Sl

Date of publication DEC-31, 2025, date of current version DEC-21, 2025.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.4.4338

A Method for Scaling Ontological Rule
Reasoning for Adaptive Software

ILLIA LUTSYK, DMYTRO FEDASYUK

Department of Software, Lviv Polytechnic National University, Lviv, 79000, Ukraine

Corresponding author: Illia Lutsyk (e-mail: illia.i.lutsyk@lpnu.ua).

ABSTRACT A method for increasing the speed of the ontological rule reasoning process for adaptive software
based on the proposed scaling method is presented. Modern research on the use of scaling approaches in the process
of software design and development is analysed. In accordance with the analysis, it was found that the use of a
combination of horizontal and vertical software scaling approaches provides better efficiency and speed of the
software complex. Based on the considered software scaling approaches, a method of horizontal scaling of the
reasoning process of processing rules for the software adaptation process is proposed. The designed method allows
to distribute one large knowledge base into several according to a certain criterion (type of software component or
system), which will optimize the process of designing adaptive software. The results of an experimental study of
the proposed method are presented, demonstrating an increase in the speed of configuration determination: for an
ontological model with the number of instances of 3300 and more, the speed of processing rules increased by 40%.

KEYWORDS adaptive software, software scaling, ontology, semantic reasoning, software architecture.

I. INTRODUCTION
Increasing demands on software and the growing computing
capabilities of hardware and software systems are placing
greater strain on software components. Complex software
systems require constant monitoring of system resource usage,
as a failure of a computing node can result in a complete or
partial failure of the software application [1], [2]. As a result,
there is a problem of effective use of methods of response and
adaptation to changes in network traffic, taking into account the
architecture of the software system [3].

Special attention should be paid to changes in server
configuration and hardware/software settings during the design
of adaptive software. Such software applications require not
only an effective response to the growing number of adaptation
requests, but also a corresponding increase in latency and the
time required to generate a modified software application
configuration [4].

To create intelligent mechanisms for software adaptation,
researchers propose various approaches and methods [5]. In
particular, to ensure the accuracy and flexibility of processing
various data in the process of adapting information systems, the
use of neural networks based on fuzzy logic is proposed [6].

The use of approaches based on machine learning methods
and fuzzy logic allows for the adaptation of existing elements
of the software system. However, when requirements change
and new components are added, the problem of recompiling
and static reconfiguration of both the system and the model

VOLUME 24(4), 2025

arises. The solution to this problem is to use ontological models
and rules that allow dynamic filling of information about
changes in requirements in the subject area [4]].

One promising direction for optimizing the performance of
complex systems and computations is resource scaling, which
is based on the concept of classical control theory and allows
for optimizing load distribution and reducing time delays [8].
In addition, the use of scaling approaches allows to control the
costs required in the process of processing requests, since it
allows not only to increase the number of resources but also to
reduce computing power when the number of active users
decreases.

Taking into account the indicated problems, the important
task is to study methods for scaling the reasoning process of
ontological rules of adaptive software to the growth of network
traffic, in order to optimize the process of forming a dynamic
configuration of a software application.

Il. OVERVIEW OF THE SOFTWARE SCALING PROBLEM
The growth of network traffic requires an effective response to
ensure the stability and operability of software, which consists
in applying various approaches and methods for scaling it.
Scalability is essentially defined as the property of an
information system or software that allows it to handle an
increasing volume of tasks by adding resources to the system
according to predefined approaches [9]. The advantage of a
software system being scalable is that it allows it to process all

727

)

lllia Lutsyk et al. / International Journal of Computing, 24(4) 2020, 727-733

incoming requests without loss of performance and without
creating additional delays.

It should be noted that the scalability of the software system
must be taken into account during the design phase [10][11].
After all, if the software application architecture is designed
incorrectly, scaling may require additional changes (which will
cause delays in development or losses due to re-release and
improvement of the software at the implementation stage) or
may not be applicable at all if the system does not meet the
requirements [12], [13].

The use of scaling is not uniform for all types of software.
These methods require modification depending on the issues
and requirements for increasing network traffic throughput.
However, in general, methods for scaling software and
hardware system resources can be divided into two types [14]:

— Horizontal scaling, which involves increasing the number
of physical resources (Fig. 1) [15]. When using this scaling
method, new computing nodes with identical or different
computing capabilities are added to the existing system.
However, it should be noted that in this case, it is necessary to
use specialized load balancers to evenly distribute network
traffic between the created nodes [16].

<: Scaling direction :>

Server 1 Server N

Server configuration: Server configuration:
2CPU 4cPU

3 GB RAM 16 GB RAM
2TBSSD 8 TEHDD

2] 2]

Web Application

Web Application

Load Balancer

£]

Figure 1. Horizontal scaling diagram of the software system

— Vertical scaling, which involves increasing or improving
virtual and computing resources (Fig. 2) [17]. To implement
this method, changes to the hardware properties of the
corresponding server are required: upgrading the central
processing unit, increasing the amount and size of RAM, and
increasing the size of the system memory. This method is most
often used when horizontal scaling is not possible [18].

Server

Upscaled configuration: A
6 CPU

16 GBE RAM
&7TB SSD

Server

1st configuration:
2CPU

4 GB RAM

1TE 88D

Scaling direction

2]

‘Web Application

N

Figure 2. Vertical scaling diagram of the software system

Each of these methods is appropriate for use in different
situations. If the architecture of the software system is modular

728

or allows for the isolation and distribution of individual
services, then horizontal scaling is appropriate. In addition to
increasing throughput, this will also increase the availability of
the software application, since in the event of a single node
failure, the load balancer will systematically redirect all
requests to the working nodes. However, if it is not possible to
effectively separate functionality or there is a slight increase in
network traffic, then it is advisable to use vertical scaling, since
this method increases the resources of individual
components [19].

Scaling methods are used for software in various
application areas. In particular, [20] presents a framework for
developing distributed software systems for bioinformatics.
The authors presented a flexible platform that improves the
creation and deployment of multi-stage workflows optimized
for high-performance computing clusters and clouds. At the
same time, thanks to the use of scaling approaches, the software
implements the ability to modify internal processes to the needs
of researchers.

Scaling and parallelization approaches are effectively used
in high-performance cloud computing and systems.
Researchers note that modern approaches to big data analysis
require a transition to high-performance software systems [21].
However, traditional parallelization methods do not provide the
necessary performance. Taking these problems into account,
the article presents a new method for scaling software systems.
The authors note that their proposed method not only reduces
the use of hardware resources but also significantly speeds up
the operation of the big data analysis system.

The advantages of using scaling approaches are also present
in the process of reconfiguring distributed component-based
software [22]. In the proposed review, the authors note that one
of the effective methods for designing distributed and service-
oriented systems is the use of component-oriented architecture.
However, in addition to the correctness of reconfiguration, the
time required to process the corresponding requests should also
be taken into account during development.

Scaling techniques are widely used in various types of
software. However, the question of applying these approaches
when designing software systems based on ontological models
remains open [23], [24].

In particular, the work [25] focuses on creating a framework
for designing large-scale ontological models. The authors note
that existing methods rely on manual work by experts in the
subject area. This, in turn, makes the process labor-intensive,
error-prone, and impractical for large, dynamic areas of
knowledge. In addition, such solutions limit the adaptability
and scalability of the designed models to new domains [26].

The paper [27] presents possible techniques for scaling
ontological models. In particular, the authors identify two main
approaches to scaling ontological models based on information
agents: domain ontology agents and distributed domain
ontology agents. This division allows ontological models to be
controlled dynamically with the possibility of further
expansion.

Considering the presented problems and prospects of using
approaches and mechanisms for scaling software, the purpose
of this article is to present a designed method for horizontal
scaling of the ontological rule reasoning process. The proposed
method improves the speed of the adaptation process and
allows requests to be distributed by type and adaptation criteria.

VOLUME 24(4), 2025

lllia Lutsyk et al. / International Journal of Computing, 24(4) 2020, 727-733

)

ll. ONTOLOGY REASONING HORIZONTAL SCALING
METHOD FOR SOFTWARE ADAPTATION PROCESS

A. APPLICATION OF THE HORIZONTAL SCALING
APPROACH FOR ONTOLOGICAL MODELS

In accordance with the software adaptation process, the
determination of system characteristics is based on the classes,
relationships, and properties specified in the ontological
model [28]. Using the knowledge base of the designed
ontological model, the user will receive the current software
configuration depending on changing requirements or
needs [29].

Integrating this process allows to dynamically change the
content and functionality of the software, taking into account
predefined conditions and ontology triggers. In the generalized
case, the process of determining dynamic software
characteristics based on SWRL rules can be divided into the
following stages:

1. Defining the structure and content of a software
ontology;

2. Formulation of adaptation requirements;

3. Creating SWRL adaptation rules;

4. Integrating rules into ontology;

5. Software validation, testing and support.

Using and following these steps for designing and
implementing ontology rules will ensure that SWRL rules can
be used in the software adaptation process. In addition, this
process will ensure that the ontology remains compatible and
consistent with changing requirements.

However, using and processing SWRL rules during
software adaptation can be a resource-intensive process. The
increase in the number of ontology elements such as concepts,
relationships, and properties significantly affects the runtime of
the semantic decision-making engine. In addition, most engines
process semantic rules in a single-threaded and sequential
(processing one statement at a time) mode. This
implementation also contributes to an increase in the time
required for ontological rule reasoning and system resource
usage.

This problem can be solved by dividing one ontology into
several parts. In this case, the number of elements in the
ontological model will be significantly reduced, which will
help improve the processing time of the rules. The division of
the ontology processing can be carried out, in particular, using
the following methods:

— vertical scaling, which involves adding resources to the

system to keep system performance up to demand;

— horizontal scaling, which allows a single ontology file to
be divided into parts for further processing in
multithreaded and parallel modes.

According to the definition, vertical scaling involves
increasing and improving system resources, which usually
requires service overload. However, this is not an optimal
solution, since such scaling will need to be performed each time
the number of entities in the ontological model increases. An
alternative solution is horizontal scaling and dividing a single
ontological model into several submodels that meet certain
criteria. Therefore, in our opinion, it is more expedient to use
the horizontal scaling method, which allows solving the
problem without unnecessary material costs already at the stage
of software architecture design.

Therefore, in the case of adaptive software, division using
the horizontal scaling method can be carried out in two
approaches:

VOLUME 24(4), 2025

1. Based on component type — unique objects are selected
by component type: functional and graphical. With this
division, information about the system and users is duplicated,
but a separate ontology file will contain only information about
functional or graphical components.

2. Based on system type — unique system objects are
selected using their type: mobile application, web application,
or desktop application. With this division, each separate
ontology file will contain only information about a specific
application and its available components.

However, the specified methods of horizontal scaling have
a number of disadvantages. In the case of dividing the ontology
based on the type of components, there is a problem in data
synchronization between parts, since user information is
duplicated. In addition, if the system is aimed at adapting only
functional or only graphical components, the problem of high
system resource utilization and slow rule processing will
remain.

The difficulties of synchronization and resource utilization
are solved by dividing resources based on system type. This
method preserves up-to-date information about users and
system elements and allows rules to be processed on a compact
set of elements. It should be noted that a disadvantage of this
method may be the distribution of ontology into a large number
of model files if the adaptive software supports several types of
systems. This will complicate the process of determining the
necessary part of ontology during adaptation.

B. METHOD OF AUTOMATED DIVISION OF AN
ONTOLOGICAL MODEL

Considering the peculiarities of designing dynamic adaptive
software systems, there is a need to apply scaling methods to
improve performance. As noted in the previous section, in the
case of systems based on an ontological model, horizontal
scaling is more effective. In turn, this solution requires the
definition of the correct criteria for the effective division of a
single model into several submodels. For adaptive software
systems, it is advisable to carry out such a division based on the
type of adapted system. In this case, not only is the speed of
adaptation optimized, but it also becomes possible to distribute
the process of processing ontological rules across several
services.

Classic approaches to horizontal and vertical scaling
involve expanding an entire node or software service. In the
case of ontological models, classic horizontal scaling does not
solve the performance problem, since the size of the model
remains unchanged. In addition, the execution of ontological
rules and reasoning is a single-threaded process, which makes
it impossible to expand correctly in accordance with classic
approaches.

Therefore, according to the method we propose, which is
based on a horizontal scaling approach, the ontological model
is divided according to the type of system: web, mobile, and
desktop application. Since the ontological model is single and
indivisible in the initial version, entities can be distributed in
two ways: manually and automatically. The automated
approach not only allows to select the necessary instances of
entities and properties of the subject area faster, but also
reduces the complexity of this process, since it does not require
the involvement of additional specialists to process the
ontology.

Thus, the automated approach to distributing instances of
entities and properties of the ontological model, the diagram of

729

)

lllia Lutsyk et al. / International Journal of Computing, 24(4) 2020, 727-733

which is shown in Fig. 3, is implemented according to the
following sequence of steps:

1. Determination of the division criterion — in the case of
adaptive software, it is advisable to select the type of
software system as the division criterion;

2. Creation of submodels of the subject area ontology.
Under these conditions, data processing occurs in
parallel to reduce the processing time of ontological
records:

a. determining the records that are subject to the
separation criterion for a specific type of software
system;

b. removing elements that are not included in the
search results;

c. saving the results obtained in the form of a
submodel for a specific type of software system.

The division criterion in this case is the type of software
system, which allows to reduce the duplication of information
about the adaptive software system for each submodel. In
addition, in the case of division by component type, there
would be a problem of constant synchronization of submodels
and ensuring the correct resolution of version conflicts. Such a
division would not reduce the total size of the knowledge base,
which would reduce the overall scaling efficiency.

Thus, the use of the proposed ontological model division
provides the ability to perform automated ontological model
division during the initial deployment or actual operation of the
database and knowledge service. Accordingly, if the main
model changes in structure or content, we will be able to
reformat submodels according to the division criterion in real
time without the need to stop the service.

Determination of the
division criterion

Creating submodels
according to the
division criterion

Selecting objects by
type of system
"Mobile application”

Selecting objects by
type of system
\Desktop application’,

Selecting objects by
type of system
"Web application”

Deleting obsolete
objects and saving the
"Web application”
submodel

Deleting obsolete
objects and saving the
"Mobile application”
submodel

Deleting obsolete
objects and saving the
"Desktop application”
submodel

Figure 3. Scheme of the method of automated division of the
ontological model by the criterion - "type of software system"

730

An example of automated ontology model partitioning
using Python programming language tools and Owlready2
technology is shown in the code snippet:

from owlready2 import *

def scale (ontology path : str, scaling_type : str):

onto = get_ontology (ontology path). load ()
for indiv in onto [" Software System "]. instances ():
if scaling_type not in indiv.AssemblyVersion :
destroy_entity (indiv)
onto . save ("./ Adaptive system v2 web . owl")
return onto

onto_web = scale ("./ Ontology . owl" , "web")

onto_mobile = scale ("./ Ontology . owl" , "mobile ")

onto_desktop = scale ("./ Ontology . owl" , "desktop ")

IV. CASE STUDY

In previous works, we investigated the implementation of
adaptive software systems based on the use of an abstract
approach to the design of ontological models. [28], [29]. The
approach we proposed made it possible to speed up the process
of adapting and processing ontological rules by identifying
abstractions of objects in the subject area. However, as noted
earlier, the rule processing process is synchronous and single-
threaded. This means that despite the relatively high speed of
adaptation, the main thread of the adaptation process will be
blocked each time a request to update the configuration is
received. The solution to this problem is horizontal scaling.

In order to determine the indicators of the duration and
speed of adaptation for generating software settings, the basic
ontological model of a software system to assist people with
cognitive impairments [28], presented in Figure 4, was used.

Non_Functional_ Functional_Requ
Requirement irement

+ " o o U:
:

oo]

Functional_Comp -
onent Graphical_Compo
nent

.
[Media_Element] [Simple_Element l Ul_Layout

Figure 4. Ontological graph of a model designed based on an
abstract approach.

To analyse the developed method for determining software
system settings based on an abstract approach using horizontal
scaling, a series of experiments was conducted using the
developed software system prototype. Five devices were used
to determine the adaptation duration, which allowed generating
configurations for different execution environments. The

VOLUME 24(4), 2025

lllia Lutsyk et al. / International Journal of Computing, 24(4) 2020, 727-733

]|
S=dle

duration of adaptation was determined from the moment the
request was sent to the web service to the final application of
the obtained parameters. In the process of defining a new
configuration, the ontological model generates, based on rules:
parameters and settings for system components (font settings,
styles), selection of new functionality based on registered
modules, and resources for loading elements and settings for
complex graphical interface elements. The system was tested
on each device 5 times to determine the worst adaptation time
depending on the number of entities in the ontological model.

The division of the model was carried out on the basis of
the following types of software: web application, mobile
application, desktop application. As a result of this division,
configurations, components and requirements were formed in
the submodels that relate only to the previously defined type of
software. The results of the duration of processing and
reasoning of ontological rules for the studied methods are
presented in Tables 1 - 2.

Table 1. Duration (t, s) of determining software system
settings using an abstract approach

Number of objects,n | 100 | 150 | 250 | 450 | 850 | 1650 | 3300
time, t1 (c) 230 |2,73|2,66(3,24(3.23]3,99 | 6,55
time, 2 (c) 220 [2,21(2,82]3,05(3.47| 439 | 6,96
time, £3 (c) 2,52 (2,23 [2,61]2,80|3.64| 4,40 | 6,66
time, t4 (c) 2,55 |2.85|2,75(2,94(3,59| 432 | 6,59
time, £5 (c) 2,65 |2,41(2,68]2,96 (3,34 4,46 | 747
Ave;ffct)ime’ 2,44 (2,49(2,70(3,00|3,45| 431 | 6,85

Table 2. Duration (t, s) of determining software system
settings using an abstract approach with horizontal

scaling
Number of objects,n | 100 150 | 250 | 450 | 850 | 1650 | 3300
time, t1 (c) 2,12 | 2,82 | 2,61 | 2,50 | 2,80 | 2,90 | 437
time, 2 (c) 245 | 2,18 [2,19 | 2,60 | 2,65 | 2,85 | 4,05
time, 3 (c) 2,16 | 225|225 (245|264 | 282 | 3,90
time, t4 (c) 220 |236 | 226245270 | 2,85 | 431
time, t5 (c) 235 | 2,16 | 2,40 | 2,55 | 2,65 | 3,10 | 421
Avetragict)lme’ 226 | 235 234|251 269 | 2,90 | 437
avg

A comparative analysis of the results of the duration of the
method for determining the settings of the software system for
the abstract approach, as well as for the abstract approach using
horizontal scaling of the ontological model (Fig. 5) proves the
higher efficiency of the method for determining the settings
using the horizontal approach. At the same time, it was noted
that this indicator increases with an increase in the number of
ontology elements.

VOLUME 24(4), 2025

3300.00 [: : . —_—

1650.00

0
@
o
=)
o

Number of objects
IS
@
o
o
(=]

250.00

150.00 =

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00
Average time, tavg, s

Abstract approach with horizontal scaling ® Abstract approach

Figure 5. Comparison of approaches to determining optimal
system settings

To track the noted trend, a comparative analysis of the
results of the speed values of the process of determining
software system settings based on ontological rules and
relationships was additionally carried out (Table 3).

Table 3. Speed (instances/s) of determining software
system settings for the proposed approaches

Number of Adaptation speed (instances/s) : :
. Abstract approach with horizontal
objects, n Abstract approach .
scaling
100 40.92 44.33
150 60.34 63.72
250 92.46 106.75
450 150.10 179.28
850 246.03 316.22
1650 382.65 568.18
3300 482.03 755.61

Thus, it has been established that both approaches are
characterized by a tendency toward increased speed in
determining software system settings with an increase in the
number of elements and concepts in the ontological
model (Fig. 6).

800.00
700.00
600.00
500.00
400.00
300.00
200.00

Adaptation speed (instances/s)

100.00

0.00
0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00

Number of objects, n

—@— Abstract approach —@— Abstract approach with horizontal scaling

Figure 6. Speed of determining software system settings

The increase in speed and reduction in processing time of
ontological rules for the abstract approach with horizontal
scaling is explained by the reduction in the number of entity
instances. The use of the method of automated division of
ontological models based on the type of software system made

731

)

lllia Lutsyk et al. / International Journal of Computing, 24(4) 2020, 727-733

it possible to clearly define the context and discard instances
that do not participate in the adaptation process.

It should be noted that removing instances does not affect
the overall accuracy of rule processing and the final adaptation.
The ontological approach assumes a clear definition of the
context and a semantic description of the relationships between
the concepts of the subject area. In this case, ontological rules
will always contain correct information about the available
adaptive components and provide the same qualitative result
regardless of the size of the model.

V. DISCUSSION OF RESULTS

To identify the cause-and-effect relationship between the
number of ontology elements (entity instances) and the
duration of adaptation, the regression analysis method was
used, which allows us to identify the influence of the factor
feature (number of ontology elements) on the resulting feature
(duration of adaptation). The basis was taken from
experimental data based on the results of determining the
duration of adaptation of the software system for different
numbers of entity instances, which are given in Tables 1 and 2.
A graphical representation of the regression dependencies is
shown in Fig. 7.

@® Abstract approach ® Abstract approach with horizontal scaling
8.00

y=0.0013x+2.3056

7.00 R*=0.9954 ¢
» 6.00
Iy
£
= 5.00
& =
& [+
8 4.00
3 L y =0.0006x+2.1738
& 3.00 e R*=0.9628
L 2
B
200 |
1.00
0.00
0.00 50000 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00

Number of objects

Figure 7. Results of regression analysis of the relationship
between the duration of processing configuration requests and
the number of ontological model elements

Having analysed using regression analysis the data on the
duration of adaptation from five series of tests for the same set
of entity instances according to the classical and abstract
approaches, as well as the abstract approach using horizontal
scaling, it was found that in all cases with a reliable

approximation R%=0.96...0.99 we obtain linear
dependencies (1) — (2).
tabst _apr(¥)=0.0013N +2.31, R%=0.9954 1)

(x)=0.0006N+2.2, RZ=09628 (2)

! abst _scale _apr
where: N — the number of instances;
tabst _apr— duration of adaptation according to the abstract

approach;

t

abst_scale_apr — @daptation duration according to the

abstract approach using horizontal scaling of the ontological
model.

The determined values of the regression coefficient in this
case indicate the intensity of the growth of the adaptation

732

duration depending on the number of elements. Analyzing the
obtained values, it was found that in the case of horizontal
scaling, this coefficient is half as small. This confirms the
feasibility of dividing one large knowledge base into several
for faster processing of ontological rules.

Thus, the results of the experimental study confirm the
feasibility of using horizontal scaling in the context of
ontological rule processing. In addition, the use of horizontal
scaling allows for increased performance in the configuration
of adaptive software systems whose basic ontological model is
characterized by a large number of connections.

It should be noted that despite the proven effectiveness of
our proposed method of horizontal scaling of ontological rules,
the problem of implementing multithreaded reasoning remains
relevant. We see the use of a combination of ontological and
large language models as one of the solutions to this problem.
Therefore, the prospects for further research include the use of
fine tuning or RAG methods to train LLM based on an
ontological graph and knowledge base. In addition, the use of
LLM, which uses an ontological model of an adaptive system
as a basis for decision-making, will enable the dynamic
generation of simple functional and graphic elements based on
user requirements.

VL. CONCLUSIONS

An analysis of scientific research aimed at using methods and
means of software scaling has been conducted. It has been
established that the use of horizontal scaling provides the
ability to distribute the load on software services. In addition,
the use of the scaling process allows for better management and
modification of software system configurations during
software development and deployment.

A method for scaling the process of reasoning ontological
rules for adaptive software is proposed. The designed method
is based on horizontal scaling, which involves dividing the
ontological model into several submodels according to a
common criteri006Fn: the type of software system and the type
of software components. In accordance with the division, the
main ontological knowledge base is divided into several parts,
which will improve the performance and efficiency of software
adaptation.

An experimental study of the proposed method for scaling
the software adaptation process based on ontology was
conducted. Based on the results obtained, it was established
that the use of horizontal scaling provides significant
improvements in the processing speed of ontological rules. In
addition, this indicator is higher for systems with a large
number of instances. In particular, for systems with 3300
instances of ontological entities, the average adaptation time
was reduced by 36% - from 6.85 seconds to 4.37 seconds. In
addition, since the ontological rule processing mechanism is a
blocking process, the use of scaling approaches will allow
distributing the software adaptation process between different
services depending on the selected partition.

Prospects for further research include combining the
principles of the ontological approach, scaling system
resources, and large language models. Combining ontology
with LLM will reduce the load on the ontological adaptation
service through fine-tuning or RAG methods based on the
ontological knowledge base.

VOLUME 24(4), 2025

lllia Lutsyk et al. / International Journal of Computing, 24(4) 2020, 727-733

J

References

(1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

O. Vyshnevskyy and L. Zhuravchak, “Semantic models for buildings
energy management,” Proceedings of the 2023 IEEE 18th International
Conference on Computer Science and Information Technologies (CSIT),
Lviv, Ukraine, 2023, pp- 1-4.
https://doi.org/10.1109/CSIT61576.2023.10324108.

D. Balla, C. Simon, and M. Maliosz, “Adaptive scaling of Kubernetes
pods,” Proceedings of the NOMS 2020 IEEE/IFIP Network Operations
and Management Symposium, Budapest, Hungary, 2020, pp. 1-5.
https://doi.org/10.1109/NOMS47738.2020.9110428.

T. Pan et al., “Sailfish: accelerating cloud-scale multi-tenant multi-
service gateways with programmable switches,” Proceedings of the 2021
ACM SIGCOMM 2021 Conference, 2021, pp. 194-206.
https://doi.org/10.1145/3452296.3472889.

D. Fedasyuk and 1. Lutsyk, “Method of modification of self-adaptive
software systems based on ontology,” Proceedings of the 2022 IEEE 16th
International Conference on Advanced Trends in Radioelectronics,
Telecommunications and Computer Engineering (TCSET), 2022, pp.
530-533. https://doi.org/10.1109/TCSET55632.2022.9766856.

A. Angelis and G. Kousiouris, “A survey on the landscape of self-
adaptive cloud design and operations patterns: Goals, strategies, tooling,
evaluation and dataset perspectives,” SSRN, 2025.
https://doi.org/10.2139/ssm.5253384.

N. Doukas, P. Stavroulakis, V. Kharchenko, N. Bardis, D. Irakleous, O.
Ivanchenko,, & O. Morozova, “Survivability using artificial intelligence
assisted cyber risk warning,” In Artificial Intelligence for Cybersecurity,
2022, pp. 285-308. Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-030-97087-1_12.

V. Mukhin et al., “A model for classifying information objects using
neural networks and fuzzy logic,” Sci Rep, vol. 15, no. 1, 2025,
https://doi.org/10.1038/s41598-025-00897-4.

V. Millnert and J. Eker, “HoloScale: horizontal and vertical scaling of
cloud resources,” Proceedings of the 2020 IEEE/ACM 13th International
Conference on Utility and Cloud Computing (UCC), 2020, pp. 196-205.
https://doi.org/10.1109/UCC48980.2020.00038.

G. Blinowski, A. Ojdowska, and A. Przybylek, “Monolithic vs.
microservice architecture: A performance and scalability evaluation,”
IEEE Access, vol. 10, pp. 20357-20374, 2022,
https://doi.org/10.1109/ACCESS.2022.3152803.

F. Rossi, M. Nardelli, and V. Cardellini, “Horizontal and vertical scaling
of container-based applications using reinforcement leamning,”
Proceedings of the 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD), 2019.
https://doi.org/10.1109/CLOUD.2019.00061.

C.-Y. Liu, M.-R. Shie, Y.-F. Lee, Y.-C. Lin, and K.-C. Lai,
“Vertical/horizontal resource scaling mechanism for federated clouds,”
Proceedings of the 2014 IEEE International Conference on Information
Science and Applications (ICIS4), 2014, pp. 1-4.
https://doi.org/10.1109/ICISA.2014.6847479.

A. Kovalenko, H. Kuchuk, N. Kuchuk, and J. Kostolny, “Horizontal
scaling method for a hyperconverged network,” Proceedings of the 2021
IEEE International Conference on Information and Digital Technologies
(IDT), 22, 2021, pp. 331-336.
https://doi.org/10.1109/IDT52577.2021.9497534.

G. Blinowski, A. Ojdowska, and A. Przybylek, “Monolithic vs.
Microservice architecture: A performance and scalability evaluation,”
IEEE Access, vol. 10, pp. 20357-20374, 2022,
https://doi.org/10.1109/ACCESS.2022.3152803.

V. Omelchenko and O. Rolik, “Hybrid method for horizontal and vertical
computational resource scaling,” AIT, no. 1 (3), pp. 49-58, 2024,
https://doi.org/10.17721/A1T.2024.1.05.

V. Lonéarevié, Z. Jovanovié, V. Lukovi¢, M. Milogevi¢, S. Suéurovi¢ and
A. IriCanin, “Horizontal scaling with session preservation of PHP
applications with MVC architecture,” Proceedings of the 10th
International Scientific Conference Technics, Informatic, and Education,
Cagak, 2024, pp. 34-41. https:/doi.org/10.46793/TIE24.034L.

B. Pashkovskyi, M. Slabinoha, and M. Romaniv, “Web application
performance optimization with cqrs and horizontal scaling,” Visnyk of
Kherson National Technical University, no. 1(88), pp. 272-278, 2024,
https://doi.org/10.35546/kntu2078-4481.2024.1.38.

L. Yazdanov and C. Fetzer, “Vertical scaling for prioritized VMs
provisioning,” Proceedings of the 2012 IEEE Second International
Conference on Cloud and Green Computing, 2012, pp. 118-125.
https://doi.org/10.1109/CGC.2012.108.

VOLUME 24(4), 2025

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

K. Rai, B. Sahana, A. N. Pai, S. Gautham, and U. Dhanush, “Vertical
scaling of virtual machines in cloud environment,” Proceedings of the
2021 IEEE International Conference on Recent Trends on Electronics,
Information, Communication &,; Technology (RTEICT), 2021, pp.
458-462. https://doi.org/10.1109/RTEICT52294.2021.9573715.

F. Magnanini, L. Ferretti, and M. Colajanni, “Scalable, confidential and
survivable software updates,” IEEE Trans. Parallel Distrib. Syst., vol. 33,
no. 1, pp. 176-191, 2022, https://doi.org/10.1109/TPDS.2021.3090330.
M. Bourgey et al., “GenPipes: an open-source framework for distributed
and scalable genomic analyses,” GigaScience, vol. 8, no. 6, 2019,
https://doi.org/10.1093/gigascience/giz037.

M. Mikailov et al., ‘Scaling and parallelization of big data analysis on
HPC and cloud systems,” Proceedings of the 2019 IEEE International
Conference on Advances in Computing and Communication Engineering
(ICACCE), 2019, pp. 1-8.
https://doi.org/10.1109/ICACCE46606.2019.9079987.

H. Coullon, L. Henrio, F. Loulergue, and S. Robillard, “Component-
based distributed software reconfiguration: A verification-oriented
survey,” ACM Comput. Surv., vol. 56, no. 1, pp. 1-37, 2023,
https://doi.org/10.1145/3595376.

P. Ochieng and S. Kyanda, “Large-scale ontology matching,” ACM
Comput. ~ Surv., vol. 51, mno. 4, pp. 1-35, 2018,
https://doi.org/10.1145/3211871.

M. McDaniel and V. C. Storey, “Evaluating domain ontologies,” ACM
Comput. ~ Surv., vol. 52, mno. 4, pp. 1-44, 2019,
https://doi.org/10.1145/3329124.

Y. Tiwari, O. A. Lone, and M. Pal, “OntoRAG: Enhancing question-
answering through automated ontology derivation from unstructured
knowledge bases,” 2025, arXiv. doi: 10.48550/ARXIV.2506.00664.

V. K. Kommineni, B. Konig-Ries, and S. Samuel, “From human experts
to machines: An LLM supported approach to ontology and knowledge
graph construction,” 2024, arXiv. doi: 10.48550/ARXIV.2403.08345.

L. van Elst and A. Abecker, “Ontologies for information management:
balancing formality, stability, and sharing scope,” Expert Systems with
Applications, vol. 23, no. 4, pp- 357-366, 2002,
https://doi.org/10.1016/S0957-4174(02)00071-4.

D. Fedasyuk and 1. Lutsyk, “Approach to implementation of
configuration process for adaptive software systems based on
ontologies,” International Journal of Computing, vol. 22, issue 3, pp.
381-388, 2023, https://doi.org/10.47839/ijc.22.3.3234.

D. Fedasyuk and 1. Lutsyk, “The use of ontology in the process of
designing adaptive software systems,” Proceedings of the 2022 IEEE
17th International Conference on Computer Sciences and Information
Technologies (CSIT), 2022, pp- 503-506.
https://doi.org/10.1109/CSIT56902.2022.10000528.

lllia LUTSYK PhD in Information
Technologies by Specialty of Software
Engineering, Lecturer at Software
Engineering Department Institute of
Computer Sciences and Information

Technologies, Lviv Polytechnic
National University. Research
interests: adaptive software,

ontological models, software design

Dmytro FEDASYUK Professor, Head
of Software Engineering Department,
Institute of Computer Sciences and
Information Technologies, Lviv
Polytechnic National University.
Research interests: mathematical
modeling and information
technologies, modeling of thermal
regimes in microelectronic systems,
software design

733

lllia Lutsyk et al. / International Journal of Computing, 24(4) 2020, 727-733

734

VOLUME 24(4), 2025

