrating superficial performance of LLMs in high-
resource English language comprehension compared to an 
average student [39]. For low-resource setups, evaluation of 
generative models in Latvian centralized exams for school 
graduates has highlighted the minor difference between leading 
open-weight and proprietary LLMs [40].  

Another notable area of research in the educational domain 
is the automatic review of human-written answers to 
assessments. At first, this task may seem unrelated to exam 
problem-solving, due to its focus on generating rationales 
justifying the grades assigned to students' responses. However, 
the model must be aware of the correct solution to provide fair 
feedback on student answers. Recent studies indicate that 
combining few-shot or chain-of-thought prompting strategies 
with contextual item stems and rubrics significantly improves 
the quality of assessments [41]. 

As for the Ukrainian language, ZNO-Eval benchmark with 
real exam tasks from Ukraine's standardized educational testing 
system, including the External Independent Evaluation and the 
National Multi-subject Test, comprises single-answer options, 
matching, correct sequence, and open-ended questions across 
diverse subjects, delivering a thorough analysis of proprietary 
LLMs' reasoning capabilities in Ukrainian [12].  

At the same time, the UNLP 2024 Shared Task initiative 
made significant contributions to the benchmarking of open-
weight models [42]. This initiative aimed to support the 
development of models with a deep understanding of the 
Ukrainian language, literature, and history. It showcased fine-
tuning results for numerous promising models and strategies, 
highlighting advancements in adapting LLMs for Ukrainian-
specific tasks [43]. 

The ZNO-Vision benchmark further extends the evaluation 
of large language models to multimodal contexts by 
incorporating over 4,300 expert-crafted questions spanning 12 
academic disciplines, including mathematics, physics, 
chemistry, and humanities [44]. This dataset includes visual 
elements, enabling the assessment of models' capabilities in 
handling both text and images. 

However, both the UNLP Shared Task and ZNO-Vision 
evaluations, much like the broader EXAMS dataset, focused 
solely on questions with a single correct answer. While this 
prior work provides crucial context, it leaves a gap in 
understanding how models handle higher-complexity problems 
requiring structured output in low-resource languages. In 
contrast, ZNO-Eval tasks involving matching or correct 
sequences offer a deeper test of reasoning skills. Therefore, 
these tasks provide a valuable opportunity to investigate 
whether parameter-efficient fine-tuning can unlock the 
specialized reasoning required for complex exam formats. 

F.  THE PURPOSE OF THE RESEARCH 
The primary aim of this work is to increase LLM performance 
on complex Ukrainian language exam tasks in a low-resource 
setup by employing parameter-efficient chain-of-thought fine-
tuning. An important aspect of this research is to check 
whether, under resource constraints, enhanced fine-tuning and 
prompting methods can yield performance levels that rival 
those of larger proprietary models, ultimately advancing the 
application of cutting-edge information technologies in 
software engineering for the educational domain. 
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This research includes the following tasks: 
- development of a comprehensive baseline with parameter-

efficient fine-tuning of selected open-source language models 
on a complete set of Ukrainian language exam problems, 
including multiple-choice and matching tasks; 

- assessment of the impact of step-by-step reasoning by 
comparing models tuned solely for single-letter output with 
those tuned for chain-of-thought generation; 

- comparison of the tuned models against leading 
proprietary and open-weight models. 

III. MATERIAL AND METHODS 
A.  DATA PREPARATION 
For training and evaluation, the complete Ukrainian language 
and literature dataset from the ZNO-Eval benchmark was used. 
This set consists of single-correct-answer questions and 
matching tasks, pairing numbered options with lettered options 
based on the question. The dataset combined 49 ZNO/EIE 
(External independent evaluation) and NMT exams, totaling 
2,746 questions. 32 EIE tests were sampled for training, 13 EIE 
exams were chosen for validation, and 4 NMT exams were 
reserved for testing. The NMT exams were chosen for testing 
to align with the test set used in ZNO-Eval benchmarking and 
to avoid tasks requiring manual assessment. The training and 
validation sets included tasks from both the Ukrainian language 
and literature categories to evaluate generalization capabilities 
and prevent catastrophic forgetting caused by suboptimal 
hyperparameter tuning. The test set, however, contained only 
language tasks. The original ZNO-Eval task schema with the 
question, answer options, a correct answer, and a comment 
specifying the task topic was left unchanged (Fig. 1). 
 

 

Figure 1. ZNO-Eval schema for sample tasks from Table 1 

Prior to sampling, the dataset was cleaned by removing 
duplicate tasks (381), paraphrased tasks (52), tasks without 
answers (4), tasks missing a topic (48), and tasks containing 
photos in question or answer options (97). This preprocessing 
resulted in a final dataset of 1,740 tasks for training, 292 tasks 
for validation, and 108 tasks for testing. 

B.  TOPIC-GUIDED CHAIN-OF-THOUGHT FINE-TUNING 
ZNO-Eval benchmark and baseline evaluations conducted in 
this research demonstrate that language models often struggle 
with complex, reasoning-intensive tasks that require structured 
outputs, especially when dealing with the intricate logic of 
Ukrainian language tasks [12]. Utilizing the chain-of-thought 
for prompting and fine-tuning may enhance reasoning abilities 
[30]. This approach also reveals intermediate thinking steps, 
which can be audited and analyzed. However, chain-of-thought 
is time-consuming and computationally demanding during 
both inference and full-parameter fine-tuning stages. This 
technique substantially increases the length of the generated 
output, leading to higher memory consumption and increased 
generation latency. 

Lower-precision parameter-efficient fine-tuning techniques 
like QLoRA, which leverage 4-bit quantization, have become 
an effective solution to the resource problem. However, the 
reduction in resource consumption can lead to reasoning 
instability, particularly in smaller models [45]. For instance, 
hallucinations at the beginning of a reasoning chain can cause 
an "accumulated error" effect, where a single incorrect step 
fails the entire reasoning process, leading to a completely 
different final answer.  

To address the problem of achieving robust reasoning in a 
low-resource setting, this research proposes an enhanced 
parameter-efficient fine-tuning method. This method distills 
expert-level reasoning capabilities into compact, 4-bit 
quantized language models by fine-tuning on a structured, 
multi-part target. Rather than simply outputting an answer 
word or letter often seen in zero-shot prediction setups, the 
model is trained to generate, in sequence, two components 
detailed below. 

1. Task topic (e.g., "TOPIC: Morphology. Parts of speech"). 
This component acts as a form of generated knowledge, but it 
is based on expert-provided ground truth, not model-
hallucinated facts. This step explicitly guides the model to 
recall and apply the correct domain-specific rules before 
attempting to solve the problem, narrowing the solution space 
and reducing the chance of early-stage hallucinations that could 
lead to wrong answers. 

2. Step-by-step solution. The model is trained to generate 
not only the task topic but also the complete reasoning path, 
including the final answer. Chain-of-thought here provides the 
intermediate steps needed for pairwise alignment and format-
compliant outputs. 

By forcing the model to answer both the "what" (the topic) 
and the "why" (the reasoning), this method aims to build robust 
and interpretable reasoning capabilities within a low-resource, 
4-bit quantized fine-tuning setup. 

For each exam task in the training dataset, expert-curated 
topics and step-by-step solutions were extracted from the 
Osvita.ua portal [46], which provides educational materials and 
exam resources along with commentary written by subject-
matter specialists. Table 2 illustrates a sample task topic with 
its detailed step-by-step solution. 
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Table 2. Topic and solution from the Osvita.ua portal for sample tasks from Table 1 with English translation 

Step-by-step solution English translation of step-by-step solution 

Коментар 

ТЕМА: Словотвір. Суфіксальний спосіб. 

Завдання перевіряє ваше вміння розпізнавати вивчені способи 
словотвору та аналізувати лексичне значення слова. 

В українській мові за допомогою суфікса -ин- утворюють значну 
кількість іменників жіночого роду І відміни. Це слова на позначення 
частин рослини (бадилина, стеблина, соломина), а також на позначення 
території, рельєфу (височина). 

Відповідь – В. 

Comment 

TOPIC: Word formation. Suffix-Based method. 

This task tests your ability to recognize common word-formation processes 
and to analyze a word’s lexical meaning. 

In Ukrainian, the suffix -ин- is used to create many first-declension feminine 
nouns. These words either refer to plant parts (бадилина, стеблина, 
соломина) or to geographical features/terrain (височина). 

Answer – C. 

Коментар 

ТЕМА: Морфологія. Частини мови. 

Завдання перевіряє ваше вміння правильно визначати частини мови. 

Необхідно бути дуже уважним, тому що частиномовна приналежність 
конкретного слова часто залежить від контексту. 

До слова успішною можна поставити питання якою?, воно вказує на 
ознаку. Це прикметник. 

До слова впродовж не можна поставити питання, воно лише служить для 
зв’язку слова життя з іншими в реченні. Це прийменник. 

До слова усього можна поставити питання якого?, але воно лише вказує 
на ознаку, не називаючи її. Це займенник. 

А слово опановуючи відповідає на питання що роблячи?, указує на 
додаткову дію. Це особлива форма дієслова дієприслівник. 

Відповідь – БДАГ. 

Comment 

TOPIC: Morphology. Parts of speech. 

This task tests your ability to correctly identify parts of speech. 

It’s important to be very attentive, because a word’s part of speech often 
depends on the context. 

You can ask "якою?” (“which one?”) about “успішною” (“successful”), 
indicating a quality. That makes it an adjective. 

You cannot form a question for “впродовж” (“throughout”); it simply links 
the word “життя” (“life”) to other parts of the sentence. Therefore, it is a 
preposition. 

You can ask “якого?” (“which one?”) about “усього” (“all of”), but it only 
points to a characteristic without naming it. Hence, it is a pronoun. 

The word “опановуючи” (“mastering” / “while mastering”) answers “що 
роблячи?” (“while doing what?”), indicating an additional action. It is a 
special verb form called an adverbial participle. 

Answer – BEAD. 

 
As shown in the table above, after CoT tuning, the model is 

expected to generate a relevant hierarchical topic, prefixed with 
the keyword "ТЕМА:" ("TOPIC:"), followed by a detailed 
step-by-step solution. The solution includes a review of all 
answer options or pairs for the exam task, concluding with the 
keyword "Відповідь:" ("Answer:") and providing either a 
single answer letter for multiple-choice questions or a sequence 
of number-letter pairs for matching tasks. This structured 
approach ensures that the fine-tuned model delivers 
interpretable and accurate responses while maintaining 
alignment with task-specific requirements. 

C.  DATA CONTAMINATION AND LEAKAGE 
Data contamination and leakage occur when information from 
the evaluation dataset inadvertently influences model training, 
leading to polluted performance metrics [47]. This problem 
questions the reliability of model evaluation, as it does not 
accurately reflect its ability to generalize to unseen data. 
Contamination, common for large language models trained on 
billions of texts, can arise from various sources, such as shared 
content between datasets or pre-training on datasets containing 
evaluation tasks. 

In this research, two types of data contamination and 
leakage were addressed. Pre-training data contamination 
explores the possibility that the large language model was pre-
trained on test-exam tasks. However, this issue is mitigated by 
several factors. The availability of webpages with Ukrainian 
exam data is limited, and Ukrainian was not a primary language 
in the LLM's pre-training dataset. Furthermore, in most cases, 
the correct answer or problem solution is not directly available 
alongside the question definition. Accessing the solution often 

requires additional actions, such as logging in or revealing 
answers embedded as images rather than text. 

To further reduce the impact of potential contamination on 
evaluation results, the answer numbers, letters, and texts were 
shuffled for the test set. This measure prevents straightforward 
answer memorization from contaminating the results. 

The second type aims to check whether some tasks within 
the dataset contained exact or partial matches of questions or 
answer options across training, validation, and test sets. These 
duplicates were identified based on matching questions or 
answer option text in case they were not common generic 
statements. Generic statements, such as "match options on the 
left with texts on the right" for questions or part-of-speech 
keywords for answers, were excluded from duplicate 
identification. 

All duplicates between the validation and training sets were 
removed from the validation set. Similarly, duplicates between 
the test set and either the training or validation sets were 
removed from the train/validation to ensure that the test set 
remained unchanged. Final manual sample screening identified 
40 tasks in the validation set and 12 tasks in the test set that 
contained rephrased questions or answer options. Although 
these instances are not exact duplicates, they were removed to 
prevent data leakage and minimize any potential impact on the 
evaluation scores. 

D.  MODEL SELECTION 
To align with the low-resource goal of this research, the 
selection of models was limited to compact options that could 
be efficiently trained on a single A100 GPU with 80 GB of 
VRAM. The chosen models include Meta's LLaMA 3.1 with 8 
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billion parameters, LLaMA 3.2 with 3 billion parameters, and 
Gemma 2 with 9 billion parameters. These models were 
selected due to their balance between performance and 
computational efficiency, making them suitable for resource-
constrained environments. 

Each model comes in two versions: a base pre-trained and 
a fine-tuned with instructions to follow user commands in a 
chat-like manner. This research focuses solely on instruction-
tuned versions since pre-trained models did not provide any 
improvement during initial evaluations. 

To further optimize training and inference processes, all 
models were quantized to 4-bit with the Bits and Bytes library 
[48]. This quantization significantly reduced memory usage, 
enabling faster training and inference. The combination of 
compact architecture and quantization ensured efficient use of 
computational resources, allowing for effective 
experimentation under low-resource conditions. 

E.  MODEL TUNING AND EVALUATION 
Parameter-efficient fine-tuning was performed on the selected 

instruction-tuned models ("it" in the model name) versions, 
using two variations: one with the correct answer represented 
as a letter or a sequence of letters, and the other incorporating 
the proposed chain-of-thought approach with and without 
topics. Models were fine-tuned over four epochs, with a 
learning rate of 3e-04, a gradient accumulation of 4 to mimic 
large batch sizes on GPUs, and checkpoints saved after each 
epoch. The best checkpoint was identified based on the 
validation metric that produced the highest overall score on 
validation exams. 

The loss was not used as the validation metric because it is 
based on the model's perplexity, which does not account for the 
importance of generating the correct answer letter. Perplexity 
treats all characters in the generation equally and does not 
consider the variability in phrasing step-by-step solutions. 
Instead, validation accuracy, calculated as the sum of all scores 
on the validation exams, was used to find the best checkpoint. 

Data preparation, model configs, and PEFT scripts are 
available at github.com/NLPForUA/ZNO. Table 3 shows all 
promising experimental parameters.

 

Table 3. Experiment parameters 

Model Tuning 
Parameters, 

billions 
Trained parameters, 

millions 
Batch size Accumulation 

Tuned for answer letter generation 
LLaMA-3.2-3B-it-tune-al letter 3 22 8 4 
LLaMA-3.1-8B-it-tune-al letter 8 44 4 4 
Gemma-2-9B-it-tune-al letter 9 52 4 4 

Tuned for chain-of-thought (step-by-step solution) generation 
LLaMA-3.2-3B-it-tune-cot solution 3 22 8 4 
LLaMA-3.1-8B-it-tune-cot solution 8 44 4 4 
Gemma-2-9B-it-tune-cot solution 9 52 4 4 

Tuned for chain-of-thought (topic and step-by-step solution) generation 
LLaMA-3.2-3B-it-tune-cot-wt topic + solution 3 22 8 4 
LLaMA-3.1-8B-it-tune-cot-wt topic + solution 8 44 4 4 
Gemma-2-9B-it-tune-cot-wt topic + solution 9 52 4 4 

For evaluation, baseline scores were established using 
random guessing and zero-shot evaluations of models without 
CoT output. The evaluation used greedy decoding with a 
maximum generation length of 2,048 tokens. Generated 
answers were extracted from the last occurrence of the 
"Відповідь:" ("Answer:") keyword. The scoring approach 
followed the same rules for both EIE and NMT exams. 
Multiple-choice questions were scored 1 point for each correct 
prediction, while matching tasks were scored up to 4 points, 
with 1 point awarded for each correct logical pair. For single-
answer questions, a score of zero was given if multiple letters 
were generated, even if the first answer was correct. The score 
for the matching task was also zeroed if the response contained 
more than four answer letters, motivating confident solution 
generation. This methodology ensured consistent evaluation 
across all models and tasks. 

IV. RESULTS 
In general, the experimental results prove the effectiveness 

of parameter-efficient fine-tuning combined with quantization 
for compact open-source models. For all configurations, tuned 
models demonstrated substantial improvements over the 
baseline, with joint topic generation and step-by-step reasoning 
contributing moderately to performance gains. 

The added benefit of chain-of-thought tuning (LLaMA and 
Gemma models with "cot" suffix) becomes clearer when 
applied to more complex tasks, including matching and 

literature assignments (scores shown in parentheses for 
literature tasks in Table 4). In these scenarios, the 
implementation of step-by-step reasoning enhances the 
steerability and clarity of the model’s thought process, making 
it easier to follow the logic it employs to arrive at conclusions. 
However, despite these gains, the validation set did not 
consistently show anticipated improvement when comparing 
chain-of-thought to letter‐only generation. Several factors 
appear to affect the result. Firstly, the validation set primarily 
consists of older exam tasks with no answer option shuffling, 
thus increasing the chance of data contamination. Secondly, the 
approach taken to remove duplicate and rephrased tasks has 
inadvertently led to an uneven distribution of task types and 
topics. Some appear only once or twice, whereas others are 
overrepresented. Lastly, adapters were merged with base 
models for validation scoring due to time and cost 
considerations. This could lead to a score drop for CoT models. 

Nevertheless, the validation scores remain valuable for 
selecting the optimal training epoch. It has been empirically 
observed that higher single-answer, matching, and total 
validation scores directly correlate with better performance on 
a more representative test set. In contrast to the validation set, 
the test data includes more recent exams with answer options 
shuffling and a fair balance of question types and topics.  

Detailed experiment results are demonstrated in Tables 4 
and 5. All models are available at huggingface.co/NLPForUA. 
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Table 4. Evaluation results on the validation set with 4-bit quantization 

Model Name Generates Scores for language tests Scores for language and literature 
Single answer Matching Total Single answer Matching Total 

Max possible score - 233 72 305 260 (+27) 88 (+16) 348 
Random guess letter 53.3 14.4 67.7 58.8 (+5.5) 17.6 (+3.2) 76.4 

Baseline: zero-shot answer letter generation 
LLaMA-3.2-3B-it letter 0 1 1 1 (+1) 1 (+0) 2 
Qwen2.5-7B-it letter 52 5 57 57 (+5) 8 (+3) 65 
LLaMA-3.1-8B-it letter 66 10 76 71 (+5) 11 (+1) 82 
Gemma-2-9B-it letter 31 16 47 36 (+5) 18 (+2) 54 
Qwen2.5-14B-it letter 69 16 85 81 (+12) 19 (+3) 100 
Gemma-2-27B-it letter 79 20 99 88 (+9) 22 (+2) 110 
Qwen2.5-32B-it letter 40 12 52 48 (+8) 16 (+4) 64 
LLaMA-3.3-70B-it letter 56 15 71 64 (+8) 18 (+3) 82 
Qwen2.5-72B-it letter 61 12 73 74 (+13) 14 (+2) 88 

Reasoning models baseline: zero-shot chain-of-thought generation 
DeepSeek-R1 LLaMA-8B solution 9 0 9 11 (+2) 0 (+0) 11 
DeepSeek-R1 Qwen-14B solution 25 13 38 35 (+10) 13 (+0) 48 
DeepSeek-R1 Qwen-32B solution 43 29 72 51 (+8) 29 (+0) 80 

LLaMA 3.2 3B 
LLaMA-3.2-3B-it-tune-al letter 57 16 73 65 (+8) 17 (+1) 82 
LLaMA-3.2-3B-it-tune-cot solution 54 17 71 63 (+9) 18 (+1) 81 
LLaMA-3.2-3B-it-tune-cot-wt topic+solution 53 8 61 60 (+7) 13 (+5) 73 

LLaMA 3.1 8B 
LLaMA-3.1-3B-it-tune-al letter 74 27 101 82 (+8) 31 (+4) 113 
LLaMA-3.1-8B-it-tune-cot solution 82 28 110 94 (+12) 32 (+4) 126 
LLaMA-3.1-8B-it-tune-cot-wt topic+solution 81 35 116 91 (+10) 38 (+3) 129 

Gemma 2 9B 
Gemma-2-9B-it-tune-al letter 104 37 141 118 (+14) 41 (+4) 159 
Gemma-2-9B-it-tune-cot solution 96 41 137 109 (+13) 44 (+3) 153 
Gemma-2-9B-it-tune-cot-wt topic+solution 94 37 131 110 (+16) 39 (+2) 149 

Table 5. Evaluation results on the test set with 4-bit quantization 

Model Name Generates Total scores Total scores after merge 
Single answer Matching Total Single answer Matching Total 

Max possible score - 92 64 156 - - - 
Random guess letter 20.25 12.78 33.03 - - - 

Baseline: zero-shot answer letter generation 
LLaMA-3.2-3B-it letter 0 4 4 - - - 
Qwen2.5-7B-it letter 26 5 31 - - - 
LLaMA-3.1-8B-it letter 25 7 32 - - - 
Gemma-2-9B-it letter 21 21 42 - - - 
Qwen2.5-14B-it letter 25 16 41 - - - 
Gemma-2-27B-it letter 30 24 54 - - - 
Qwen2.5-32B-it letter 18 26 44 - - - 
LLaMA-3.3-70B-it letter 25 13 38 - - - 
Qwen2.5-72B-it letter 18 15 33 - - - 

Reasoning models baseline: zero-shot chain-of-thought generation 
DeepSeek-R1 LLaMA-8B solution 4 1 5 - - - 
DeepSeek-R1 Qwen-14B solution 16 21 37 - - - 
DeepSeek-R1 Qwen-32B solution 22 25 47 - - - 

LLaMA 3.2 3B 
LLaMA-3.2-3B-it-tune-al letter 24 11 35 27 10 37 
LLaMA-3.2-3B-it-tune-cot solution 18 10 28 16 14 30 
LLaMA-3.2-3B-it-tune-cot-wt topic+solution 24 15 39 14 5 19 

LLaMA 3.1 8B 
LLaMA-3.1-3B-it-tune-al letter 25 12 37 30 17 47 
LLaMA-3.1-8B-it-tune-cot solution 19 13 32 26 13 39 
LLaMA-3.1-8B-it-tune-cot-wt topic+solution 26 15 41 28 14 42 

Gemma 2 9B 
Gemma-2-9B-it-tune-al letter 33 23 56 41 22 63 
Gemma-2-9B-it-tune-cot solution 37 27 64 28 29 57 
Gemma-2-9B-it-tune-cot-wt topic+solution 29 30 59 28 26 54 

  
The random guessing baseline, selecting one random 

answer out of all provided options for questions with a single 
correct answer and constructing a sequence of random letters 
for matching tasks, achieved a total test score of 33.03, with 
20.25 points on single-answer questions and 12.78 points on 
matching tasks.  The overall performance of baseline LLaMA 

3.1 and 3.2 models reflects the underrepresented nature of the 
Ukrainian language, as the former fails to provide any 
meaningful answer (total score of 4) and the latter struggles to 
surpass random guessing in matching tasks (7 vs 12.78 points). 
At the same time, Gemma-2-9B demonstrated high robustness 
without any fine-tuning, securing 42 in total. In comparison, its 
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3 times larger "relative" became a leader with 54 points. 
An important consideration is the effect of merging a 4-bit 

LoRA adapter with the base model. Directly merging in 4-bit 
often degrades prediction quality due to rounding errors. 
Another approach, a full precision merge with a subsequent 
quantization, helped mitigate the issue. Interestingly, letter-
only models show substantial gains after merging as the impact 
of numerical artifacts increases with the length of generation. 

All instruct models tuned to generate answer letters or 
sequences of letters (models with the "it-tune-al" suffix) 
demonstrated reasonable improvements over the baseline. For 
instance, the LLaMA-3.2-3B model tuned with topics and 
solutions slightly exceeded the random guessing score (39 vs. 
33 points), while LLaMA-3.1-8B-it-tune-al yielded 49.9% 
improvement with a total score of 47 points, and Gemma-2-9B-
tune-al demonstrated the second-best result with 63 points. 

Fine-tuning models with step-by-step reasoning solutions in 
a chain-of-thought manner revealed nuanced outcomes. While 
the CoT approach substantially improved performance across 
all matching and literature tasks compared to letter-only 

solutions, only Gemma-2-9B-it-tune-cot achieved a higher 
total score with 14.3% and 1.6% gains over the letter-only 
solution before and after model merge. 

A proposed method, prefacing step-by-step reasoning with 
a generated task topic, helped squeeze the solution space, 
enhancing both interpretability and accuracy. With this 
approach, the topic is kind of a knowledge prompt, guiding the 
model to focus on relevant aspects of the task. That pseudo-
knowledge injection increases the likelihood of the domain-
specific terms and rules, helping the model "recall" information 
memorized during pre-training or instruction tuning. Joint topic 
and step-by-step solution generation ("cot-wt" suffix) allowed 
to surpass the 30-point bar for matching tasks and secure 18 
points for literature with Gemma model, while also showing 
the highest score of 39 points across all LLaMA-3.2 solutions 
with 5.4% and 30% increase over letter and CoT models. 

Although chain‐of‐thought enhancements over a letter‐only 
generation are not always dramatic, this approach has 
unquestionable benefits with improved matching scores and 
interpretability (Table 6).

 
Table 6. Solutions for sample tasks by Gemma-2-9B-it-tune-cot-wt and their translations 

Generated chain-of-thought solution English translation of generated chain-of-thought solution 
<bos><start_of_turn>user 
Дайте розгорнуту відповідь на завдання, починаючи з ключового слова 
"Відповідь:" та використовуючи лише наведені нижче варіанти. 
Завдання: Суфікс -ин- має однакове значення в усіх словах, ОКРІМ 
Варіанти відповіді: 
А - соломина 
Б - бадилина 
В - височина 
Г - стеблина<end_of_turn> 
<start_of_turn>model 
Відповідь: 
ТЕМА: Будова слова. Словотвір. Значущі частини слова: корінь, префікс, 
суфікс, закінчення 
Для виконання цього завдання треба пригадати поняття значущих частин 
слова (морфем), зокрема кореня й суфікса. Суфікс -ин- має різне 
значення. Так у словах соломина, стеблина, бадилина він позначає 
відірване від чогось, відбиток, уламки, дрібні частинки чогось. 
А от у слові височина цей суфікс має значення збірності. 
Відповідь – В.<end_of_turn> 

<bos><start_of_turn>user 
Provide a detailed answer to the task, starting with the keyword “Відповідь:” 
and using only the options listed below. 
Task: The suffix -ин- has the same meaning in the following words EXCEPT 
Answer options: 
A – соломина (straw piece) 
B – бадилина (leafy-stalk piece) 
C – височина (height / highland) 
D – стеблина (stem piece) <end_of_turn> 
<start_of_turn>model 
TOPIC: Word Structure. Word Formation. Meaningful Parts of the Word: 
Root, Prefix, Suffix, Ending 
To complete this task, you need to recall the concept of the meaningful parts 
of a word (morphemes), particularly the root and the suffix. The suffix -ин- 
has different meanings. In the words “соломина”, “стеблина”, and 
“бадилина”, it indicates something torn off, a fragment, remainder, or small 
part of something. However, in the word “височина”, this suffix signifies 
collectivity. 
Answer – В. <end_of_turn> 

<bos><start_of_turn>user 
Дайте розгорнуту відповідь на завдання, починаючи з ключового слова 
"Відповідь:" та використовуючи лише наведені нижче варіанти. 
Завдання: З’ясуйте, якими частинами мови є виділені слова в реченні 
(цифра позначає наступне слово). 
Сучасна людина, щоб бути (1)успішною, має вчитися (2)впродовж 
(3)усього життя, (4)опановуючи нові галузі знань. 
Варіанти відповіді: 
А – займенник 
Б – прикметник 
В – форма дієслова (дієприкметник) 
Г – форма дієслова (дієприслівник) 
Д – прийменник<end_of_turn> 
<start_of_turn>model 
Відповідь: 
ТЕМА: Морфологія. Частини мови 
Завдання перевіряє ваше вміння визначати частини мови. 
Необхідно бути дуже уважним, тому що частиномовна приналежність 
конкретного слова часто залежить від контексту. Проаналізуймо кожне із 
запропонованих слів. 
Слово успішною відповідає на питання яка? та вказує на ознаку 
предмета. Отже, це прикметник. 
Слово впродовж не відповідає на питання, а лише поєднує слова в 
реченні. Отже, це прийменник. 
Слово усього відповідає на питання що? і вказує на предмет, але не 
називає його. Отже, це займенник. 
А от слово опановуючи відповідає на питання що роблячи? та вказує на 
додаткову дію підмета. Отже, це особлива форма дієслова дієприслівник. 
Відповідь: 1 – Б, 2 – Д, 3 – А, 4 – Г.<end_of_turn> 

<bos><start_of_turn>user 
Provide a detailed answer to the task, starting with the keyword “Відповідь:” 
and using only the options listed below. 
Task: Determine which parts of speech the highlighted words are in the 
following sentence (the number indicates the word that follows). 
A modern person, in order to be (1)successful, must keep studying 
(2)throughout (3)their entire life, (4)mastering new fields of knowledge. 
Answer options: 
A – pronoun 
B – adjective 
C – verb form (participle) 
D – verb form (adverbial participle) 
E – preposition<end_of_turn> 
<start_of_turn>model 
Answer: 
TOPIC: Morphology. Parts of speech 
This task checks your ability to identify parts of speech. 
You must be very attentive, because the part of speech for a given word often 
depends on the context. Let’s analyze each of the proposed words. 
The word successful answers the question “which one?” and indicates a 
characteristic of an object. So, it is an adjective. 
The word throughout does not answer a question; it merely connects words in 
the sentence. Therefore, it is a preposition. 
The word their answers the question “whose?” and indicates an object without 
naming it. So, it is a pronoun. 
The word mastering answers the question “doing what?” and indicates an 
additional action of the subject. Therefore, it is a special verb form known as 
an adverbial participle. 
Answer: 1 – B, 2 – E, 3 – А, 4 – D.<end_of_turn> 
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Gemma's solution presented above demonstrates several 

strengths but also has some limitations. In the first task, the 
model seems to apply a deep linguistic analysis with strong 
reasoning. However, in the second task, the generated answer 
explains the reasoning behind each matching decision, 
clarifying the pairing of specific fragments without going 
deeper into the morphological aspects behind each answer 
option. Both answers are correct, so this result is still 

substantial as less than 50% of graduates select a correct option 
in tasks like the first problem, and only 28%, on average, strike 
four out of four in problems similar to the second one [49]. 

In addition to a comparison between open-weight LLMs, it 
is also crucial to check how close the obtained solutions are to 
leading proprietary models widely used by the community and 
enterprise. Fig. 2 presents a combined result chart of tuned 
models and zero-shot LLMs.

 

 
Figure 2. Evaluation results for tuned open-weight and zero-shot proprietary models 

Despite these advancements, compact models still cannot 
reach the performance level of leading reasoning models like 
OpenAI o1 or Claude 3.7 Sonnet, which benefit from extensive 
multilingual datasets and demonstrate strong results in complex 
tasks. However, fine-tuned models highlight that combining 
parameter-efficient fine-tuning with CoT reasoning could 
significantly narrow the performance gap in a low-resource 
setup and even slightly outperform larger LLMs (GPT-4o mini 
and Mistral Large). Moreover, Gemma secured 30 points for 
matching tasks, getting relatively close to powerful GPT-4o 
and Gemini 2.0 Pro models (35 and 37 points). 

V. CONCLUSIONS 
This research provides several important contributions to the 
field of natural language processing, particularly for low-
resource setups and underrepresented languages. Furthermore, 
to the best of our knowledge, this work represents the first 
comprehensive evaluation of large language models on 

matching tasks for Ukrainian language exams and extends the 
Ukrainian language exam benchmark with common open-
weight and proprietary reasoning models. 

The scientific novelty of this research lies in the proposed 
topic-guided chain-of-thought fine-tuning method, which 
represents a further development of both parameter-efficient 
fine-tuning and the chain-of-thought methodology. This 
method is designed to address reasoning instability in compact, 
quantized models by training the model to jointly generate two 
components: a task topic (expert label) that narrows the 
solution space and aims to reduce early-stage hallucinations, 
and the complete step-by-step reasoning path. This approach 
not only improves quality on complex matching tasks 
compared to standard answer letter generation and chain-of-
thought tuning in reasoning-intensive Ukrainian exam tasks for 
open-weight LLaMA and Gemma models but also underscores 
the potential for cost-effective alternatives to proprietary 
LLMs. 
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The practical significance of the research is the 
demonstration of how compact models can be optimized to 
perform well on complex tasks in low-resource environments. 
By using a single A100 GPU, LoRA, and 4-bit quantization 
techniques, the work underscores the possibility of training 
advanced NLP systems in computationally constrained 
environments. The findings are particularly relevant for 
underrepresented languages, where access to proprietary 
models and computational resources may be limited. 

The limitation of this research is that the evaluation data 
size, though representative, is relatively small and may not 
fully capture the diversity of real-world tasks. Additionally, 
unavoidable data contamination during pre-training and the 
limited hyperparameter exploration in the experiments could 
influence the generalization of the obtained results. Moreover, 
the use of 4-bit quantization, while beneficial for efficiency, 
might also introduce subtle degradation in model performance, 
which requires further exploration. 

The prospect for further research is to mitigate the 
aforementioned limitations by expanding the evaluation dataset 
to include more diverse tasks, exploring multimodal reasoning 
capabilities, and experimenting with a broader range of 
hyperparameters. 
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