
 

VOLUME 24(4), 2025
 
790 

Date of publication DEC-31, 2025, date of current version SEP-20, 2025. 
www.computingonline.net / computing@computingonline.net 

Print ISSN 1727-6209 
Online ISSN 2312-5381 
DOI 10.47839/ijc.24.4.4346 

UAV Cyber Resilience Assessment 
Method: Combining IMECA, Penetration 

Testing and State-space Markov Modeling 
ARTEM ABAKUMOV1, VYACHESLAV KHARCHENKO1, YURII PONOCHOVNYI2 

1National Aerospace University “KhAI”, Kharkiv, 61070, Ukraine (E-mail: a.i.abakumov@csn.khai.edu, v.kharchenko@csn.khai.edu) 
2Poltava State Agrarian University, Poltava, 36000, Ukraine (E-mail: yuriy.ponochovnyy@pdau.edu.ua) 

Corresponding author: Artem Abakumov (e-mail: a.i.abakumov@csn.khai.edu). 

 

 ABSTRACT The objective of this paper is to develop and justify a combined method for assessing the Cyber 
Resilience (CR) of Unmanned Aerial Vehicles (UAVs) under cyber attacks. The proposed approach, formalized 
in IDEF0 notation, integrates analytical IMECA-analysis and experimental Penetration Testing (PT) procedures 
with State-Space Markov Modeling (SSMM). This combination overcomes the limitations of static risk 
assessment methods by creating a closed cycle of system verification and protection. Based on the constructed 
SSMM, a sensitivity analysis was performed to identify key parameters. The study reveals that the system's 
response speed is the most critical factor for UAVs’ CR. It was established that an increase in operational 
recovery time leads to a 31.2% drop in the availability coefficient and nearly doubles the risk of compromise 
(+87.5%). Conversely, increasing the probability of successful recovery provides a significant increase in the 
probability of mission success (by 83.6%). Furthermore, the hypothesis regarding the effectiveness of frequent 
PT was refuted: changing the inspection interval showed a minor impact on availability (<2%), whereas 
excessive duration of PT procedures reduced system availability by 51.0%. These findings demonstrate the 
inefficiency of excessively long and frequent checks and suggest that the strategy should concentrate on the 
speed and automation of PT procedures rather than their frequency. Future research will focus on developing a 
multi-fragment SSMM to integrate PT processes with a UAV simulator and analyze the impact of combined 
intrusion modes. 
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I. INTRODUCTION 
 rapid growth in the use of small unmanned aerial 
vehicles (UAVs), known as “drones”, is evident in 

various fields [1], including hard-to-reach areas monitoring, 
disaster prevention, services for smart cities, aerial 
photography and cinematography, advanced agriculture, 
traffic monitoring, critical infrastructure monitoring, and 
military missions (reconnaissance, patrolling, logistics). 

Since 2022, small UAVs have played a vital role in the 
military operations of the Armed Forces of Ukraine amid 
full-scale aggression by the Russian Federation. Combat 

use [2-5] shows that even high-tech devices remain priority 
targets for cyber attacks and electronic warfare measures. 
This applies not only to specialized military UAVs, but also 
to commercial ones being militarized.  

In war zones, massive signal jamming leads to 
significant UAV losses. According to [6], monthly UAV 
losses are measured in thousands, mainly due to successful 
attacks on the availability of navigation systems and control 
interception. As the experts point out in [2], the 
comparative affordability of these units changes the tactics 
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of their use, allowing small UAVs to be utilized in an 
aggressive way. 

Commercial UAVs require in-depth adaptation to 
military purposes. It includes firmware customization and 
integration to reduce UAV detectability by passive RF 
monitoring systems. It is also worth mentioning that vendor 
firmware is constantly being updated, so that outdated 
customed firmware becomes unusable in latest versions of 
UAVs [7]. 

These cases just emphasize the need for a systematic 
assessment of the small UAVs cyber assets security [8], 
specifically analyzing potential threats and exploring 
vulnerabilities (including zero-day vulnerabilities) before 
they are exploited by adversaries, which could not only 
result in the loss of the device itself during a flight mission, 
but also pose a threat to the lives and safety of operators. 

During military implementation of such systematic 
analysis, it is necessary to consider a dynamic nature of 
UAV states and transitions between them. Modern 
approaches are likely to ignore the timeliness and stochastic 
essence of UAV operational cycles. This discrepancy 
between static analysis and actual system behavior makes it 
impossible to accurately assess operational reliability. 
Therefore, it is extremely important to apply approaches 
that consider UAVs as systems with multi-level degradation 
and recovery [9] to select and implement an effective set of 
countermeasures. 
 
II.  LITERATURE REVIEW 
A. WORK RELATED 
An analysis of the sources on UAV resilience assessment 
(RA) and existing penetration testing (PT) methodologies 
adapted to the specifics of UAVs is provided based on a 
study of leading scientific databases, such as Scopus, IEEE 
Xplore, and Google Scholar, published after 2020. 

The authors [10] conducted a comparative analysis of 
dual-state and multi-state systems for UAV swarm 
modeling. Traditional binary models are insufficient, as 
they only consider “operational” and “faulty” states. Multi-
state models allow for intermediate performance levels, 
which is critical for partially degraded systems. 
Quantitative experiments on UAV swarms up to 20 UAVs 
confirmed that multi-state models are more suitable for 
analyzing transitional operational states. 

The [11] proposes an approach to UAV safety 
assessment where the device is considered as a unity of 
three entities: physical, informational, and controlled. The 
author has developed a continuous-time Markov model 
which, as opposed to simpler analogues, considers specific 
attack surfaces, such as attacks on control channels, GPS 
spoofing, and payload data interception. A critically 
important feature of this model is the consideration of 
combined attacks, which contributes to real-life military 
conditions modeling. The experiment showed a nonlinear 
relationship between ensuring security and countermeasures 
selection. Increasing the effectiveness of countermeasures 
for just one type of cyber attack only slightly improves 
overall reliability. But focusing on countering complex 

threats and preventing critical failure scenarios can really 
improve the level of protection. 

In addition to well-known attack surfaces on 
communication and navigation channels, cutting-edge 
research focuses on vulnerabilities in intelligent UAV 
subsystems. In [12], a method was developed to ensure the 
robustness of adversarial attacks and fault injection 
detectors. This confirms the need to consider the resilience 
of AI components when building a comprehensive model of 
mission cyber resilience. 

The authors [13] argue that traditional methods neglect 
the temporal correlation of system states, which reduces 
detection accuracy in dynamic flight conditions. Unlike 
discrete models, the use of continuous hidden Markov (CT-
HMM) models avoids distortions caused by quantization of 
continuous observable quantities, which is critical for 
UAVs.  To improve model accuracy in unstable 
communication channels, a method for estimating the 
signal-to-noise ratio based on spatial smoothing has been 
developed. The modeling results demonstrated that the 
integration of CT-HMMs significantly increases the 
probability of correct system state detection compared to 
methods without state prediction. 

In [14], the concept of “UAV Fleet as a Dependable 
Service” for smart cities is proposed. The authors shift the 
focus from analyzing the reliability of individual devices to 
ensuring the dependability of service provision. The study 
specifies a taxonomy of UAV fleet failures caused by 
equipment faults and attacks on assets, treating cyber 
attacks as a critical factor in reliability analysis. The 
proposed methodology allows for the grounding of fleet 
parameters, considering operation modes and maintenance 
policies. The results demonstrate that applying these 
models allows for choosing appropriate parameters to 
ensure service delivery with a high probability. 

Work [4] discusses numerous examples of UAV’s 
malicious use and analyzes possible attack surfaces in civil 
and military fields. It shows that UAVs are vulnerable to a 
wide range of cyber attacks and emphasizes the importance 
of implementing measures to detect and prevent them. 

In [15], it is argued that UAV design problems are 
becoming increasingly apparent with the transition to mass 
military use, and risks are systematized according to CIA 
aspects and methods of analyzing vulnerabilities in UAV 
software. 

The author of [16] presented a comprehensive 
classification of cyber attacks on UAVs, which can be used 
as a basis for threat modeling.  

The paper [17] examines the issue of assessing the 
cybersecurity (СS) of multifunctional UAV fleets, identifies 
threats, vulnerabilities, and potential consequences of cyber 
attacks, considering the specifics of system element 
interaction. The authors proposed a multi-level model of 
threats and attack scenarios, considering the functional 
distribution in the UAV infrastructure. A key 
methodological component of the study is the use of the 
Intrusion Modes and Effects Criticality Analysis (IMECA) 
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method, which allows threats to be classified according to 
their level of criticality, the consequences of attacks to be 
modeled, and countermeasures to be formulated to improve 
the CS of the system.  

Study [18] addresses the problem of the lack of a 
standardized method for assessing the overall security level 
of UAVs. The authors propose Drone Security Scoring 
System (D3S) - a methodology for assessing and assigning 
a security score to specific UAVs based on an analysis of 
their components and resistance to attacks. 

In [19], the critical need for a structured methodology 
for assessing the UAVs security is justified, given their 
integration into CPS and the IoT. The authors propose a 
step-by-step approach that combines threat modeling, 
vulnerability assessment, and selection of appropriate 
countermeasures based on the assessment results. Drone 
Attack Tool (DRAT) is a PT framework proposed in [20] 
and designed to automate the process of finding 
vulnerabilities in UAVs. The main goal of the tool is to 
reduce dependence on the operator's deep expertise and 
manual execution of complex attack scenarios by 
combining the necessary resources in a single graphical 
interface.  

The literature review has revealed significant 
methodological gaps. The existing approaches to assessing 
UAV vulnerabilities (e.g., D3S) are primarily static and do 
not account for the dynamics of UAV transitions between 
states under the influence of cyber attacks. Conversely, the 
existing UAV-specific penetration testing (PT) tools (e.g., 
DRAT) mainly focus on exploiting vulnerabilities but do 
not provide metrics of their impact on UAV cyber 
resilience (CR) over time. The mathematical models 
considered can assess the UAVs' CR when states change, 
but don’t consider the implementation of PT measures and 
their indicators. Consequently, there is a need to develop a 
combined method that would integrate the practical results 
of PT (as a source of parameters), the analytical capabilities 
of IMECA (for criticality classification), and the predictive 
power of Markov models (for assessing mission success 
probability). This combination will enable a transition from 
stating the presence of vulnerabilities that can be exploited 
to quantitatively predicting the UAVs' CR in real operating 
conditions. 

B. OBJECTIVES AND STRUCTURE 
The objective of this paper is to develop a combined 
method for assessing the UAVs' CR under cyber attacks. 

Research goals: 
- Justifying the feasibility of using a variety of methods 

and tools to assess the UAVs’ CR (section III); 
- Developing a model and assessment method that 

combines analytical and experimental procedures, as 
well as modeling system states using State-Space 
Markov Modeling (SSMM) (section IV); 

- Modeling using SSMM and formulating conclusions 
on the selection of parameter values for protecting 
UAV assets (section V); 

- Analysis of results and areas for further research 
(section VI). 

III.  METHODOLOGY OF RESEARCH 
One of the previous research studies [21] analyzed a variety 
of combinations of analytical and experimental methods for 
assessing the security and cybersecurity (CS) of intelligent 
systems, considering such indicators as completeness, 
execution time, cost, and trustworthiness. The analysis 
showed that the combination of IMECA-analysis [17, 22] 
with PT best meets the requirements for assessing the 
UAVs’ CS. When we delved deeper while working under, 
we noticed that the limitation of this combination of 
methods remains the inability to fully model the dynamics 
of cyber attacks over time and the system's response to 
them. As noted in [11], assessing the security of UAV use 
requires consideration not only of the fact of an attack, but 
also of the intensity of its implementation. That is why it is 
necessary to expand the task to assessing CR, which 
characterizes the system's ability to continue performing its 
mission under destructive influences through degradation 
and recovery. To solve this problem, it is proposed to 
supplement the combined IMECA + PT method with a set 
of Markov models. Some modern approaches to 
autonomous penetration testing already use Markov 
processes for decision-making under uncertainty [23, 24]. 
This creates a natural compatibility between the results of 
PT and the mathematical evaluation model. SSMM makes 
it possible to determine the probability of the system being 
in different states, including states directly related to the 
consequences of intrusions. In addition, such a model 
allows investigating how PT quality affects the system's 
ability to tolerate intrusions and, consequently, the value of 
the system's availability function. Thus, the integration of 
Markov models allows the transformation of static 
vulnerability criticality assessments obtained from IMECA 
and empirical data on intrusion success into dynamic 
mission reliability indicators, which is a necessary 
condition for ensuring CR. 

IV. COMBINED METHOD 
A. HIGH-LEVEL IDEF0 MODEL 
The Integration Definition for Function Modeling (IDEF0) 
functional modeling methodology was chosen to formalize 
and structurally describe the proposed combined method. 
This decision was motivated primarily by the need to 
accurately reflect the processes of transforming input 
information (UAV architecture, its application scenarios 
and limitations) into final CR metrics. The use of IDEF0 
notation allows for a clear definition of functional blocks 
with the separation of control elements and implementation 
mechanisms. 
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Figure 1. IDEF0 model of UAV CR assessment method (Level A0) 

A fundamental advantage is the hierarchical nature of the 
notation, which provides the capability to decompose 
complex evaluation procedures incrementally. This enables 
the logical integrity of the method to be preserved when 
integrating disparate components. 

The proposed combined method, presented in Figure 1 
as an IDEF0 context diagram (Level A0), is based on a 
holistic process aimed at identifying vulnerabilities, 
analyzing and confirming them, selecting countermeasures, 
and quantitatively assessing the UAVs' CR. At the input 
stage, information about the object of study is generated: 
the UAV architecture (I-ARCH), scenarios of its use (I-
SCEN), as well as legal, operational, and technical 
limitations (I-LIM). The assessment is implemented 
through a sequence of interrelated stages, which are 
provided by the necessary set of mechanisms marked with 
red arrows in the diagram. The process is strictly regulated 
by a set of control elements, which are shown in the 
diagram by blue arrows. The result is calculated CR metrics 
(O-METRICS), as well as substantiated recommendations 
for fine-tuning parameters to maximize CR level (O-
OPTIM). 

B. DECOMPOSED IDEF0 MODEL  
Figure 2 shows a decomposed model of the combined 
method (Level A1), which combines the following stages: 
information gathering and system analysis (1), known (2) 
and zero-day (3) vulnerabilities, intrusion modes replication 
(5), IMECA-analysis in its preliminary (4) and a posteriori 
(6) forms, and MSSM (7) into a single continuous process.  

At the initial stage of information gathering and system 
analysis, the research context is formed, and vulnerabilities 
and potential threats to the UAV are identified. A stack of 
UAV technologies (O/I-TECH) and a list of potential 
threats (O/I-THREAT) are formed using OSINT tools (M-
OSINT), automated scanners (M-SCAN), modeling (M-

MOD) and analysis (M-ANALYSIS) tools. The 
researchers’ steps are guided by the PT methodology (C-
PEN), defined by modeling frameworks (C-MOD) and 
regulated by CS standards (C-STD), and governed by 
policy on the use of OSINT and automated scanning tools 
(C-POL), which impose additional technical and legal 
restrictions to avoid ethical violations. The following 
process branches into two parallel blocks: known and zero-
day vulnerabilities assessment. The purpose of the second 
stage is to assess known vulnerabilities (O/I-VULN) by 
comparing UAV technologies used with vulnerability DBs 
(C-DB) and community reports (I-REPORT). At this stage, 
researchers actively use automated scanners (M-SCAN), 
vulnerability validation tools (M-VAL) and scripts to 
retrieve information from DBs (M-SCRIPT). 

The functional purpose of the third stage is to identify 
zero-day vulnerabilities (O/I-ZERO) that cannot be 
detected by any automated means. Based on the input list of 
threats (O/I-THREAT) and the technology stack (O/I-
TECH), researchers develop a benchmark behavior model 
and analyze attack surfaces using basic and static analysis 
tools (M-BASE). Then, dynamic fuzzing (M-FUZZ) is 
performed to provoke failures, followed by triage and 
analysis of the root causes of anomalies (M-TRI) to confirm 
the criticality of found vulnerabilities. The entire process is 
regulated by CS standards (C-STD) and interaction policies 
(C-POL). 

The goal of the fourth stage is to analytically transform 
vulnerability data into an assessment of the risks to UAV 
missions. Based on input lists of threats (O/I-THREAT), 
known (O/I-VULN) and zero-day (O/I-ZERO) 
vulnerabilities data, attack surfaces are mapped to intrusion 
modes. This process is regulated by the IMECA 
methodology and its assessment scales (C-IMECA), as 
well. 
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Figure 2. IDEF0 model of UAV CR assessment method (Level A1) 

as intrusion models (C-INT). With the expert analysis (M-
EXP) and risk assessment tools (M-RISK), a hypothesis 
about the level of threat is formed and a preliminary 
assessment of the probability, complexity of 
implementation, and severity of consequences is carried 
out. The result of this stage is the formation of preliminary 
criticality matrices (O-MATRIX) and prioritized intrusion 
modes (O/I-INT). 

The fifth stage consists of intrusion modes practical 
replication and is one of the key stages of the PT 
methodology deeply integrated into the proposed method. 
In addition to confirming the existence of vulnerabilities, a 
critically important function of this stage is the collection of 
time metrics for further modeling. The modeling process is 
strictly confined to an isolated sandbox environment (M-
ENV) to prevent any impact on a real UAV. The active 
phase of the intrusion is removed using a cleanup 
procedure. This involves terminating attack scripts, 
removing test artifacts and returning the UAV to its original 
state. The output consists of a set of empirical parameters 
(O/I-PARAM): the time and frequency of security checks, 
the intensity of successful attacks, the average recovery 
time after attacks, etc. A differentiation is also made 
between successful confirmed intrusions (O/I-TP_INT) and 
rejected false positives (O/I-FP_INT) of threats based on 
empirical data. The result is an updated criticality matrix 
(O/I-MATRIX), an impact assessment report (O/I-
IMPACT), and a set of recommended countermeasures 
(O/I-COUNTER). This data, along with the parameters 
from the previous stage, is transferred to the next block. 

At the sixth stage, the results are synthesized based on 
empirical data about successful (O/I-TP_INT) and refuted 
(O/I-FP_INT) intrusions, as well as the initial matrix (O/I-
MATRIX). The criticality of threats is then reassessed. The 
key mechanism in this stage is optimization algorithms (M-
OPT), which automate the selection of countermeasures. 
The process is managed considering cost-effectiveness 
criteria (C-ECON) to minimize costs while achieving the 
required security level. The outcome includes an updated 
criticality matrix (O-MATRIX), an impact assessment 
report (O-IMPACT), and a set of recommended 
countermeasures (O-COUNTER) that ensure an acceptable 

level of residual risk. 
The seventh stage is the final step of the method. The 

SSMM is constructed based on UAV application scenarios 
(I-SCEN), a set of empirical parameters (O/I-PARAM), and 
a criticality matrix from a posteriori IMECA analysis. The 
key implementation mechanism (M-MATH) is the 
mathematical apparatus of Markov processes with discrete 
states and uninterrupted time, implemented in a specialized 
software environment. The output consists of calculated CR 
metrics (O-METRICS), as well as substantiated 
recommendations for adjusting parameters of the system 
(O-OPTIM) to achieve the target level of CR. In addition, 
feedback is generated in the form of refined security 
architecture requirements (O/C-REQ). 

V. MARKOV MODEL DEVELOPMENT AND RESEARCH  
A logical continuation of structural modeling is the 
transition to the practical implementation of the final stage 
of the proposed methodology. For this purpose, a UAV 
SSMM operation under cyber attacks has been developed. 
This approach allows not only to evaluate the integral 
indicators of CR, but also to investigate their sensitivity to 
changes in the temporal characteristics of attacks and 
recovery and considers PT parameters. 

A. STATE-SPACE MARKOV MODEL FORMALIZATION 
In the context of this study, UAVs’ CR is understood as the 
ability to anticipate, withstand, recover from, and adapt to 
adverse conditions, stresses, attacks, or compromises of 
systems that use or depend on cyber resources [25]. The 
UAVs’ SSMM, which consists of four states S0-S3 (Figure 
3), is described by probabilistic transitions between states: 

- Anticipate. Proactive detection of vulnerabilities at the 
S0 (Ready) stage. In the model, this is implemented by 
transitioning to state S3 (PT) with intensity λPT. This 
helps identify and address potential threats before the 
mission starts, decreasing the chances of a successful 
future attack. 

- Withstand. The ability of the system to function 
effectively, determined by the intensity of mission 
requests λop and the intensity of their execution μop. It 
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is necessary to successfully complete the mission (transition from Mission Execution (S1) to safe state  

 
Figure 3. UAV SSMM considering PT parameters

S0) before the cyber attack is implemented. 
Mathematically, this is expressed in the maximization 
of μop while reducing the intensity of successful 
attacks λa that transfer the system to state S2 
(Compromised). 

- Recover. The ability of the system to recover from a 
S2. The model provides for two levels of response: (1) 
Rapid return to task execution through transition 
S2→S1 thanks to automatic self-recovery mechanisms. 
The intensity of this transition is Paμa; (2) If 
operational recovery fails, a transition S2→S3 occurs 
with a resulting intensity of (1−Pa)μRC. 

-  Adapt. Analysis of incident causes, implementation 
of corrective measures and modification of protection 
configuration while in state S3. Returning to the S0 
state with intensity μPT ensures that the UAV is 
patched and its protection parameters are adapted to 
new attack surfaces before the next mission. 

B. ASSUMPTIONS AND LIMITATIONS 
The developed SSMM model is predicated upon several 
fundamental assumptions inherent within the SSMM. 
Firstly, the model presumes the Markov property, which 
denotes that the future state of the system depends solely 
upon its current state, without accounting for the historical 
record of preceding intrusions or failures. Secondly, only 
the mission execution state is deemed perilous. The authors 
acknowledge that the state of availability and the state of 
being on a PT are also potentially vulnerable, yet this is not 
presently incorporated within the model. Thirdly, the 
transition intensity is assumed to be constant throughout the 
simulation period. These assumptions influence the 
interpretation of the calculated CR indicators. The 
availability function (Ag) reflects the behavior of the system 
in a steady state, averaged overtime. In actual combat 
conditions (for instance, during a series of coordinated 
serial attacks), instantaneous availability may deviate from 
this average baseline. To surmount these limitations, future 
research will concentrate on developing a multi-fragment 
SSMM. This approach will permit the relaxation of the 
stationarity assumption by modeling transitions between 
distinct operational contexts. 

С. JUSTIFICATION OF THE PARAMETER VALUES 
CHOICE 
To continue the experiment and study the developed 
SSMM, it is necessary to determine the numerical values of 
the parameters - the transition intensities. As the statistical 
DB of real incidents and field test results is still being 
formed at this stage of the research, the selection of input 
parameter values was made based on a review of 
publications [11, 14, 26, 27] and expert assessment. This 
approach enables simulation of the system's behavior across 
a wide range of scenarios: from the most favorable to the 
most critical. All model parameters are classified into four 
groups depending on the nature of their origin and the 
possibility of controlling them: 

- Operational. This group of parameters is determined 
by operational and tactical requirements for UAV use 
and does not depend on the cyber protection 
subsystem. Time between mission requests (Top) and 
its execution time (τop) determine the intensity of 
UAV use. This parameter depends on the complexity 
of the navigation algorithm, such as chaotic agent 
navigation used for achieving uniform area 
exploration [28], which may extend the exposure time 
to threats but ensure better operational results. The 
range of values is selected to cover different mission 
modes: from high-intensity short-term flights (e.g., 
reconnaissance) to long-term shifts in areas with low 
combat intensity. The corresponding intensities are 
calculated as mission request intensity (λop = 1/Top) 
and mission execution intensity (μop = 1/τop). 

- Pentesting. These are parameters that are determined 
during intrusion modes replication and IMECA-
analyses: PT frequency (TPT) and its duration (τPT). 
Varying these parameters allows us to find a balance 
between CS checks and mission availability. The 
values are chosen to explore the impact of both 
frequent short checks and infrequent but thorough 
security audits. The detailed mapping of these 
empirical metrics to the model's transition intensities 
is presented in Table 1. 
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Table 1. Mapping of empirical PT metrics to SSMM parameters 

Empirical 
parameters 

Measurement procedure SSMM 
parameters 

Formula 

TTR Time recorded from the moment of successful exploitation of vulnerability to the 
restoration of normal UAV operation. 

τa μa = 1/τa 

TMR The time required for a complete reset, reflashing, or hard reset of the UAV in case the 
automatic means have failed. 

TRC μRC  = 1/TRC 

MTBI The scheduled time interval between consecutive intrusion iterations initiated by PT 
experts to simulate specific threat density. 

Ta λa = 1/Ta 

PT duration The actual time spent by PT experts on completing a full checks cycle. τPT μPT = 1/τPT 
PT frequency The frequency of PT cycle launches. TPT λPT = 1/TPT 

 
- Threat. This group characterizes the variability of the 

external environment. Since it is difficult to accurately 
predict these values in combat conditions, several 
parameters have been selected for modeling that 
simulate different threat levels: time between attacks 
(Ta) characterizes the density of cyber influence (from 
massive attacks once per minute in electronic warfare 
conditions to isolated incidents once every N 
minutes). Consequently, the intensity of cyberattacks 
represents the rate of intrusion attempts derived from 
the empirical Mean Time Between Intrusions (MTBI) 
(Table 1), serving as the transition rate governing the 
system’s shift from a normal operation state to a state 
under attack. 

- Recovery. Probability of successful recovery (Pa) is a 
key indicator of the effectiveness of protective 
measures, the variation of which allows assessing the 
survivability of a system with both low and high 
levels of CR. The operational recovery time (τa) and 
emergency recovery time (TRC) determine the system's 
restoration capabilities. These values directly 
correspond to the Time to Recover (TTR) and Time 
for Manual Restoration (TMR) metrics measured 
during the PT stage (Table 1), defining the respective 
recovery intensities varying from seconds (automatic 

restart of processes) to minutes (complete reboot or 
firmware re-flashing). 

To address the transition from empirical data (O/I-
PARAM) to mathematical modeling, a mapping scheme 
was established. This scheme linked specific PT metrics 
with SSMM parameters, which are summarized in Table 1. 

C. MODELING 
A simulation model was constructed for modeling 
purposes, the structure of which is shown in Figure 4. The 
simulation was performed in MATLAB using the Simulink 
package. 

The graphical diagram shows the four states of the 
system (graph nodes) and the possible transitions between 
them (directed arcs). An important feature of the diagram is 
that the weights of the arcs correspond to the calculated 
numerical values of the transition intensities for the base 
scenario: 

- Node 1 (Green) corresponds to state S0 (Ready); 
- Node 2 (Yellow) corresponds to state S1 (Mission 

execution); 
- Node 3 (Red) corresponds to state S2 (Compromised); 
- Node 4 (Purple) corresponds to state S3 (PT). 
 

 

 

Figure 4. Simulation of UAV SSMM considering PT parameters 
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Figure 5. Probability chart of UAV being in S0-S3 states

For initial modeling and comprehensive model 
verification processes, a carefully selected set of base 
values was systematically formed and documented, as 
clearly shown in the detailed Table 2.  

Figure 5 presents a comprehensive graph that illustrates 
the probability of the UAV being in operational states S0-
S3 as a direct function of time Pi(t) for the established base 
set of parameters.  

Explanation of symbols in Figure 5: 
- Ag (black line) corresponds to the availability function 

and is mathematically defined as the sum of probability P1 
and P2 (Ag = P1+P2); 

- P1 (green line) corresponds to the probability of being 
in state S0 (Ready), indicating the UAV is fully operational 
and waiting for mission assignment; 

- P2 (yellow line) corresponds to the probability of being 
in state S1 (Mission execution), representing the likelihood 
that the UAV is actively performing its operational tasks; 

- P3 (red line) corresponds to the probability of being in 
state S2 (Compromised), which indicates the UAV has been 
cyber attacked, affecting normal operations. 

- P4 (purple line) corresponds to the probability of being 
in state S3 (PT), representing the phase where the UAV 
undergoes testing and preventive procedures. 

Since in the probability model P1- P4 quickly transition 
to a steady state within the first 5 hours of simulation time, 
we will now examine the comprehensive effect of 
systematic changes in individual input parameters on the 
values of steady-state probabilities of UAV states and its 
availability function Ag(t). This analysis will provide 
crucial insights into parameter sensitivity and system 
behavior under varying operational conditions. 

Figures 6-8 show histograms of the distribution of 
stationary probabilities of parameter states that have the 
most significant impact on UAV CR metrics.

 
Table 2. Sensitivity analysis of UAV CR metrics to the variations in the input parameters 

Group Parameters Values Impact Sensitivity 
Ag P1 P2 P3 P4 

Operational Top 1→20 h +31.6% +67.4% -91.8% -90.6% -75.0% High 
τop 0.5→10 h -15.9% -33.9% +45.9% +46.9% +37.7% Medium 

Threat Ta 1→20 min +33.2% +15.8% +93.1% -90.6% -79.2% High 
Recovery τa 5→120 s -31.2% -14.8% -88.1% +87.5% +74.2% Critical 

τRC 5→20 min +16.9% +6.2% +54.7% +59.4% -53.5% Medium 
Pa 0.4→0.9 +28.5% +12.4% +83.6% -15.6% -75.8% Critical 

Pentesting TPT 20→50 h +1.7% +1.8% +1.3% ≈ 0% -5.0% Low 
τPT 1→5 h -51.0% -50.8% -50.9% -50.0% +145% Critical 
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Figure 6. Histogram of the distribution of stationary probabilities of states when the operational recovery time 
changes τa 

 

Figure 7. Histogram of the distribution of stationary probabilities of states when changing the duration of PT τPT 
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Figure 8. Histogram of the distribution of stationary probabilities of states when the probability of successful recovery 

changes Pa 

 
Based on the modelling results, an analysis of the 

sensitivity of key system metrics to variations in input 
parameters was performed. The results are classified 
according to four levels of impact (Critical, High, Medium, 
Low), as shown in Table 2. The time characteristics of 
recovery and PT processes have the most significant 
impact: 

- Even a slight increase in operational recovery time (τa) 
leads to a 31.2% drop in Ag availability and nearly 
doubles the risk of compromise. This indicates that 
response speed is more important than passive 
protection (Figure 6). This necessitates further 
research into this relationship. 

- PT duration (τPT) demonstrates the highest negative 
impact among all parameters (Ag drop of 51.0%). 
Excessive PT duration effectively paralyzes the 
system, rendering it unfits for mission execution 
(Figure 7). 

- Increasing the probability of automatic recovery (Pa) 
provides a 28.5% increase in availability but increases 
the probability of successful mission completion by 
83.6%, allowing the system to function effectively 
even under intense attacks (Figure 8). 

Factors with a high impact include parameters that 
determine the defense and operation strategy. Ta attack 
interval and the Top mission interval are strong external 
levers. 

- Increasing the interval between missions (Top) has a 
positive effect on overall reliability (Ag increases by 
31.6%) and reduces risks, but this comes at the cost of 
drastically reduced mission success probability (P2 
drops by 91.8%). 

- Increasing the interval between attacks (Ta) increases 
system availability by 33.2%. At the same time, there 
is an almost twofold increase in the probability of 
successful mission completion and a tenfold decrease 
in the risk of compromise, confirming the critical 
dependence of mission success on the density of the 
enemy's cyber influence. 

The analysis revealed nonlinear effects for the 
parameters of average impact: 

- Mission duration (τop) has a predictable negative 
impact: extending the time of operations in enemy 
territory increases the window of opportunity for 
attack, leading to a 15.9% decrease in availability and 
a 46.9% increase in the probability of compromise. 

- Recovery time (τRC) showed an unexpected positive 
effect. Modeling shows that longer deep recovery 
reduces the frequency of repeated transitions to the PT 
state, which cumulatively compensates for lost time. 

A significant scientific finding is the establishment of 
the system's low sensitivity to the frequency of penetration 
tests (TPT). Altering this parameter improves preparedness 
by a mere 1.7%.  
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VI. CONCLUSION 
The paper presents and justifies a combined method for 
assessing the UAVs’ CR, which combines analytical and 
experimental procedures, as well as modeling the dynamics 
of SSMM. This allows overcoming the limitations of static 
risk assessment methods and isolated penetration tests, 
creating a closed cycle of system verification and 
protection. A combined method has been developed and 
formalized in IDEF0 notation.  

Based on the constructed SSMM, a sensitivity analysis 
was performed, which revealed that the most critical 
parameter of cyber resilience is the response speed of the 
system.  

It was established that an increase in the operational 
recovery time leads to a 31.2% drop in the availability 
coefficient and almost doubles the risks of compromise 
(+87.5%). Therefore, a critical design guideline is to 
prioritize automatic recovery mechanisms that ensure an 
operational recovery time (τa) of under 60 seconds. The 
priority of automation of recovery processes over the 
frequency of checks was quantitatively confirmed. 
Modeling showed that increasing the probability of 
successful recovery provides a significant increase in the 
probability of mission success (by 83.6%). Consequently, 
for high-intensity scenarios, the target probability of auto-
recovery Pa should be at least 0.9, which sets a benchmark 
for architectural resilience regardless of the fluctuating 
intrusion success rate. At the same time, the hypothesis 
about the effectiveness of frequent PT has been refuted: 
changing the inspection interval has a minor impact on 
availability (<2%), while excessive duration of PT 
procedures can reduce system availability by 51.0%. This 
refutes the necessity for excessively long and frequent 
checks and suggests that the strategy should concentrate not 
on check frequency, but on its speed and the automation of 
PT procedures. Specifically, it is recommended to limit the 
duration of field PT sessions (τPT) to a minor fraction (e.g., 
<15%) of the average mission cycle to avoid critical 
availability drops. 

Thus, the use of the mathematical apparatus of Markov 
processes harmoniously complements the IMECA and PT 
methods since it allows the study of the system's behavior 
in dynamic mode, the influence of PT processes on the final 
measures of availability, and the justification of 
requirements for these processes. 

Prospects for further research are aimed at developing a 
multi-fragment SSMM, which ensures the integration of PT 
processes and considers the factor of combined intrusion 
modes, as well as uses time parameters of the frequency 
and duration of PT procedures with a UAV simulator. 
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