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 ABSTRACT Low-bitrate video compression (e.g., H.264/AVC at ≤300 Kbps) typically introduces visible artifacts 

such as blocking, blurring, and texture loss. This paper proposes a two-stage Generative Adversarial Network (GAN) 
architecture tailored to restore visual quality in degraded video sequences. The system incorporates motion alignment, 
residual blocks with attention mechanisms, and multi-frame temporal modeling to enhance spatial fidelity and 
consistency. A novel training dataset is constructed by synthetically compressing high-quality video content to simulate 
real-world degradation. We analyze the architecture in detail, discuss training stability (including mode collapse 
mitigation), and propose a combination of distortion and perceptual losses, including L1, SSIM, LPIPS, and adversarial 
objectives. Quantitative evaluation on standard benchmarks shows that the proposed model achieves competitive or 
better performance compared to earlier methods like ESRGAN, EDVR, CVEGAN, and traditional deblocking 
techniques. We further present visual comparisons, ablation studies, and training dynamics to validate each architectural 
component. The enhanced frames exhibit restored detail and consistent temporal structure across sequences. A key 
novelty lies in targeting extremely compressed content and demonstrating restoration capability under these constraints. 
This makes the approach suitable for scenarios such as cloud video storage or ultra-low-bandwidth transmission, where 
post-decompression enhancement is crucial. 
 

 KEYWORDS Video enhancement, compression artifact removal, GANs for video restoration, low-bitrate video, 
temporal consistency, perceptual quality metrics, deep learning for post-processing. 
 

I. INTRODUCTION 
 ideo streaming under low bandwidth conditions remains 
a significant challenge for visual quality [1, 2]. Modern 

codecs, such as H.264 or HEVC, compress video aggressively 
at low bitrates, resulting in visible artifacts, including blocking, 
blurring, and loss of fine detail [3, 4]. These distortions are 
especially pronounced in dynamic scenes, textures, and edges, 
where temporal and spatial coherence is often degraded. 

We propose a GAN-based video enhancement framework 
to address this issue to restore perceptual quality from heavily 
compressed video streams. Unlike traditional methods that 
focus solely on distortion minimization [4-6], our approach 
prioritizes visual fidelity and temporal consistency. The model 
uses a two-stage generator architecture that first reconstructs 
coarse structure and then refines it with high-frequency details. 
A dual-discriminator system further encourages spatial realism 
and temporal stability. 

Our method is tailored for scenarios where only low-quality 
video is available at the client side, such as mobile streaming, 
edge computing, or storage-constrained playback. Improving 

video post-decoding allows perceptual recovery without 
altering the encoder pipeline. This significantly reduces 
bandwidth needs while keeping high visual quality. 

In this paper, we define "bitrate collapse" as a compression 
scenario in which the encoding bitrate is so low that fine details 
and essential structural information are severely degraded or 
lost, resulting in heavy blockiness, blurring, and perceptual 
disintegration of the scene. 

Unlike most prior works that target mild compression 
artifacts or moderate bitrate streams, this work explicitly 
focuses on restoring extremely degraded video under severe 
bitrate constraints ("bitrate collapse" conditions) [7].  

To our knowledge, no previous method in open-access 
literature has systematically addressed quality restoration from 
such aggressively compressed sources using a two-stage GAN 
framework with explicit temporal and spatial fidelity 
objectives. 

II. RELATED WORK 
A broad range of research has been conducted on image and 
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video restoration, with several families of methods emerging 
over the last decade. 

For image super-resolution, GAN-based techniques such as 
SRGAN [8] and ESRGAN [9] introduced adversarial training 
to generate perceptually realistic details. ESRGAN extended 
SRGAN by incorporating Residual-in-Residual Dense Blocks 
(RRDBs) and a Relativistic GAN loss, yielding superior visual 
quality on single-frame tasks. However, while effective for still 
images, these methods often introduce temporal flicker when 
applied frame by frame to videos. 

To address temporal coherence in video, TecoGAN [10] 
introduced a recurrent generator with optical flow alignment 
and a temporal discriminator, achieving stable results across 
frames. Other multi-frame architectures, such as FRVSR [11] 
and EDVR [12], utilize temporal alignment and deformable 
convolutions, respectively, to fuse information from 
neighboring frames and enhance temporal and spatial fidelity. 
These approaches showed that aggregating context over time 
significantly improves both perceived and measured quality in 
video restoration tasks. 

When specifically addressing compression artifacts, 
particularly in low-bitrate scenarios, Multi-frame Quality 
Enhancement (MFQE) [13, 14] utilizes high-quality “peak” 
frames (e.g., I-frames) to guide the enhancement of lower-
quality inter frames (P-frames), leveraging codec structure and 
temporal redundancy. MFQE 2.0 improved upon its 
predecessor by incorporating a deeper CNN and bi-directional 
recurrent fusion, enabling more effective restoration across 
entire video sequences. 

Focusing on post-compression enhancement, models such 
as CVEGAN [15] and SUPERVEGAN [16] were designed to 
enhance video after decoding from strongly compressed 
formats like HEVC or H.264. CVEGAN integrates multi-scale 
residual blocks with attention mechanisms and a perceptually-
driven loss function to improve subjective quality, particularly 
for low-bitrate streams. SUPERVEGAN adopts a two-stage 
GAN architecture where the first stage handles distortion and 
upscaling and the second performs perceptual refinement 
training both stages progressively to avoid instability and mode 
collapse. 

Additionally, foundational GAN formulations and 
discriminator designs have contributed to the perceptual 
restoration of video. Notably, the relativistic discriminator [17] 
was shown to improve realism and stabilize training in high-
frequency detail generation, especially in video enhancement 
pipelines that rely on adversarial learning. 

Despite these advancements, most methods assume 
moderate degradation or focus on specific codec settings. In 
contrast, the approach proposed in this paper is explicitly 
designed for severe compression scenarios, aiming to recover 
texture, structure, and perceptual clarity while maintaining 
temporal consistency. By incorporating elements from super-
resolution, video restoration, and perceptual GAN training, our 
work bridges a critical gap in the domain of real-world low-
bitrate video enhancement. 

IIІ. PROPOSED METHOD 

The proposed method employs a two-stage generator 𝐺 and a 
multi-component loss function within a GAN framework to 
transform low-quality compressed video Х into high-quality 
output Y୲

෡  .  
Fig. 1 provides a block diagram of the architecture. The 

design is inspired by human expert restoration: first, perform 
conservative reconstruction to remove artifacts and recover 
details (Stage A), then apply a refinement that injects realistic 
textures (Stage B) without disturbing temporal coherence. The 
generator G thus comprises two sub-networks, G୅ and G୆, 
corresponding to Stage A and Stage B. We formulate the 
overall enhancement for frame t as: 

 
𝑌௧

final = 𝐺஻൫𝐺஺(𝑋௧ିே:௧ାே)൯, (1) 

 
where X୲ି୒:୲ା୒ denotes a window of 2N+1 input frames 

(frame t and its N neighbors on each side). Multi-frame input 
allows G୅  to aggregate information from neighboring frames 
to restore details that single-frame tℎ𝑎𝑡 X୲ cannot provide on 
its own. In our experiments, we use N=2 (5-frame input) for a 
good tradeoff between temporal context and model complexity, 
though the architecture supports larger temporal windows. 

A. MOTION ALIGNMENT MODULE 
To effectively merge frames, we include an explicit 

alignment module based on deformable convolution and/or 
optical flow. Given that consecutive frames often contain 
object motion or camera panning, direct frame stacking can 
misalign details. We adopt a Pyramid, Cascading and 
Deformable (PCD) alignment module similar to EDVR [12], 
and draw inspiration from early flow-based learning 
frameworks like FlowNet [18]. This module refines estimated 
flow at multiple scales and uses deformable convolution to 
sample aligned features, handling complex motion and 
occlusions. The result is a stack of feature maps 𝐹௧ି௜→௧ all 
warped to the reference frame 𝑡. We denote the alignment 
operation as: 

 
𝐹௧ି௜→௧ = Align(𝑋௧ି௜ , 𝑋௧), (2) 

 
for i ∈ [−N, N] producing aligned features for each neighbor 

relative to frame t (with 𝐹୲→௧ being just 𝑋௧ is initial features). 
These aligned features are concatenated along the channel 
dimension and fed into Stage A. By performing learnable 
alignment, 𝐺஺  it receives information such as the texture on a 
static background from a nearby higher-quality frame (e.g., a 
P-frame aided by an I-frame). 

B. STAGE A: RECONSTRUCTION NETWORK 
Stage A focuses on distortion reduction. It uses a series of 
Residual blocks to remove artifacts and reconstruct an initial 

high-quality frame 𝑌௧
஺෢  at the target resolution (which could be 

the same as input or higher). We utilize a residual learning 
strategy: Stage A predicts a residual image 𝑅௧

஺  that, when 
added to an upsampled or base image, yields the output. Two 
modes are supported: 

(a) Post-Processing (PP) is identical resolution, only 
artifacts removed: 

 
𝑌௧

஺෢ = 𝑋௧ + 𝑅௧
஺. (3) 

 
(b) Super-Resolution Adaptation (SRA): input is 

upsampled by factor s: 
 

𝑌௧
஺෢ = 𝑋௧

↑௦ + 𝑅௧
஺ . (4) 
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Internally, Stage A’s architecture stacks several Residual-
in-Residual Dense Blocks (RRDB) as used in ESRGAN [9], 
but modified with attention mechanisms. In particular, we 
integrate an Enhanced Convolutional Block Attention Module 
(ECBAM) as proposed in CVEGAN [15]. ECBAM applies 
sequential channel and spatial attention to intermediate 
features, enabling the network to focus on regions with 
noticeable artifacts (e.g., block boundaries or blurry textures) 
and allocate more capacity to correcting them. This is 
especially beneficial in heavy compression scenarios where 
artifacts are spatially localized. 

Stage A is trained with pixel-wise loss only (no GAN loss 

at this stage), to ensure 𝑅௧
஺  learns a safe correction and avoids 

introducing new artifacts. We use a combination of L1 loss and 

MS-SSIM loss 𝑌௧
஺෢  versus the ground-truth frame 𝑌௧: 

 

𝐿A, pix = |𝑌௧
஺෢ − 𝑌௧|ଵ + λssim ቀ1 − SSIM൫𝑌௧

஺෢ , 𝑌௧൯ቁ . (5) 

  
Minimizing 𝐿A, pix encourages high PSNR/SSIM and 

removes most glaring compression artifacts. Notably, Stage A 
does not hallucinate details, it is analogous to a multi-frame 
denoiser/upscaler, constrained to produce an MSE-optimal 
reconstruction. This provides a strong, consistent foundation 
for the adversarial Stage B. 

C. STAGE B:  DETAIL SYNTHESIS NETWORK 

Stage B takes 𝑌௧
஺෢  as input and enhances it to produce the final 

output 𝑌௧
෡ . Stage B generates realistic textures and recovering 

fine details that Stage A (trained on MSE) might have 
smoothed out. Its architecture can be a deeper or alternate set 
of residual blocks, potentially at full resolution.  

We include a 1-level U-Net structure in Stage B (as in 
SUPERVEGAN [16]) to increase receptive field the U-Net 
encoder-decoder allows the network to gather global context 
(important for large smooth regions or consistent textures) and 

then refine details through skip connections [19-20]. Stage B 

outputs a residual 𝑅௧
஻ which is added to 𝑌௧

஺෢ : 
 

𝑌௧
෡ = 𝑌௧

஺෢ + 𝑅௧
஻ . (6) 

 
This formulation (often called a residual GAN approach) 

lets Stage B focus on high-frequency components (like film 
grain, skin details, text clarity) without altering the overall 

structure or colors established by Stage A. By limitin g 𝑅௧
஻ to 

smaller amplitude high-frequency signals, we reduce the risk 
of Stage B introducing distortions that break consistency with 
the input content. 

To train Stage B, we activate adversarial and perceptual 
losses. A spatial discriminator 𝐷ௌ judges the realism of 

individual enhanced frames 𝑌௧
෡  compared to original high-

quality frames 𝑌𝑡 , while a temporal discriminator 𝐷௧  looks at 
sequences of frames (we use three cothreesecutive frames as 
𝐷௧’s input) to judge temporal coherence. The adversarial loss 

for Stage B is the sum of a GAN loss from 𝐷ௌ and 𝐷௧ . We use 
a relativistic average GAN loss formulation to stabilize training 
[11], meaning 𝐷ௌ  doesn’t just classify real vs fake, but also 
considers the difference in realism between real and fake data, 
and G is trained to increase the probability that outputs are 
more realistic than real data on average. 

Formally, for 𝐷ௌ: 

 
𝐿adv

(஽ೄ)
= −𝐸௒ൣlog൫1 − 𝐷ௌ(𝑌)൯൧ − 𝐸௒෠ ቂlog ቀ𝐷ௌ൫𝑌෠൯ቁቃ , (7) 

 
and for the generator (Stage B): 
 

𝐿adv
(ீ)

= −𝐸௒෠ ቂlog ቀ1 − 𝐷ௌ൫𝑌෠൯ቁቃ − 𝐸௒ൣlog൫𝐷ௌ(𝑌)൯൧, (8) 

 
 and similarly for 𝐷௧   with sequences. (For brevity we do 

Figure 1. Architectural overview of the proposed GAN-based video enhancement method. 
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not expand the temporal case here; it follows the same 
relativistic principle applied to short-frame sequences.) 

In addition to adversarial loss, we use a perceptual loss 
𝐿perc computed as the feature space difference between 𝑌௧

෡  and 

𝑌௧ using a pretrained image classification network (VGG-19 
[1]). Specifically: 

 

𝐿perc = ෍
1

𝐶௝𝐻௝𝑊௝
௝

|𝜙௝൫𝑌௧
෡ ൯ − 𝜙௝(𝑌௧)|ଶ

ଶ. (9) 

 
In formula 9 𝜙௝ is a function that extracts activations 

(feature maps) from the jth layer of a pre-trained neural 
network. This means that we feed both images to VGG. We 
take the output tensors on certain layers (for example, relu3_4, 
relu4_4). 𝐶௝𝐻௝𝑊௝ - the number of channels, height, and width 
of the corresponding feature map for the layer. This encourages 
𝑌௧
෡  having similar texture and feature responses as the ground 
truth, which correlates better with human perception than pure 
MSE. 

To further maintain temporal consistency, we incorporate a 
Ping-Pong loss 𝐿pp [10]. This works as follows: we feed a 
sequence of frames [X୲ିଵ, X୲, X୲ାଵ] through the generator to get 

[Y୲ିଵ
෣ , Y୲

෡  ,  Y୲ାଵ
෣] ෣ . Then we take Y୲ାଵ

෢  and feed it backwards (as 
if it were an input at t-1) along with X୲ and X୲ିଵ, obtaining a 
reconstruction of 𝑌௧

෩  (the middle frame when the sequence is 
processed in reverse). 

The Ping-Pong loss is defined as the L2 difference between 
the original forward 𝑌௧

෡ and the backward 𝑌௧
෩ : 

 
𝐿pp = |𝑌௧

෡ − 𝑌௧
෩ |ଶ

ଶ. (10) 
 
Minimizing 𝐿pp forces the generator to produce frasistent 

frames whether time is flowing forward or backward, 
effectively reducing flickering and spurious detail changes over 
time. Unlike optical-flow-based temporal loss, Ping-Pong does 
not rely on external motion estimation, making it well-suited 
for GAN training where generated frames lack a one-to-one 
ground-truth optical flow. 

The total loss for Stage B (generator) is a weighted sum of 
these components: 

 

𝐿B,total = λadv൫𝐿adv,ௌ
(ீ)

+ 𝐿adv,்
(ீ)

൯ + λperc𝐿perc 

+λpp𝐿pp + λpix|𝑌௧
෡ − 𝑌௧|ଵ. (11)

 

 
We still keep a small weight on pixel loss (last term) for 

Stage B to prevent it from deviating too far (this is especially 
needed for areas where ground truth has very low detail, to 
avoid hallucinating something obviously incorrect). In 
practice, we set 𝜆adv = 10ିଷ (since adversarial losses are 
higher in scale) 𝜆perc = 1, 𝜆pp = 1, 𝜆pix = 1 based on 
validation tuning. 

D. TRAINING STRATEGY 
We train in two phases similar to SUPERVEGAN’s 
progressive training [16]. In Phase 1, we train Stage A alone by 
minimizing 𝐿A, pix, using a standard L1+SSIM target. This 

phase lasts for 𝑇ଵ iterations (until convergence in distortion 
metrics). 

Next, in Phase 2, we fix Stage A (or fine-tune it at a very 
low learning rate) and train Stage B with the full loss. Initially, 
we set 𝜆adv = 0 to warm up Stage B with just perceptual and 
pixel losses for a short period, then gradually increase 𝜆adv to 
its full value over a number of epochs. This gradual 
introduction of the GAN prevents the sudden destabilization of 
the two-stage generator. 

The discriminators 𝐷ௌ  and 𝐷௧  are trained in tandem with 
Stage B as usual in GAN training (one or a few D updates per 
G update). By Phase 2’s end, Stage B is generating realistic 
textures and 𝐷ௌ, 𝐷௧ can no longer distinguish most enhanced 
frames from true ones. 

While we do not directly optimize for VMAF due to its non-
differentiability, we evaluate our outputs using this perceptual 
metric to reflect visual quality in streaming scenarios better. 
Prior work has shown VMAF’s strong correlation with user 
preference in bitrate-limited video [2, 21-22]. 

Finally, we optionally fine-tune the entire generator (both 
Stage A and B together) with a low learning rate and all losses 
active, to recover any slight regressions in Stage A outputs 
caused by fixing it during Stage B training. 

IV. EXPERIMENTS AND RESULTS 
All experiments were conducted on compressed video 
sequences at 720p resolution. Inputs were downsampled to 
360p, compressed at 200–300 Kbps using H.264 codec (x264, 
veryfast preset), and then upscaled back to 720p using bicubic 
interpolation before feeding into the enhancement network. 
Our model was evaluated using a 5-frame window (N=2), with 
no external optical flow supervision. 

A. DATASETS 
We evaluate our method on standard video datasets widely 

adopted in prior enhancement research. For training, we 
compiled a diverse dataset comprising: the Vimeo-90K 
septuplet dataset (used extensively for video super-resolution); 
the MFQE 2.0 dataset, which provides raw-compressed video 
pairs [13], and selected scenes from LIVE-NFLX II [2, 21], a 
publicly released perceptual video quality dataset by Netflix.  

High-quality source videos were synthetically degraded via 
heavy compression to simulate realistic low-bitrate streaming 
scenarios. Specifically, we applied H.264 compression using 
FFmpeg’s x264 encoder at very low bitrates. The settings 
included CRF = 38 and spatial downsampling to 50% of the 
original resolution, producing outputs at ~200–300 Kbps (540p 
from 1080p). Keyframes were sparsely inserted (intra-period = 
100) to emulate long GOPs typical in streaming codecs. This 
yielded highly compressed training pairs with severe blocking, 
blurring, and loss of detail. 

For evaluation, we used sequences from the animated short 
films Big Buck Bunny (frames “Bird” 432-434, “Bunny” 
1168–1171) and Sintel (final render version), both known for 
complex textures, motion, and lighting. We generated test 
samples at 250 and 500 Kbps. In addition, we tested on the 
Vid4 benchmark with added compression. The ground truth is 
the uncompressed original, and the input is the degraded 
compressed video. 

B. IMPLEMENTATION DETAILS 
The alignment module consists of a 3-level deformable 

convolution pyramid with 32 channels at the coarsest level and 
64 at the finest. 
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Stage A includes 30 RRDB blocks (each using 64 channels 
and integrated channel attention via ECBAM). 

Stage B includes a shallow U-Net (with 2× spatial 
downsampling and 64 base filters) and 10 residual blocks. 

We use the Adam optimizer with separate learning rates for 
each stage: 2 ∗ 10ିସ for Stage A; 1 ∗ 10ିସ for Stage B. 
Both with cosine annealing decay. 

The spatial discriminator is a PatchGAN-based model 
(70×70 patches) applied to full frames (1280×720), and the 
temporal discriminator operates on concatenated 3-frame 
sequences. 

Training was conducted in two phases: 
 Phase 1 (Stage A only): 200,000 iterations 
 Phase 2 (full model): 100,000 additional iterations 
We used 2× NVIDIA V100 GPUs, with a batch size of 8 

and a 5-frame input window. Total training time was 
approximately 4 days. The implementation was done in 
PyTorch, and our code will be made publicly available. 

C. EVALUATION METRICS AND QUANTITATIVE RESULTS 
We evaluate our model using both distortion-based and 

perceptual metrics. Specifically, we report Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity (SSIM) to assess 
fidelity, and LPIPS (Learned Perceptual Image Patch 
Similarity) to evaluate perceptual closeness to the ground truth 
(lower is better). Additionally, we compute the Bjøntegaard 
Delta rate (BD-rate) to estimate bitrate savings at equal quality. 

 
We compare our approach with the following baselines: 

 H.264 Compressed input of the raw, low-quality 

decoded video. 
 MFQE 2.0 [13] is a multi-frame enhancement model 

trained on compressed inputs. 
 EDVR (retrained) [12]   adapted to our training data,  

configured for 2× upscaling and denoising. 
 TecoGAN [10]   modified with our data, using 2× 

upscaling and ping-pong consistency loss. 
 ESRGAN+Denoise is a combination of ESRGAN 

(trained at 4× on DIV2K) followed by DnCNN. 
 SUPERVEGAN-4 [16]   tested using official weights. 

Table 1. Enhancement Performance on Test Videos 
(250 Kbps input) 

Method PSNR (dB) ↑ SSIM ↑ LPIPS ↓ 
H.264 Compressed 25.1 0.613 0.412 
MFQE 2.0 27.3 0.701 0.310 
EDVR (retrained) 28.1 0.739 0.300 
ESRGAN+Denoise 25.8 0.667 0.254 
TecoGAN 26.5 0.712 0.214 
SUPERVEGAN 26,6 0,881 0,205 
Ours (GAN-EVH) 27.5 0.727 0.185 
Ground Truth 33.2 0.935 0.000 

 
Although our model does not achieve the highest PSNR 

(which EDVR reports), it delivers substantially superior 
perceptual quality.  

Specifically, our model attains the lowest LPIPS score 
among all evaluated methods (0.185), indicating higher 
structural fidelity and naturalness in restored frames. In 

Figure 3. Temporal consistency visualization on bird motion sequence (frames 432–434). On top are rigid compressed frames, in 
the middle our variant, and at the bottom is the ground truth shot of frames 

Figure 2. Visual comparison on a 2-frame licensed shot. A typical decompressed input frame is on the left. In the middle, our 
GAN-based enhanced output. For reference, the original uncompressed frame is on the right. 
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comparison, EDVR, despite reaching the top PSNR, exhibits a 
relatively high LPIPS of 0.300, often leading to overly 
smoothed, plasticky visual appearance. Similarly, 
SUPERVEGAN, while improving perceptual scores compared 
to classical methods, still reports higher residual artifacts and 
slightly less temporal coherence than our model, as reflected in 
LPIPS metrics and visual inspections. 

We compute temporal PSNR (TPSNR) by aligning 
consecutive frames based on estimated motion fields to assess 
temporal stability further. Our method maintains a TPSNR 
within 0.1 dB of its single-frame PSNR, demonstrating 
excellent consistency over time.  

By contrast, ESRGAN and SUPERVEGAN suffer a 
TPSNR drop of approximately 1 dB, and TecoGAN 
experiences a reduction of around 0.3 dB.  

Temporal SSIM measurements reinforce this trend: our 
model achieves a structural similarity index (SSIM) exceeding 
0.98 across consecutive frames, effectively minimizing 
flickering and temporal artifacts. 

Qualitative results in Figures 2–4 visually corroborate these 
quantitative findings. Figure 2 highlights the ability of our 
method to reconstruct sharp textures and crisp edges from 
heavily degraded frames. In Figure 3, the model preserves 
intricate feather details and maintains structural continuity 
across motion in a bird sequence. Figure 4 showcases the 
restoration of fine fur textures and environmental elements in 
the "Big Buck Bunny" scene. Across all examples, the 
perceptual fidelity of our outputs consistently aligns most 
closely with the ground truth, surpassing both traditional and 
modern baselines. 

D. ABLATION STUDIES 
We conducted an extensive ablation study to evaluate the 

contribution of each architectural and loss component in our 
model. The bar chart in Fig. 5 shows all the results of the 
ablation study. 

First, we removed Stage B and used only the output of Stage 
A as the final result. This variant yielded a higher PSNR 
(+1.1 dB) due to its distortion-optimized structure (no 

adversarial loss), but LPIPS increased significantly to 0.35. 
Visually, the frames appeared overly smooth and plasticky, 
highlighting the crucial role of Stage B in restoring perceptual 
quality. 

Next, we disabled the Ping-Pong loss, resulting in a 
noticeable increase in temporal flicker for fast-motion scenes. 
Quantitatively, LPIPS increased by 0.02, and a user study 
indicated reduced visual preference in motion-sensitive 
sequences due to shimmering and temporal instability. 

We also evaluated a version of our model with only a single 
spatial discriminator, replacing the full dual-discriminator 
setup. This change degraded temporal coherence and slightly 
reduced PSNR (−0.2 dB), while LPIPS increased by +0.015. 
These results support the necessity of using a temporal 
discriminator to enforce frame-to-frame consistency, aligning 
with prior findings in [10] and [12]. 

 

 
Figure 5. Bar chart of results obtained during the ablation 

study 
 

Additionally, we experimented with an optical flow-based 
temporal loss (instead of Ping-Pong) but found it to be less 
effective. Training convergence was slower, and outputs lacked 
sharpness, likely due to unreliable motion estimation on 
severely compressed content.  

Finally, we removed the ECBAM attention module from 
Stage A. Without attention, PSNR dropped by ~0.2 dB and 
local artifact correction degraded. The network’s capacity was 

Figure 4. Example from a compressed scene of “Big Buck Bunny” (frames 1168–1171). On top are rigid compressed frames, in 
the middle our variant, and at the bottom is the ground truth shot of frames 
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more globally distributed, leading to incomplete artifact 
suppression. This demonstrates that allocating capacity to 
regions with high artifact probability (via attention) enhances 
correction efficiency. 

E. BITRATE QUALITY TRADEOFF 
To assess the impact of our model on compression 

efficiency, we performed BD-rate analysis on the LIVE-NFLX 
dataset [21]. Enhancing compressed videos at the decoder side 
resulted in an average bitrate savings of 32% for equivalent 
PSNR compared to H.264-only encoding. For perceptual 
quality axes such as VMAF or no-reference metrics (e.g., 
NIQE), the savings were even higher often exceeding 50%. 

These results suggest that our approach can shift 
complexity from bitrate to post-processing, enabling lower-
bandwidth delivery without perceptual degradation. With 
modern hardware acceleration (e.g., TensorRT on NVIDIA 
2080 Ti), real-time performance is feasible at 720p (≈30 fps). 
Moreover, model pruning or reduced-capacity versions of 
Stage A enable deployment even at 540p resolution on 
resource-constrained devices. 

V. DISCUSSION 
The proposed GAN-based architecture demonstrates 
significant improvements for enhancing heavily compressed 
videos, combining the strengths of multi-frame fusion and 
adversarial detail synthesis.  

A. STRENGTHS 
Our two-stage design separates reconstruction and 

generation tasks, which is crucial in avoiding common GAN 
issues such as distortion amplification or temporal flicker. By 
training Stage A using pixel-domain losses only, we ensure a 
stable, artifact-free foundation. Stage B is then trained with 
adversarial and perceptual losses, adding high-frequency detail 
without destabilizing the core structure. 

This architecture is especially effective under severe 
compression, where content is degraded beyond typical 
restoration limits. Unlike single-stage GANs (e.g., ESRGAN 
[9]) or frame-recurrent methods like TecoGAN [10], our model 
explicitly decomposes the enhancement problem, resulting in a 
better balance between detail generation and structural 
accuracy. 

Moreover, our use of a dual-discriminator scheme (spatial 
and temporal) allows the network to maintain realism both 
within individual frames and across the sequence. This dual 
feedback promotes smooth transitions and temporal stability, 
an area where many frame-based or PSNR-optimized models 
often struggle.  

Compared to EDVR [12], which primarily optimizes 
fidelity metrics, our approach prioritizes perceptual quality and 
achieves the lowest LPIPS among the evaluated methods, while 
maintaining a high temporal SSIM. The integration of ECBAM 
attention in Stage A further increases the network’s focus on 
artifact-prone regions, ensuring targeted correction rather than 
global smoothing. 

Altogether, the proposed design reflects a principled and 
empirically validated improvement over previous solutions, 
achieving competitive quantitative scores and superior 
perceptual consistency, even in the presence of strong 
compression noise and motion artifacts [17, 23]. 

B. THE ARCHITECTURE IS ALSO FLEXIBLE 
Stage A could be replaced with any future improved 

denoiser/SR network, or Stage B could be extended with style-
specific generators for content (imagine a version specialized 
for anime compression artifacts vs live-action). Style-specific 
training for low-level vision has recently been demonstrated in 
domain-aware models [24].  

In practical terms, our approach can be embedded into 
video streaming pipelines to optimize bandwidth efficiency. 
Servers may transmit aggressively compressed video streams, 
significantly reducing data loads, while client-side 
enhancement restores perceptual quality in real-time. This is 
especially advantageous for network-constrained applications, 
such as cloud gaming, video conferencing, and mobile 
streaming, where minimizing bitrate is crucial without 
degrading the visual experience. 

C. LIMITATIONS 
Despite its strengths, the model has limitations. It 

sometimes hallucinates incorrect details in areas where 
compression has eradicated information. For example, in some 
dark scenes, if a textured surface is completely smeared by 
compression, Stage B might introduce a generic texture that 
appears plausible but does not match the original (since it lacks 
a reference). This can be problematic for applications such as 
surveillance or medical video, where fidelity to the actual 
content is crucial. We partially mitigate this by keeping a small 
content loss and tuning the adversarial strength. Still, it's an 
inherent risk of any GAN-based enhancement – a tradeoff 
between detail and accuracy.  

Another limitation is generalization: our model is primarily 
trained on H.264 artifacts; if given a video compressed with a 
significantly different algorithm (such as AV1 or older MPEG-
2), it may not recognize specific artifact patterns (e.g., AV1's 
partitioning or MPEG-2's blocking grid) and thus be less 
effective. In future work, training on a mixture of codecs or 
incorporating a small codec-ID conditioning could be 
beneficial. Also, like many deep models, our network can be 
computationally heavy. While we achieved real-time on good 
hardware, deploying on low-power devices may require model 
compression techniques (quantization, distillation [25]).  

Encouragingly, approaches like SUPERVEGAN have 
explored reduced versions for real-time use, and we believe 
similar optimizations can apply to our model (e.g., using a 
smaller Stage A for 540p targets or an efficient transformer-
based alignment to replace deformable convolution). 

D. ETHICAL AND PRACTICAL CONSIDERATIONS 
The proposed model is trained on user-consented 

compressed videos, and all training data must remain legally 
shareable. While the GAN does not recreate information that 
was never present, care must be taken that enhancement does 
not unintentionally introduce misleading details, especially in 
sensitive domains such as surveillance or medical imaging. 

From a practical perspective, the system offers direct 
benefits for video transmission and networked applications. By 
performing restoration at the client or edge device after 
decoding, the model enables the delivery of highly compressed 
streams over constrained networks, reducing bandwidth usage 
without sacrificing perceptual quality. This makes the approach 
suitable for mobile video streaming, cloud gaming, or low-
latency conferencing, where network conditions often 
fluctuate. 
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VI. CONCLUSIONS 
We presented a GAN-based architecture tailored to enhance 
heavily compressed video, addressing spatial quality loss and 
temporal inconsistencies.  

Our method substantially improves visual quality at very 
low bitrates by integrating multi-frame alignment, a two-stage 
generator, and adversarial training with perceptual and 
temporal coherence losses. Experiments on diverse videos 
showed that our approach outperforms existing methods in 
perceptual quality (LPIPS) while providing competitive 
fidelity (PSNR/SSIM), effectively pushing the boundary of the 
rate-distortion-perception tradeoff. Key innovations such as the 
ping-pong loss and dual-discriminator training regime ensure 
that the generated enhancements are sharp, detailed, and 
temporally stable – a critical requirement for real-world 
deployment.  

Future Work: building on these results, multiple avenues 
exist to explore. One direction is to incorporate learning-based 
compression in the loop, i.e., jointly optimize the encoder and 
our enhancer (decoder) in an end-to-end fashion, which could 
lead to even greater compression efficiency. Another direction 
is adapting the model for different compression artifacts, like 
those from AV1 or future codecs, and even for artifacts due to 
packet loss in streaming.  

In summary, GAN-based video enhancement for 
compressed video is a promising technology to bridge the 
quality gap in bandwidth-constrained scenarios, and this work 
takes an essential step in that direction, offering a practical 
solution and a foundation for continued research. 
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