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ABSTRACT The objective of this paper is to develop and justify a combined method for assessing the Cyber
Resilience (CR) of Unmanned Aerial Vehicles (UAVs) under cyber attacks. The proposed approach, formalized
in IDEFO notation, integrates analytical IMECA-analysis and experimental Penetration Testing (PT) procedures
with State-Space Markov Modeling (SSMM). This combination overcomes the limitations of static risk
assessment methods by creating a closed cycle of system verification and protection. Based on the constructed
SSMM, a sensitivity analysis was performed to identify key parameters. The study reveals that the system's
response speed is the most critical factor for UAVs’ CR. It was established that an increase in operational
recovery time leads to a 31.2% drop in the availability coefficient and nearly doubles the risk of compromise
(+87.5%). Conversely, increasing the probability of successful recovery provides a significant increase in the
probability of mission success (by 83.6%). Furthermore, the hypothesis regarding the effectiveness of frequent
PT was refuted: changing the inspection interval showed a minor impact on availability (<2%), whereas
excessive duration of PT procedures reduced system availability by 51.0%. These findings demonstrate the
inefficiency of excessively long and frequent checks and suggest that the strategy should concentrate on the
speed and automation of PT procedures rather than their frequency. Future research will focus on developing a
multi-fragment SSMM to integrate PT processes with a UAV simulator and analyze the impact of combined
intrusion modes.

KEYWORDS UAV, Cyber Resilience, State-Space Markov Modeling, IMECA, Penetration Testing.

. INTRODUCTION

Arapid growth in the use of small unmanned aerial
vehicles (UAVs), known as “drones”, is evident in
various fields [1], including hard-to-reach areas monitoring,
disaster prevention, services for smart cities, aerial
photography and cinematography, advanced agriculture,
traffic monitoring, critical infrastructure monitoring, and
military missions (reconnaissance, patrolling, logistics).
Since 2022, small UAVs have played a vital role in the
military operations of the Armed Forces of Ukraine amid
full-scale aggression by the Russian Federation. Combat
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use [2-5] shows that even high-tech devices remain priority
targets for cyber attacks and electronic warfare measures.
This applies not only to specialized military UAVs, but also
to commercial ones being militarized.

In war zones, massive signal jamming leads to
significant UAV losses. According to [6], monthly UAV
losses are measured in thousands, mainly due to successful
attacks on the availability of navigation systems and control
interception. As the experts point out in [2], the
comparative affordability of these units changes the tactics
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of their use, allowing small UAVs to be utilized in an
aggressive way.

Commercial UAVs require in-depth adaptation to
military purposes. It includes firmware customization and
integration to reduce UAV detectability by passive RF
monitoring systems. It is also worth mentioning that vendor
firmware is constantly being updated, so that outdated
customed firmware becomes unusable in latest versions of
UAVs [7].

These cases just emphasize the need for a systematic
assessment of the small UAVs cyber assets security [8],
specifically analyzing potential threats and exploring
vulnerabilities (including zero-day vulnerabilities) before
they are exploited by adversaries, which could not only
result in the loss of the device itself during a flight mission,
but also pose a threat to the lives and safety of operators.

During military implementation of such systematic
analysis, it is necessary to consider a dynamic nature of
UAV states and transitions between them. Modern
approaches are likely to ignore the timeliness and stochastic
essence of UAV operational cycles. This discrepancy
between static analysis and actual system behavior makes it
impossible to accurately assess operational reliability.
Therefore, it is extremely important to apply approaches
that consider UAVs as systems with multi-level degradation
and recovery [9] to select and implement an effective set of
countermeasures.

Il. LITERATURE REVIEW

A. WORK RELATED

An analysis of the sources on UAV resilience assessment
(RA) and existing penetration testing (PT) methodologies
adapted to the specifics of UAVs is provided based on a
study of leading scientific databases, such as Scopus, IEEE
Xplore, and Google Scholar, published after 2020.

The authors [10] conducted a comparative analysis of
dual-state and multi-state systems for UAV swarm
modeling. Traditional binary models are insufficient, as
they only consider “operational” and “faulty” states. Multi-
state models allow for intermediate performance levels,
which is critical for partially degraded systems.
Quantitative experiments on UAV swarms up to 20 UAVs
confirmed that multi-state models are more suitable for
analyzing transitional operational states.

The [11] proposes an approach to UAV safety
assessment where the device is considered as a unity of
three entities: physical, informational, and controlled. The
author has developed a continuous-time Markov model
which, as opposed to simpler analogues, considers specific
attack surfaces, such as attacks on control channels, GPS
spoofing, and payload data interception. A critically
important feature of this model is the consideration of
combined attacks, which contributes to real-life military
conditions modeling. The experiment showed a nonlinear
relationship between ensuring security and countermeasures
selection. Increasing the effectiveness of countermeasures
for just one type of cyber attack only slightly improves
overall reliability. But focusing on countering complex
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threats and preventing critical failure scenarios can really
improve the level of protection.

In addition to well-known attack surfaces on
communication and navigation channels, cutting-edge
research focuses on vulnerabilities in intelligent UAV
subsystems. In [12], a method was developed to ensure the
robustness of adversarial attacks and fault injection
detectors. This confirms the need to consider the resilience
of Al components when building a comprehensive model of
mission cyber resilience.

The authors [13] argue that traditional methods neglect
the temporal correlation of system states, which reduces
detection accuracy in dynamic flight conditions. Unlike
discrete models, the use of continuous hidden Markov (CT-
HMM) models avoids distortions caused by quantization of
continuous observable quantities, which is critical for
UAVs. To improve model accuracy in unstable
communication channels, a method for estimating the
signal-to-noise ratio based on spatial smoothing has been
developed. The modeling results demonstrated that the
integration of CT-HMMs significantly increases the
probability of correct system state detection compared to
methods without state prediction.

In [14], the concept of “UAV Fleet as a Dependable
Service” for smart cities is proposed. The authors shift the
focus from analyzing the reliability of individual devices to
ensuring the dependability of service provision. The study
specifies a taxonomy of UAV fleet failures caused by
equipment faults and attacks on assets, treating cyber
attacks as a critical factor in reliability analysis. The
proposed methodology allows for the grounding of fleet
parameters, considering operation modes and maintenance
policies. The results demonstrate that applying these
models allows for choosing appropriate parameters to
ensure service delivery with a high probability.

Work [4] discusses numerous examples of UAV’s
malicious use and analyzes possible attack surfaces in civil
and military fields. It shows that UAVs are vulnerable to a
wide range of cyber attacks and emphasizes the importance
of implementing measures to detect and prevent them.

In [15], it is argued that UAV design problems are
becoming increasingly apparent with the transition to mass
military use, and risks are systematized according to CIA
aspects and methods of analyzing vulnerabilities in UAV
software.

The author of [16] presented a comprehensive
classification of cyber attacks on UAVs, which can be used
as a basis for threat modeling.

The paper [17] examines the issue of assessing the
cybersecurity (CS) of multifunctional UAV fleets, identifies
threats, vulnerabilities, and potential consequences of cyber
attacks, considering the specifics of system element
interaction. The authors proposed a multi-level model of
threats and attack scenarios, considering the functional
distribution in the UAV infrastructure. A key
methodological component of the study is the use of the
Intrusion Modes and Effects Criticality Analysis (IMECA)
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method, which allows threats to be classified according to
their level of criticality, the consequences of attacks to be
modeled, and countermeasures to be formulated to improve
the CS of the system.

Study [18] addresses the problem of the lack of a
standardized method for assessing the overall security level
of UAVs. The authors propose Drone Security Scoring
System (D3S) - a methodology for assessing and assigning
a security score to specific UAVs based on an analysis of
their components and resistance to attacks.

In [19], the critical need for a structured methodology
for assessing the UAVs security is justified, given their
integration into CPS and the IoT. The authors propose a
step-by-step approach that combines threat modeling,
vulnerability assessment, and selection of appropriate
countermeasures based on the assessment results. Drone
Attack Tool (DRAT) is a PT framework proposed in [20]
and designed to automate the process of finding
vulnerabilities in UAVs. The main goal of the tool is to
reduce dependence on the operator's deep expertise and
manual execution of complex attack scenarios by
combining the necessary resources in a single graphical
interface.

The literature review has revealed significant
methodological gaps. The existing approaches to assessing
UAV vulnerabilities (e.g., D3S) are primarily static and do
not account for the dynamics of UAV transitions between
states under the influence of cyber attacks. Conversely, the
existing UAV-specific penetration testing (PT) tools (e.g.,
DRAT) mainly focus on exploiting vulnerabilities but do
not provide metrics of their impact on UAV cyber
resilience (CR) over time. The mathematical models
considered can assess the UAVs' CR when states change,
but don’t consider the implementation of PT measures and
their indicators. Consequently, there is a need to develop a
combined method that would integrate the practical results
of PT (as a source of parameters), the analytical capabilities
of IMECA (for criticality classification), and the predictive
power of Markov models (for assessing mission success
probability). This combination will enable a transition from
stating the presence of vulnerabilities that can be exploited
to quantitatively predicting the UAVs' CR in real operating
conditions.

B. OBJECTIVES AND STRUCTURE
The objective of this paper is to develop a combined
method for assessing the UAVs' CR under cyber attacks.

Research goals:

- Justifying the feasibility of using a variety of methods
and tools to assess the UAVs’ CR (section III);

- Developing a model and assessment method that
combines analytical and experimental procedures, as
well as modeling system states using State-Space
Markov Modeling (SSMM) (section IV);

- Modeling using SSMM and formulating conclusions
on the selection of parameter values for protecting
UAV assets (section V);
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- Analysis of results and areas for further research
(section VI).

Il. METHODOLOGY OF RESEARCH

One of the previous research studies [21] analyzed a variety
of combinations of analytical and experimental methods for
assessing the security and cybersecurity (CS) of intelligent
systems, considering such indicators as completeness,
execution time, cost, and trustworthiness. The analysis
showed that the combination of IMECA-analysis [17, 22]
with PT best meets the requirements for assessing the
UAVs’ CS. When we delved deeper while working under,
we noticed that the limitation of this combination of
methods remains the inability to fully model the dynamics
of cyber attacks over time and the system's response to
them. As noted in [11], assessing the security of UAV use
requires consideration not only of the fact of an attack, but
also of the intensity of its implementation. That is why it is
necessary to expand the task to assessing CR, which
characterizes the system's ability to continue performing its
mission under destructive influences through degradation
and recovery. To solve this problem, it is proposed to
supplement the combined IMECA + PT method with a set
of Markov models. Some modern approaches to
autonomous penetration testing already use Markov
processes for decision-making under uncertainty [23, 24].
This creates a natural compatibility between the results of
PT and the mathematical evaluation model. SSMM makes
it possible to determine the probability of the system being
in different states, including states directly related to the
consequences of intrusions. In addition, such a model
allows investigating how PT quality affects the system's
ability to tolerate intrusions and, consequently, the value of
the system's availability function. Thus, the integration of
Markov models allows the transformation of static
vulnerability criticality assessments obtained from IMECA
and empirical data on intrusion success into dynamic
mission reliability indicators, which is a necessary
condition for ensuring CR.

IV. COMBINED METHOD

A. HIGH-LEVEL IDEF0 MODEL

The Integration Definition for Function Modeling (IDEFO0)
functional modeling methodology was chosen to formalize
and structurally describe the proposed combined method.
This decision was motivated primarily by the need to
accurately reflect the processes of transforming input
information (UAV architecture, its application scenarios
and limitations) into final CR metrics. The use of IDEFO
notation allows for a clear definition of functional blocks
with the separation of control elements and implementation
mechanisms.

VOLUME 24(4), 2025
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Figure 1. IDEFO model of UAV CR assessment method (Level A0)

A fundamental advantage is the hierarchical nature of the
notation, which provides the capability to decompose
complex evaluation procedures incrementally. This enables
the logical integrity of the method to be preserved when
integrating disparate components.

The proposed combined method, presented in Figure 1
as an IDEFO context diagram (Level A0), is based on a
holistic process aimed at identifying vulnerabilities,
analyzing and confirming them, selecting countermeasures,
and quantitatively assessing the UAVs' CR. At the input
stage, information about the object of study is generated:
the UAV architecture (I-ARCH), scenarios of its use (I-
SCEN), as well as legal, operational, and technical
limitations (I-LIM). The assessment is implemented
through a sequence of interrelated stages, which are
provided by the necessary set of mechanisms marked with
red arrows in the diagram. The process is strictly regulated
by a set of control elements, which are shown in the
diagram by blue arrows. The result is calculated CR metrics
(O-METRICS), as well as substantiated recommendations
for fine-tuning parameters to maximize CR level (O-
OPTIM).

B. DECOMPOSED IDEF0 MODEL
Figure 2 shows a decomposed model of the combined
method (Level Al), which combines the following stages:
information gathering and system analysis (1), known (2)
and zero-day (3) vulnerabilities, intrusion modes replication
(5), IMECA-analysis in its preliminary (4) and a posteriori
(6) forms, and MSSM (7) into a single continuous process.
At the initial stage of information gathering and system
analysis, the research context is formed, and vulnerabilities
and potential threats to the UAV are identified. A stack of
UAV technologies (O/I-TECH) and a list of potential
threats (O/I-THREAT) are formed using OSINT tools (M-
OSINT), automated scanners (M-SCAN), modeling (M-
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MOD) and analysis (M-ANALYSIS) tools. The
researchers’ steps are guided by the PT methodology (C-
PEN), defined by modeling frameworks (C-MOD) and
regulated by CS standards (C-STD), and governed by
policy on the use of OSINT and automated scanning tools
(C-POL), which impose additional technical and legal
restrictions to avoid ethical violations. The following
process branches into two parallel blocks: known and zero-
day vulnerabilities assessment. The purpose of the second
stage is to assess known vulnerabilities (O/I-VULN) by
comparing UAV technologies used with vulnerability DBs
(C-DB) and community reports (I-REPORT). At this stage,
researchers actively use automated scanners (M-SCAN),
vulnerability validation tools (M-VAL) and scripts to
retrieve information from DBs (M-SCRIPT).

The functional purpose of the third stage is to identify
zero-day vulnerabilities (O/I-ZERO) that cannot be
detected by any automated means. Based on the input list of
threats (O/I-THREAT) and the technology stack (O/I-
TECH), researchers develop a benchmark behavior model
and analyze attack surfaces using basic and static analysis
tools (M-BASE). Then, dynamic fuzzing (M-FUZZ) is
performed to provoke failures, followed by triage and
analysis of the root causes of anomalies (M-TRI) to confirm
the criticality of found vulnerabilities. The entire process is
regulated by CS standards (C-STD) and interaction policies
(C-POL).

The goal of the fourth stage is to analytically transform
vulnerability data into an assessment of the risks to UAV
missions. Based on input lists of threats (O/[-THREAT),
known (O/I-VULN) and zero-day (O/I-ZERO)
vulnerabilities data, attack surfaces are mapped to intrusion
modes. This process is regulated by the IMECA
methodology and its assessment scales (C-IMECA), as
well.
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Figure 2. IDEF0 model of UAV CR assessment method (Level Al)

as intrusion models (C-INT). With the expert analysis (M-
EXP) and risk assessment tools (M-RISK), a hypothesis
about the level of threat is formed and a preliminary
assessment of the probability, complexity of
implementation, and severity of consequences is carried
out. The result of this stage is the formation of preliminary
criticality matrices (O-MATRIX) and prioritized intrusion
modes (O/I-INT).

The fifth stage consists of intrusion modes practical
replication and is one of the key stages of the PT
methodology deeply integrated into the proposed method.
In addition to confirming the existence of vulnerabilities, a
critically important function of this stage is the collection of
time metrics for further modeling. The modeling process is
strictly confined to an isolated sandbox environment (M-
ENV) to prevent any impact on a real UAV. The active
phase of the intrusion is removed using a cleanup
procedure. This involves terminating attack scripts,
removing test artifacts and returning the UAV to its original
state. The output consists of a set of empirical parameters
(O/I-PARAM): the time and frequency of security checks,
the intensity of successful attacks, the average recovery
time after attacks, etc. A differentiation is also made
between successful confirmed intrusions (O/I-TP_INT) and
rejected false positives (O/I-FP_INT) of threats based on
empirical data. The result is an updated criticality matrix
(O/I-MATRIX), an impact assessment report (O/I-
IMPACT), and a set of recommended countermeasures
(O/I-COUNTER). This data, along with the parameters
from the previous stage, is transferred to the next block.

At the sixth stage, the results are synthesized based on
empirical data about successful (O/I-TP_INT) and refuted
(O/I-FP_INT) intrusions, as well as the initial matrix (O/I-
MATRIX). The criticality of threats is then reassessed. The
key mechanism in this stage is optimization algorithms (M-
OPT), which automate the selection of countermeasures.
The process is managed considering cost-effectiveness
criteria (C-ECON) to minimize costs while achieving the
required security level. The outcome includes an updated
criticality matrix (O-MATRIX), an impact assessment
report (O-IMPACT), and a set of recommended
countermeasures (O-COUNTER) that ensure an acceptable
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level of residual risk.

The seventh stage is the final step of the method. The
SSMM is constructed based on UAV application scenarios
(I-SCEN), a set of empirical parameters (O/I-PARAM), and
a criticality matrix from a posteriori IMECA analysis. The
key implementation mechanism (M-MATH) is the
mathematical apparatus of Markov processes with discrete
states and uninterrupted time, implemented in a specialized
software environment. The output consists of calculated CR
metrics (O-METRICS), as well as substantiated
recommendations for adjusting parameters of the system
(O-OPTIM) to achieve the target level of CR. In addition,
feedback is generated in the form of refined security
architecture requirements (O/C-REQ).

V. MARKOV MODEL DEVELOPMENT AND RESEARCH
A logical continuation of structural modeling is the
transition to the practical implementation of the final stage
of the proposed methodology. For this purpose, a UAV
SSMM operation under cyber attacks has been developed.
This approach allows not only to evaluate the integral
indicators of CR, but also to investigate their sensitivity to
changes in the temporal characteristics of attacks and
recovery and considers PT parameters.

A. STATE-SPACE MARKOV MODEL FORMALIZATION
In the context of this study, UAVs’ CR is understood as the
ability to anticipate, withstand, recover from, and adapt to
adverse conditions, stresses, attacks, or compromises of
systems that use or depend on cyber resources [25]. The
UAVs’ SSMM, which consists of four states So-S; (Figure
3), is described by probabilistic transitions between states:
- Anticipate. Proactive detection of vulnerabilities at the
So (Ready) stage. In the model, this is implemented by
transitioning to state Sz (PT) with intensity Apr. This
helps identify and address potential threats before the
mission starts, decreasing the chances of a successful
future attack.
- Withstand. The ability of the system to function
effectively, determined by the intensity of mission
requests Aqp and the intensity of their execution pop. It

VOLUME 24(4), 2025
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is necessary to successfully complete the mission

Apr

(transition from Mission Execution (S;) to safe state

(1= Po)pure

Figure 3. UAV SSMM considering PT parameters

So) before the cyber attack is implemented.
Mathematically, this is expressed in the maximization
of Wop while reducing the intensity of successful
attacks A, that transfer the system to state S»
(Compromised).

Recover. The ability of the system to recover from a
S>. The model provides for two levels of response: (1)
Rapid return to task execution through transition
S>—S; thanks to automatic self-recovery mechanisms.
The intensity of this transition is Paps; (2) If
operational recovery fails, a transition S,—S; occurs
with a resulting intensity of (1—Pa)prc.

Adapt. Analysis of incident causes, implementation
of corrective measures and modification of protection
configuration while in state S3. Returning to the SO
state with intensity ppr ensures that the UAV is
patched and its protection parameters are adapted to
new attack surfaces before the next mission.

B. ASSUMPTIONS AND LIMITATIONS

The developed SSMM model is predicated upon several
fundamental assumptions inherent within the SSMM.
Firstly, the model presumes the Markov property, which
denotes that the future state of the system depends solely
upon its current state, without accounting for the historical
record of preceding intrusions or failures. Secondly, only
the mission execution state is deemed perilous. The authors
acknowledge that the state of availability and the state of
being on a PT are also potentially vulnerable, yet this is not
presently incorporated within the model. Thirdly, the
transition intensity is assumed to be constant throughout the
simulation period. These assumptions influence the
interpretation of the calculated CR indicators. The
availability function (Ag) reflects the behavior of the system
in a steady state, averaged overtime. In actual combat
conditions (for instance, during a series of coordinated
serial attacks), instantaneous availability may deviate from
this average baseline. To surmount these limitations, future
research will concentrate on developing a multi-fragment
SSMM. This approach will permit the relaxation of the
stationarity assumption by modeling transitions between
distinct operational contexts.

VOLUME 24(4), 2025

C. JUSTIFICATION OF THE PARAMETER VALUES
CHOICE

To continue the experiment and study the developed
SSMM, it is necessary to determine the numerical values of
the parameters - the transition intensities. As the statistical
DB of real incidents and field test results is still being
formed at this stage of the research, the selection of input
parameter values was made based on a review of
publications [11, 14, 26, 27] and expert assessment. This
approach enables simulation of the system's behavior across
a wide range of scenarios: from the most favorable to the
most critical. All model parameters are classified into four
groups depending on the nature of their origin and the
possibility of controlling them:

- Operational. This group of parameters is determined
by operational and tactical requirements for UAV use
and does not depend on the cyber protection
subsystem. Time between mission requests (Top) and
its execution time (Top) determine the intensity of
UAV use. This parameter depends on the complexity
of the navigation algorithm, such as chaotic agent
navigation used for achieving uniform area
exploration [28], which may extend the exposure time
to threats but ensure better operational results. The
range of values is selected to cover different mission
modes: from high-intensity short-term flights (e.g.,
reconnaissance) to long-term shifts in areas with low
combat intensity. The corresponding intensities are
calculated as mission request intensity (Aop = 1/Top)
and mission execution intensity (Uop = 1/Top).
Pentesting. These are parameters that are determined
during intrusion modes replication and IMECA-
analyses: PT frequency (Tpr) and its duration (tpr).
Varying these parameters allows us to find a balance
between CS checks and mission availability. The
values are chosen to explore the impact of both
frequent short checks and infrequent but thorough
security audits. The detailed mapping of these
empirical metrics to the model's transition intensities
is presented in Table 1.
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Table 1. Mapping of empirical PT metrics to SSMM parameters

Empirical Measurement procedure SSMM Formula
parameters parameters
TTR Time recorded from the moment of successful exploitation of vulnerability to the Ta M= 1/1,
restoration of normal UAV operation.
TMR The time required for a complete reset, reflashing, or hard reset of the UAV in case the Tre tre = 1/Tre
automatic means have failed.
MTBI The scheduled time interval between consecutive intrusion iterations initiated by PT T. ra=1/T,
experts to simulate specific threat density.
PT duration The actual time spent by PT experts on completing a full checks cycle. TpT wpr= 1/1pr
PT frequency The frequency of PT cycle launches. Tpr Apr = 1/Tpr
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- Threat. This group characterizes the variability of the

external environment. Since it is difficult to accurately
predict these values in combat conditions, several
parameters have been selected for modeling that
simulate different threat levels: time between attacks
(Ta) characterizes the density of cyber influence (from
massive attacks once per minute in electronic warfare
conditions to isolated incidents once every N
minutes). Consequently, the intensity of cyberattacks
represents the rate of intrusion attempts derived from
the empirical Mean Time Between Intrusions (MTBI)
(Table 1), serving as the transition rate governing the
system’s shift from a normal operation state to a state
under attack.

Recovery. Probability of successful recovery (P,) is a
key indicator of the effectiveness of protective
measures, the variation of which allows assessing the
survivability of a system with both low and high
levels of CR. The operational recovery time (t.) and
emergency recovery time (Trc) determine the system's
restoration  capabilities. These values directly
correspond to the Time to Recover (TTR) and Time
for Manual Restoration (TMR) metrics measured
during the PT stage (Table 1), defining the respective
recovery intensities varying from seconds (automatic

4

restart of processes) to minutes (complete reboot or
firmware re-flashing).

To address the transition from empirical data (O/I-
PARAM) to mathematical modeling, a mapping scheme
was established. This scheme linked specific PT metrics
with SSMM parameters, which are summarized in Table 1.

C. MODELING

A simulation model was constructed for modeling
purposes, the structure of which is shown in Figure 4. The
simulation was performed in MATLAB using the Simulink
package.

The graphical diagram shows the four states of the
system (graph nodes) and the possible transitions between
them (directed arcs). An important feature of the diagram is
that the weights of the arcs correspond to the calculated
numerical values of the transition intensities for the base
scenario:

- Node 1 (Green) corresponds to state So (Ready);

- Node 2 (Yellow) corresponds to state S; (Mission

execution);

- Node 3 (Red) corresponds to state S, (Compromised);

- Node 4 (Purple) corresponds to state S; (PT).

Figure 4. Simulation of UAV SSMM considering PT parameters

VOLUME 24(4), 2025
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Figure 5. Probability chart of UAV being in So-Ss states

For initial modeling and comprehensive model
verification processes, a carefully selected set of base
values was systematically formed and documented, as
clearly shown in the detailed Table 2.

Figure 5 presents a comprehensive graph that illustrates
the probability of the UAV being in operational states SO-
S3 as a direct function of time P;(t) for the established base
set of parameters.

Explanation of symbols in Figure 5:

- A, (black line) corresponds to the availability function
and is mathematically defined as the sum of probability P,
and P, (Ag =P+Py);

- Py (green line) corresponds to the probability of being
in state So (Ready), indicating the UAV is fully operational
and waiting for mission assignment;

- P (yellow line) corresponds to the probability of being
in state S; (Mission execution), representing the likelihood
that the UAV is actively performing its operational tasks;

- P3 (red line) corresponds to the probability of being in
state S (Compromised), which indicates the UAV has been
cyber attacked, affecting normal operations.

- P4 (purple line) corresponds to the probability of being
in state S3 (PT), representing the phase where the UAV
undergoes testing and preventive procedures.

Since in the probability model P;- P4 quickly transition
to a steady state within the first 5 hours of simulation time,
we will now examine the comprehensive effect of
systematic changes in individual input parameters on the
values of steady-state probabilities of UAV states and its
availability function A,(t). This analysis will provide
crucial insights into parameter sensitivity and system
behavior under varying operational conditions.

Figures 6-8 show histograms of the distribution of
stationary probabilities of parameter states that have the
most significant impact on UAV CR metrics.

Table 2. Sensitivity analysis of UAV CR metrics to the variations in the input parameters
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Group Parameters Values Impact Sensitivity
A,Z P] Pz P3 P4
Operational Top 1—20h +31.6% +67.4% -91.8% -90.6% -75.0% High
Top 0.5—10h -15.9% -33.9% +45.9% +46.9% +37.7% Medium
Threat T, 1—20 min +33.2% +15.8% +93.1% -90.6% -79.2% High
Recovery Ta 5—120s -31.2% -14.8% -88.1% +87.5% +74.2%
Tre 5—20 min +16.9% +6.2% +54.7% | +59.4% -53.5%
P, 0.4—0.9 +28.5% +12.4% +83.6% -15.6% -75.8%
Pentesting Ter 20—50 h +1.7% +1.8% +1.3% ~ 0% -5.0% Low
Tpr 1-55h -51.0% -50.8% -50.9% -50.0% +145%
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Figure 6. Histogram of the distribution of stationary probabilities of states when the operational recovery time
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Figure 8. Histogram of the distribution of stationary probabilities of states when the probability of successful recovery

changes P,

Based on the modelling results, an analysis of the
sensitivity of key system metrics to variations in input
parameters was performed. The results are classified
according to four levels of impact (Critical, High, Medium,
Low), as shown in Table 2. The time characteristics of
recovery and PT processes have the most significant
impact:

- Even a slight increase in operational recovery time (t.)
leads to a 31.2% drop in Ag availability and nearly
doubles the risk of compromise. This indicates that
response speed is more important than passive
protection (Figure 6). This necessitates further
research into this relationship.

PT duration (tPT) demonstrates the highest negative
impact among all parameters (Ag drop of 51.0%).
Excessive PT duration effectively paralyzes the
system, rendering it unfits for mission execution
(Figure 7).

Increasing the probability of automatic recovery (Pa)
provides a 28.5% increase in availability but increases
the probability of successful mission completion by
83.6%, allowing the system to function effectively
even under intense attacks (Figure 8).

Factors with a high impact include parameters that
determine the defense and operation strategy. T, attack
interval and the T,, mission interval are strong external
levers.
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- Increasing the interval between missions (Top) has a

positive effect on overall reliability (A, increases by
31.6%) and reduces risks, but this comes at the cost of
drastically reduced mission success probability (P>
drops by 91.8%).

Increasing the interval between attacks (T,) increases
system availability by 33.2%. At the same time, there
is an almost twofold increase in the probability of
successful mission completion and a tenfold decrease
in the risk of compromise, confirming the critical
dependence of mission success on the density of the
enemy's cyber influence.

The analysis revealed nonlinear effects for the

parameters of average impact:
- Mission duration (t,) has a predictable negative

impact: extending the time of operations in enemy
territory increases the window of opportunity for
attack, leading to a 15.9% decrease in availability and
a 46.9% increase in the probability of compromise.
Recovery time (trc) showed an unexpected positive
effect. Modeling shows that longer deep recovery
reduces the frequency of repeated transitions to the PT
state, which cumulatively compensates for lost time.

A significant scientific finding is the establishment of
the system's low sensitivity to the frequency of penetration
tests (Tpr). Altering this parameter improves preparedness
by a mere 1.7%.
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VI. CONCLUSION

The paper presents and justifies a combined method for
assessing the UAVs’ CR, which combines analytical and
experimental procedures, as well as modeling the dynamics
of SSMM. This allows overcoming the limitations of static
risk assessment methods and isolated penetration tests,
creating a closed cycle of system verification and
protection. A combined method has been developed and
formalized in IDEFO notation.

Based on the constructed SSMM, a sensitivity analysis
was performed, which revealed that the most critical
parameter of cyber resilience is the response speed of the
system.

It was established that an increase in the operational
recovery time leads to a 31.2% drop in the availability
coefficient and almost doubles the risks of compromise
(+87.5%). Therefore, a critical design guideline is to
prioritize automatic recovery mechanisms that ensure an
operational recovery time (t,) of under 60 seconds. The
priority of automation of recovery processes over the
frequency of checks was quantitatively confirmed.
Modeling showed that increasing the probability of
successful recovery provides a significant increase in the
probability of mission success (by 83.6%). Consequently,
for high-intensity scenarios, the target probability of auto-
recovery P, should be at least 0.9, which sets a benchmark
for architectural resilience regardless of the fluctuating
intrusion success rate. At the same time, the hypothesis
about the effectiveness of frequent PT has been refuted:
changing the inspection interval has a minor impact on
availability (<2%), while excessive duration of PT
procedures can reduce system availability by 51.0%. This
refutes the necessity for excessively long and frequent
checks and suggests that the strategy should concentrate not
on check frequency, but on its speed and the automation of
PT procedures. Specifically, it is recommended to limit the
duration of field PT sessions (tpr) to a minor fraction (e.g.,
<15%) of the average mission cycle to avoid critical
availability drops.

Thus, the use of the mathematical apparatus of Markov
processes harmoniously complements the IMECA and PT
methods since it allows the study of the system's behavior
in dynamic mode, the influence of PT processes on the final
measures of availability, and the justification of
requirements for these processes.

Prospects for further research are aimed at developing a
multi-fragment SSMM, which ensures the integration of PT
processes and considers the factor of combined intrusion
modes, as well as uses time parameters of the frequency
and duration of PT procedures with a UAV simulator.
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