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ABSTRACT Low-bitrate video compression (e.g., H264/AVC at <300 Kbps) typically introduces visible artifacts
such as blocking, blurring, and texture loss. This paper proposes a two-stage Generative Adversarial Network (GAN)
architecture tailored to restore visual quality in degraded video sequences. The system incorporates motion alignment,
residual blocks with attention mechanisms, and multi-frame temporal modeling to enhance spatial fidelity and
consistency. A novel training dataset is constructed by synthetically compressing high-quality video content to simulate
real-world degradation. We analyze the architecture in detail, discuss training stability (including mode collapse
mitigation), and propose a combination of distortion and perceptual losses, including L1, SSIM, LPIPS, and adversarial
objectives. Quantitative evaluation on standard benchmarks shows that the proposed model achieves competitive or
better performance compared to earlier methods like ESRGAN, EDVR, CVEGAN, and traditional deblocking
techniques. We further present visual comparisons, ablation studies, and training dynamics to validate each architectural
component. The enhanced frames exhibit restored detail and consistent temporal structure across sequences. A key
novelty lies in targeting extremely compressed content and demonstrating restoration capability under these constraints.
This makes the approach suitable for scenarios such as cloud video storage or ultra-low-bandwidth transmission, where

post-decompression enhancement is crucial.

KEYWORDS Video enhancement, compression artifact removal, GANs for video restoration, low-bitrate video,
temporal consistency, perceptual quality metrics, deep learning for post-processing.

I. INTRODUCTION
V ideo streaming under low bandwidth conditions remains
a significant challenge for visual quality [1, 2]. Modern
codecs, such as H.264 or HEVC, compress video aggressively
at low bitrates, resulting in visible artifacts, including blocking,
blurring, and loss of fine detail [3, 4]. These distortions are
especially pronounced in dynamic scenes, textures, and edges,
where temporal and spatial coherence is often degraded.

We propose a GAN-based video enhancement framework
to address this issue to restore perceptual quality from heavily
compressed video streams. Unlike traditional methods that
focus solely on distortion minimization [4-6], our approach
prioritizes visual fidelity and temporal consistency. The model
uses a two-stage generator architecture that first reconstructs
coarse structure and then refines it with high-frequency details.
A dual-discriminator system further encourages spatial realism
and temporal stability.

Our method is tailored for scenarios where only low-quality
video is available at the client side, such as mobile streaming,
edge computing, or storage-constrained playback. Improving
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video post-decoding allows perceptual recovery without
altering the encoder pipeline. This significantly reduces
bandwidth needs while keeping high visual quality.

In this paper, we define "bitrate collapse" as a compression
scenario in which the encoding bitrate is so low that fine details
and essential structural information are severely degraded or
lost, resulting in heavy blockiness, blurring, and perceptual
disintegration of the scene.

Unlike most prior works that target mild compression
artifacts or moderate bitrate streams, this work explicitly
focuses on restoring extremely degraded video under severe
bitrate constraints ("bitrate collapse" conditions) [7].

To our knowledge, no previous method in open-access
literature has systematically addressed quality restoration from
such aggressively compressed sources using a two-stage GAN
framework with explicit temporal and spatial fidelity
objectives.

Il. RELATED WORK
A broad range of research has been conducted on image and

755



)

Mykola Maksymiv et al. / International Journal of Computing, 24(4) 2025, 755-762

video restoration, with several families of methods emerging
over the last decade.

For image super-resolution, GAN-based techniques such as
SRGAN [8] and ESRGAN [9] introduced adversarial training
to generate perceptually realistic details. ESRGAN extended
SRGAN by incorporating Residual-in-Residual Dense Blocks
(RRDBs) and a Relativistic GAN loss, yielding superior visual
quality on single-frame tasks. However, while effective for still
images, these methods often introduce temporal flicker when
applied frame by frame to videos.

To address temporal coherence in video, TecoGAN [10]
introduced a recurrent generator with optical flow alignment
and a temporal discriminator, achieving stable results across
frames. Other multi-frame architectures, such as FRVSR [11]
and EDVR [12], utilize temporal alignment and deformable
convolutions, respectively, to fuse information from
neighboring frames and enhance temporal and spatial fidelity.
These approaches showed that aggregating context over time
significantly improves both perceived and measured quality in
video restoration tasks.

When specifically addressing compression artifacts,
particularly in low-bitrate scenarios, Multi-frame Quality
Enhancement (MFQE) [13, 14] utilizes high-quality “peak”
frames (e.g., I-frames) to guide the enhancement of lower-
quality inter frames (P-frames), leveraging codec structure and
temporal redundancy. MFQE 2.0 improved upon its
predecessor by incorporating a deeper CNN and bi-directional
recurrent fusion, enabling more effective restoration across
entire video sequences.

Focusing on post-compression enhancement, models such
as CVEGAN [15] and SUPERVEGAN [16] were designed to
enhance video after decoding from strongly compressed
formats like HEVC or H.264. CVEGAN integrates multi-scale
residual blocks with attention mechanisms and a perceptually-
driven loss function to improve subjective quality, particularly
for low-bitrate streams. SUPERVEGAN adopts a two-stage
GAN architecture where the first stage handles distortion and
upscaling and the second performs perceptual refinement
training both stages progressively to avoid instability and mode
collapse.

Additionally, foundational GAN formulations and
discriminator designs have contributed to the perceptual
restoration of video. Notably, the relativistic discriminator [17]
was shown to improve realism and stabilize training in high-
frequency detail generation, especially in video enhancement
pipelines that rely on adversarial learning.

Despite these advancements, most methods assume
moderate degradation or focus on specific codec settings. In
contrast, the approach proposed in this paper is explicitly
designed for severe compression scenarios, aiming to recover
texture, structure, and perceptual clarity while maintaining
temporal consistency. By incorporating elements from super-
resolution, video restoration, and perceptual GAN training, our
work bridges a critical gap in the domain of real-world low-
bitrate video enhancement.

lll. PROPOSED METHOD
The proposed method employs a two-stage generator G and a
multi-component loss function within a GAN framework to
transform low-quality compressed video X into high-quality
output Y, .

Fig. 1 provides a block diagram of the architecture. The
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design is inspired by human expert restoration: first, perform
conservative reconstruction to remove artifacts and recover
details (Stage A), then apply a refinement that injects realistic
textures (Stage B) without disturbing temporal coherence. The

generator G thus comprises two sub-networks, G and Gg,
corresponding to Stage A and Stage B. We formulate the
overall enhancement for frame ¢ as:

Ytﬁnal = GB (GA (Xt—N:t+N))’ (1)

where X;_n.t.tn denotes a window of 2N+1 input frames
(frame t and its N neighbors on each side). Multi-frame input
allows G, to aggregate information from neighboring frames
to restore details that single-frame that X, cannot provide on
its own. In our experiments, we use N=2 (5-frame input) for a
good tradeoff between temporal context and model complexity,
though the architecture supports larger temporal windows.

A. MOTION ALIGNMENT MODULE

To effectively merge frames, we include an explicit
alignment module based on deformable convolution and/or
optical flow. Given that consecutive frames often contain
object motion or camera panning, direct frame stacking can
misalign details. We adopt a Pyramid, Cascading and
Deformable (PCD) alignment module similar to EDVR [12],
and draw inspiration from early flow-based learning
frameworks like FlowNet [18]. This module refines estimated
flow at multiple scales and uses deformable convolution to
sample aligned features, handling complex motion and
occlusions. The result is a stack of feature maps F,_;,, all
warped to the reference frame t. We denote the alignment
operation as:

Fe_ie = Align(Xe_;, X¢), (2)

for i € [-N, N] producing aligned features for each neighbor
relative to frame t (with Fy_,, being just X, is initial features).
These aligned features are concatenated along the channel
dimension and fed into Stage A. By performing learnable
alignment, G4 it receives information such as the texture on a
static background from a nearby higher-quality frame (e.g., a
P-frame aided by an I-frame).

B. STAGE A: RECONSTRUCTION NETWORK
Stage A focuses on distortion reduction. It uses a series of
Residual blocks to remove artifacts and reconstruct an initial

high-quality frame 17;74 at the target resolution (which could be
the same as input or higher). We utilize a residual learning
strategy: Stage A predicts a residual image R# that, when
added to an upsampled or base image, yields the output. Two
modes are supported:
(a) Post-Processing (PP) is identical resolution, only
artifacts removed:

YA =X, + R4 3)

(b) Super-Resolution Adaptation (SRA): input is
upsampled by factor s:

YA = X[+ R )
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Internally, Stage A’s architecture stacks several Residual-
in-Residual Dense Blocks (RRDB) as used in ESRGAN [9],
but modified with attention mechanisms. In particular, we
integrate an Enhanced Convolutional Block Attention Module
(ECBAM) as proposed in CVEGAN [15]. ECBAM applies
sequential channel and spatial attention to intermediate
features, enabling the network to focus on regions with
noticeable artifacts (e.g., block boundaries or blurry textures)
and allocate more capacity to correcting them. This is
especially beneficial in heavy compression scenarios where
artifacts are spatially localized.

Stage A is trained with pixel-wise loss only (no GAN loss

at this stage), to ensure R {4 learns a safe correction and avoids
introducing new artifacts. We use a combination of L1 loss and

MS-SSIM loss YA versus the ground-truth frame Y;:

Lo pix = IV = Vel + A (1= SSIM(YA V). (5)

Minimizing Ly pix encourages high PSNR/SSIM and

removes most glaring compression artifacts. Notably, Stage A
does not hallucinate details, it is analogous to a multi-frame
denoiser/upscaler, constrained to produce an MSE-optimal
reconstruction. This provides a strong, consistent foundation
for the adversarial Stage B.

C. STAGE B: DETAIL SYNTHESIS NETWORK

Stage B takes 17;\" as input and enhances it to produce the final
output ¥,. Stage B generates realistic textures and recovering
fine details that Stage A (trained on MSE) might have
smoothed out. Its architecture can be a deeper or alternate set
of residual blocks, potentially at full resolution.

We include a 1-level U-Net structure in Stage B (as in
SUPERVEGAN [16]) to increase receptive field the U-Net
encoder-decoder allows the network to gather global context
(important for large smooth regions or consistent textures) and

Low-Quality Inputs

then refine details through skip connections [19-20]. Stage B
outputs a residual R which is added to Y,A:

%, =Y +RP. (6)

This formulation (often called a residual GAN approach)
lets Stage B focus on high-frequency components (like film
grain, skin details, text clarity) without altering the overall

structure or colors established by Stage A. By limitin g R tB to
smaller amplitude high-frequency signals, we reduce the risk
of Stage B introducing distortions that break consistency with
the input content.

To train Stage B, we activate adversarial and perceptual

losses. A spatial discriminator Dg judges the realism of
individual enhanced frames Y’t compared to original high-
quality frames Y , while a temporal discriminator D; looks at
sequences of frames (we use three cothreesecutive frames as
D;’s input) to judge temporal coherence. The adversarial loss

for Stage B is the sum of a GAN loss from Dg and D;. We use
arelativistic average GAN loss formulation to stabilize training

[11], meaning Dg doesn’t just classify real vs fake, but also
considers the difference in realism between real and fake data,
and G is trained to increase the probability that outputs are
more realistic than real data on average.

Formally, for Dg:

LGS = —Ey[log(1 — Ds(N)] - Ey [log (Ds(7))], ()
and for the generator (Stage B):
L) = —Ey [log (1= Ds(7))] - By [log(Ds(M)],  (8)

and similarly for D; with sequences. (For brevity we do

|:| Input Frames I:I Alignment Module
Data Flow
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Figure 1. Architectural overview of the proposed GAN-based video enhancement method.
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not expand the temporal case here; it follows the same
relativistic principle applied to short-frame sequences.)
In addition to adversarial loss, we use a perceptual loss

Lyerc computed as the feature space difference between Y; and

Y; using a pretrained image classification network (VGG-19
[1]). Specifically:

1 -
Lyere = ZW 16,(%) — ¢, (V)1 9)

In formula 9 ¢; is a function that extracts activations
(feature maps) from the jth layer of a pre-trained neural
network. This means that we feed both images to VGG. We
take the output tensors on certain layers (for example, relu3 4,
relu4_4). C;H;W; - the number of channels, height, and width
of the corresponding feature map for the layer. This encourages
Y, having similar texture and feature responses as the ground
truth, which correlates better with human perception than pure
MSE.

To further maintain temporal consistency, we incorporate a
Ping-Pong loss Ly, [10]. This works as follows: we feed a
sequence of frames [X;_1, X, X(4+1] through the generator to get

Y1, Vi, Yes1] - Then we take Y, and feed it backwards (as
if it were an input at t-1) along with X, and X;_;, obtaining a
reconstruction of ¥; (the middle frame when the sequence is
processed in reverse).

The Ping-Pong loss is defined as the L2 difference between
the original forward Y;and the backward ¥;:

Lpp = |}7t_’YVt|% (10)

Minimizing Lpp forces the generator to produce frasistent

frames whether time is flowing forward or backward,
effectively reducing flickering and spurious detail changes over
time. Unlike optical-flow-based temporal loss, Ping-Pong does
not rely on external motion estimation, making it well-suited
for GAN training where generated frames lack a one-to-one
ground-truth optical flow.

The total loss for Stage B (generator) is a weighted sum of
these components:

Lptotal = Aadv(Lgf;i?/,s + Liﬁi,r) + ApercLperc

+)‘pprp + 7\pixn?t: - Ytll- (11)

We still keep a small weight on pixel loss (last term) for

Stage B to prevent it from deviating too far (this is especially

needed for areas where ground truth has very low detail, to

avoid hallucinating something obviously incorrect). In

practice, we set A,q, = 1073 (since adversarial losses are

higher in scale) Aperc =1, A, =1, Ay =1 based on
validation tuning.

D. TRAINING STRATEGY
We train in two phases similar to SUPERVEGAN’s
progressive training [16]. In Phase 1, we train Stage A alone by

minimizing Ly pix> using a standard L1+SSIM target. This

phase lasts for T; iterations (until convergence in distortion
metrics).
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Next, in Phase 2, we fix Stage A (or fine-tune it at a very
low learning rate) and train Stage B with the full loss. Initially,
we set A,qy = 0 to warm up Stage B with just perceptual and
pixel losses for a short period, then gradually increase 4,4y to
its full value over a number of epochs. This gradual
introduction of the GAN prevents the sudden destabilization of
the two-stage generator.

The discriminators Dg and D; are trained in tandem with
Stage B as usual in GAN training (one or a few D updates per
G update). By Phase 2’s end, Stage B is generating realistic
textures and Dg, D; can no longer distinguish most enhanced
frames from true ones.

While we do not directly optimize for VMAF due to its non-
differentiability, we evaluate our outputs using this perceptual
metric to reflect visual quality in streaming scenarios better.
Prior work has shown VMAF’s strong correlation with user
preference in bitrate-limited video [2, 21-22].

Finally, we optionally fine-tune the entire generator (both
Stage A and B together) with a low learning rate and all losses
active, to recover any slight regressions in Stage A outputs
caused by fixing it during Stage B training.

IV. EXPERIMENTS AND RESULTS

All experiments were conducted on compressed video
sequences at 720p resolution. Inputs were downsampled to
360p, compressed at 200—300 Kbps using H.264 codec (x264,
veryfast preset), and then upscaled back to 720p using bicubic
interpolation before feeding into the enhancement network.
Our model was evaluated using a 5-frame window (N=2), with
no external optical flow supervision.

A. DATASETS

We evaluate our method on standard video datasets widely
adopted in prior enhancement research. For training, we
compiled a diverse dataset comprising: the Vimeo-90K
septuplet dataset (used extensively for video super-resolution);
the MFQE 2.0 dataset, which provides raw-compressed video
pairs [13], and selected scenes from LIVE-NFLX II [2, 21], a
publicly released perceptual video quality dataset by Netflix.

High-quality source videos were synthetically degraded via
heavy compression to simulate realistic low-bitrate streaming
scenarios. Specifically, we applied H.264 compression using
FFmpeg’s x264 encoder at very low bitrates. The settings
included CRF = 38 and spatial downsampling to 50% of the
original resolution, producing outputs at ~200-300 Kbps (540p
from 1080p). Keyframes were sparsely inserted (intra-period =
100) to emulate long GOPs typical in streaming codecs. This
yielded highly compressed training pairs with severe blocking,
blurring, and loss of detail.

For evaluation, we used sequences from the animated short
films Big Buck Bunny (frames “Bird” 432-434, “Bunny”
1168-1171) and Sintel (final render version), both known for
complex textures, motion, and lighting. We generated test
samples at 250 and 500 Kbps. In addition, we tested on the
Vid4 benchmark with added compression. The ground truth is
the uncompressed original, and the input is the degraded
compressed video.

B. IMPLEMENTATION DETAILS

The alignment module consists of a 3-level deformable
convolution pyramid with 32 channels at the coarsest level and
64 at the finest.

VOLUME 24(4), 2025
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Stage A includes 30 RRDB blocks (each using 64 channels
and integrated channel attention via ECBAM).

Stage B includes a shallow U-Net (with 2x spatial
downsampling and 64 base filters) and 10 residual blocks.

We use the Adam optimizer with separate learning rates for
each stage: 2+ 107* for Stage A; 1+10™* for Stage B.
Both with cosine annealing decay.

The spatial discriminator is a PatchGAN-based model
(70x70 patches) applied to full frames (1280x720), and the
temporal discriminator operates on concatenated 3-frame
sequences.

Training was conducted in two phases:

e Phase 1 (Stage A only): 200,000 iterations

e Phase 2 (full model): 100,000 additional iterations

We used 2x NVIDIA V100 GPUs, with a batch size of 8
and a S-frame input window. Total training time was
approximately 4 days. The implementation was done in
PyTorch, and our code will be made publicly available.

C. EVALUATION METRICS AND QUANTITATIVE RESULTS

We evaluate our model using both distortion-based and
perceptual metrics. Specifically, we report Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity (SSIM) to assess
fidelity, and LPIPS (Learned Perceptual Image Patch
Similarity) to evaluate perceptual closeness to the ground truth
(lower is better). Additionally, we compute the Bjentegaard
Delta rate (BD-rate) to estimate bitrate savings at equal quality.

We compare our approach with the following baselines:

decoded video.

e MFQE 2.0 [13] is a multi-frame enhancement model
trained on compressed inputs.

e EDVR (retrained) [12] adapted to our training data,
configured for 2x upscaling and denoising.

e TecoGAN [10] modified with our data, using 2x
upscaling and ping-pong consistency loss.

e ESRGAN+Denoise is a combination of ESRGAN
(trained at 4x on DIV2K) followed by DnCNN.

e SUPERVEGAN-4 [16] tested using official weights.

Table 1. Enhancement Performance on Test Videos

(250 Kbps input)
Method PSNR (dB) 1 SSIM 1 LPIPS |
H.264 Compressed | 25.1 0.613 0.412
MFQE 2.0 27.3 0.701 0.310
EDVR (retrained) 28.1 0.739 0.300
ESRGAN+Denoise | 25.8 0.667 0.254
TecoGAN 26.5 0.712 0.214
SUPERVEGAN 26,6 0,881 0,205
Ours (GAN-EVH) | 27.5 0.727 0.185
Ground Truth 33.2 0.935 0.000

Although our model does not achieve the highest PSNR
(which EDVR reports), it delivers substantially superior
perceptual quality.

Specifically, our model attains the lowest LPIPS score
among all evaluated methods (0.185), indicating higher
structural fidelity and naturalness in restored frames. In

Figure 2. Visual comparison on a 2-frame licensed shot. A typical decompressed input frame is on the left. In the middle, our
GAN-based enhanced output. For reference, the original uncompressed frame is on the right.

¥ | | "& §

Figure 3. Temporal consistency visualization on bird motion sequence (frames 432—434). On top are figid compressed frames, in
the middle our variant, and at the bottom is the ground truth shot of frames

o H264 Compressed input of the raw, low-quality

VOLUME 24(4), 2025

/ .‘
it

759



1]
Sl

Mykola Maksymiv et al. / International Journal of Computing, 24(4) 2025, 755-762

' )
el
LR

» L ]‘ ~

=
'hi

Frgure 4. Example from a compressed scene of “Blg Buck Bunny (frames 1168-1 171) On top are r11d compressed frames in
the middle our variant, and at the bottom is the ground truth shot of frames

comparison, EDVR, despite reaching the top PSNR, exhibits a
relatively high LPIPS of 0.300, often leading to overly
smoothed, plasticky  visual appearance.  Similarly,
SUPERVEGAN, while improving perceptual scores compared
to classical methods, still reports higher residual artifacts and
slightly less temporal coherence than our model, as reflected in
LPIPS metrics and visual inspections.

We compute temporal PSNR (TPSNR) by aligning
consecutive frames based on estimated motion fields to assess
temporal stability further. Our method maintains a TPSNR
within 0.1dB of its single-frame PSNR, demonstrating
excellent consistency over time.

By contrast, ESRGAN and SUPERVEGAN suffer a
TPSNR drop of approximately 1dB, and TecoGAN
experiences a reduction of around 0.3 dB.

Temporal SSIM measurements reinforce this trend: our
model achieves a structural similarity index (SSIM) exceeding
0.98 across consecutive frames, effectively minimizing
flickering and temporal artifacts.

Qualitative results in Figures 2—4 visually corroborate these
quantitative findings. Figure 2 highlights the ability of our
method to reconstruct sharp textures and crisp edges from
heavily degraded frames. In Figure 3, the model preserves
intricate feather details and maintains structural continuity
across motion in a bird sequence. Figure 4 showcases the
restoration of fine fur textures and environmental elements in
the "Big Buck Bunny" scene. Across all examples, the
perceptual fidelity of our outputs consistently aligns most
closely with the ground truth, surpassing both traditional and
modern baselines.

D. ABLATION STUDIES

We conducted an extensive ablation study to evaluate the
contribution of each architectural and loss component in our
model. The bar chart in Fig. 5 shows all the results of the
ablation study.

First, we removed Stage B and used only the output of Stage
A as the final result. This variant yielded a higher PSNR
(+1.1dB) due to its distortion-optimized structure (no
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adversarial loss), but LPIPS increased significantly to 0.35.
Visually, the frames appeared overly smooth and plasticky,
highlighting the crucial role of Stage B in restoring perceptual
quality.

Next, we disabled the Ping-Pong loss, resulting in a
noticeable increase in temporal flicker for fast-motion scenes.
Quantitatively, LPIPS increased by 0.02, and a user study
indicated reduced visual preference in motion-sensitive
sequences due to shimmering and temporal instability.

We also evaluated a version of our model with only a single
spatial discriminator, replacing the full dual-discriminator
setup. This change degraded temporal coherence and slightly
reduced PSNR (0.2 dB), while LPIPS increased by +0.015.
These results support the necessity of using a temporal
discriminator to enforce frame-to-frame consistency, aligning
with prior findings in [10] and [12].

Ablation Study: PSNR and LPIPS for Model Variants

== PSNR (1)
= LPIPS (1)

28.5

PSNR (dB)
N
®
o

N
™
n

27.0 -0.20

ae\ ® 0o e S0 55
W s w ang®® gnoe® w pcer™ W™ b

Figure 5. Bar chart of results obtained during the ablation
study

Additionally, we experimented with an optical flow-based
temporal loss (instead of Ping-Pong) but found it to be less
effective. Training convergence was slower, and outputs lacked
sharpness, likely due to unreliable motion estimation on
severely compressed content.

Finally, we removed the ECBAM attention module from
Stage A. Without attention, PSNR dropped by ~0.2 dB and
local artifact correction degraded. The network’s capacity was

VOLUME 24(4), 2025
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more globally distributed, leading to incomplete artifact
suppression. This demonstrates that allocating capacity to
regions with high artifact probability (via attention) enhances
correction efficiency.

E. BITRATE QUALITY TRADEOFF

To assess the impact of our model on compression
efficiency, we performed BD-rate analysis on the LIVE-NFLX
dataset [21]. Enhancing compressed videos at the decoder side
resulted in an average bitrate savings of 32% for equivalent
PSNR compared to H.264-only encoding. For perceptual
quality axes such as VMAF or no-reference metrics (e.g.,
NIQE), the savings were even higher often exceeding 50%.

These results suggest that our approach can shift
complexity from bitrate to post-processing, enabling lower-
bandwidth delivery without perceptual degradation. With
modern hardware acceleration (e.g., TensorRT on NVIDIA
2080 Ti), real-time performance is feasible at 720p (=30 fps).
Moreover, model pruning or reduced-capacity versions of
Stage A enable deployment even at 540p resolution on
resource-constrained devices.

V. DISCUSSION

The proposed GAN-based architecture demonstrates
significant improvements for enhancing heavily compressed
videos, combining the strengths of multi-frame fusion and
adversarial detail synthesis.

A. STRENGTHS

Our two-stage design separates reconstruction and
generation tasks, which is crucial in avoiding common GAN
issues such as distortion amplification or temporal flicker. By
training Stage A using pixel-domain losses only, we ensure a
stable, artifact-free foundation. Stage B is then trained with
adversarial and perceptual losses, adding high-frequency detail
without destabilizing the core structure.

This architecture is especially effective under severe
compression, where content is degraded beyond typical
restoration limits. Unlike single-stage GANSs (e.g., ESRGAN
[9]) or frame-recurrent methods like TecoGAN [10], our model
explicitly decomposes the enhancement problem, resulting in a
better balance between detail generation and structural
accuracy.

Moreover, our use of a dual-discriminator scheme (spatial
and temporal) allows the network to maintain realism both
within individual frames and across the sequence. This dual
feedback promotes smooth transitions and temporal stability,
an area where many frame-based or PSNR-optimized models
often struggle.

Compared to EDVR [12], which primarily optimizes
fidelity metrics, our approach prioritizes perceptual quality and
achieves the lowest LPIPS among the evaluated methods, while
maintaining a high temporal SSIM. The integration of ECBAM
attention in Stage A further increases the network’s focus on
artifact-prone regions, ensuring targeted correction rather than
global smoothing.

Altogether, the proposed design reflects a principled and
empirically validated improvement over previous solutions,
achieving competitive quantitative scores and superior
perceptual consistency, even in the presence of strong
compression noise and motion artifacts [17, 23].
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B. THE ARCHITECTURE IS ALSO FLEXIBLE

Stage A could be replaced with any future improved
denoiser/SR network, or Stage B could be extended with style-
specific generators for content (imagine a version specialized
for anime compression artifacts vs live-action). Style-specific
training for low-level vision has recently been demonstrated in
domain-aware models [24].

In practical terms, our approach can be embedded into
video streaming pipelines to optimize bandwidth efficiency.
Servers may transmit aggressively compressed video streams,
significantly reducing data loads, while client-side
enhancement restores perceptual quality in real-time. This is
especially advantageous for network-constrained applications,
such as cloud gaming, video conferencing, and mobile
streaming, where minimizing bitrate is crucial without
degrading the visual experience.

C. LIMITATIONS

Despite its strengths, the model has limitations. It
sometimes hallucinates incorrect details in areas where
compression has eradicated information. For example, in some
dark scenes, if a textured surface is completely smeared by
compression, Stage B might introduce a generic texture that
appears plausible but does not match the original (since it lacks
a reference). This can be problematic for applications such as
surveillance or medical video, where fidelity to the actual
content is crucial. We partially mitigate this by keeping a small
content loss and tuning the adversarial strength. Still, it's an
inherent risk of any GAN-based enhancement — a tradeoff
between detail and accuracy.

Another limitation is generalization: our model is primarily
trained on H.264 artifacts; if given a video compressed with a
significantly different algorithm (such as AV1 or older MPEG-
2), it may not recognize specific artifact patterns (e.g., AV1's
partitioning or MPEG-2's blocking grid) and thus be less
effective. In future work, training on a mixture of codecs or
incorporating a small codec-ID conditioning could be
beneficial. Also, like many deep models, our network can be
computationally heavy. While we achieved real-time on good
hardware, deploying on low-power devices may require model
compression techniques (quantization, distillation [25]).

Encouragingly, approaches like SUPERVEGAN have
explored reduced versions for real-time use, and we believe
similar optimizations can apply to our model (e.g., using a
smaller Stage A for 540p targets or an efficient transformer-
based alignment to replace deformable convolution).

D. ETHICAL AND PRACTICAL CONSIDERATIONS

The proposed model is trained on user-consented
compressed videos, and all training data must remain legally
shareable. While the GAN does not recreate information that
was never present, care must be taken that enhancement does
not unintentionally introduce misleading details, especially in
sensitive domains such as surveillance or medical imaging.

From a practical perspective, the system offers direct
benefits for video transmission and networked applications. By
performing restoration at the client or edge device after
decoding, the model enables the delivery of highly compressed
streams over constrained networks, reducing bandwidth usage
without sacrificing perceptual quality. This makes the approach
suitable for mobile video streaming, cloud gaming, or low-
latency conferencing, where network conditions often
fluctuate.
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VI. CONCLUSIONS

We presented a GAN-based architecture tailored to enhance
heavily compressed video, addressing spatial quality loss and
temporal inconsistencies.

Our method substantially improves visual quality at very
low bitrates by integrating multi-frame alignment, a two-stage
generator, and adversarial training with perceptual and
temporal coherence losses. Experiments on diverse videos
showed that our approach outperforms existing methods in
perceptual quality (LPIPS) while providing competitive
fidelity (PSNR/SSIM), effectively pushing the boundary of the
rate-distortion-perception tradeoff. Key innovations such as the
ping-pong loss and dual-discriminator training regime ensure
that the generated enhancements are sharp, detailed, and
temporally stable — a critical requirement for real-world
deployment.

Future Work: building on these results, multiple avenues
exist to explore. One direction is to incorporate learning-based
compression in the loop, i.e., jointly optimize the encoder and
our enhancer (decoder) in an end-to-end fashion, which could
lead to even greater compression efficiency. Another direction
is adapting the model for different compression artifacts, like
those from AV1 or future codecs, and even for artifacts due to
packet loss in streaming.

In summary, GAN-based video enhancement for
compressed video is a promising technology to bridge the
quality gap in bandwidth-constrained scenarios, and this work
takes an essential step in that direction, offering a practical
solution and a foundation for continued research.
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