|]
Bl

Date of publication DEC-31, 2025, date of current version AUG-08, 2025
www.computingonline.net/ computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.4.4337

A Predictive and Availability-Aware Job
Scheduling Algorithm for Resource
Management in Cloud

UDDALOK SEN', MADHULINA SARKAR?, NANDINI MUKHERJEE?
]Dept. of Information Technology, MCKYV Institute of Engineering, G T Road North, Liluah, Howrah, 711204, West Bengal, India.(e-mail:
uddaloksen81@gmail.com)
2Dept. of Computer Science and Engineering, Govt. College of Engineering and Textile Technology Berhampore, 4, Cantonment Road, Murshidabad, 742101,
‘West Bengal, India. (e-mail: madhulina.sarkar@gmail.com)
3Dept. of Computer Science and Engineering, Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata, 700032, West Bengal, India. (e-mail:
nandini.mukhopadhyay @jadavpuruniversity.in)

Corresponding author: Uddalok Sen (e-mail: uddaloksen81@gmail.com).

ABSTRACT To propose an efficient scheduling algorithm in a large distributed heterogeneous
environment like cloud, resource (CPU cycles, memory) requirement of jobs must be predicted prior
to the execution. An execution history can be maintained to store execution profile of all jobs executed
earlier on the given set of resources. A feedback guided job modelling scheme is proposed earlier to
detect similarity between newly submitted job and previously executed jobs on that resource set. Based
on the similarity the new jobs are categorized as either an exact clone or near-miss clone or miss-clone
to the history jobs. However, researchers have shown that the actual resource consumption, and predicted
resource requirement may differ to a great extent, especially for the near-miss-clone and miss-clone jobs.
Furthermore, efficient resource scheduling based on the similarity of new jobs has not been addressed
in the previous work. Some studies show that even if the resource requirements of jobs are predicted
accurately, it is nearly impossible to predict the actual execution time on a given resource, and actual
execution time is only available after the completion of the job. Ignoring uncertain facts at the time of
scheduling may lead to unsuccessful completion of jobs, especially, where resources are available for the
limited period of time, like in the case of cloud. In this work, we propose an efficient scheduling approach
that selects a resource for a job based on two critical criteria. Firstly, the selected resource is evaluated
to ensure a faster completion time. Secondly, the availability of the resource until the completion of the
assigned jobs is ensured. In addition, this work proposes optimization of these two criteria during the
resource selection process. Finally, we compare the efficiency of our scheduling algorithm with some
well-known job scheduling algorithms.

KEYWORDS Job scheduler; heterogeneous system; resource availability; clone-based job modeling

. INTRODUCTION class. As an effective scheduling strategy, the researchers
focus on the prediction of the resource requirements (CPU
cycles, memory) for jobs prior to their execution. To predict
the resource requirement of a newly submitted job in a
large heterogeneous distributed system, a feedback-guided
job modeling is proposed in [2]]. The similarities between
recently submitted jobs and jobs that have already been
completed can be identified with clone detection technique
and maintaining an execution history of previously executed

Assigning jobs to resources (matching) and executing jobs in
the best order (scheduling, also known as mapping [1[]), are
well-known challenges in large distributed systems. Efficient
methods are needed to address these challenges. The main
objective of a mapping scheme is to ensure minimum make
span (completion time) of the jobs. Mapping of jobs in a
large, distributed heterogeneous environment is well known
for its hardness as this problem belongs to the NP-Complete

VOLUME 24(4), 2025 717

)

Uddalok Sen et al. / International Journal of Computing, 24(4) 2025, 717-726

jobs [3]. As discussed in this paper, the *before execution’
parameters, i.e. job type, number of variables, loop, etc.
are available prior to the execution of a job. Once a job
is finished the ’after-execution’ parameters, i.e. number
of CPU cycles, memory consumed, etc. are available and
recorded accordingly [J3]. The jobs that have been executed
earlier in the system are termed history jobs. Based on
the similarity found between a newly arrived job with the
history jobs, a new job can be classified either as an exact
clone, or a near-miss clone, or a miss-clone. Based on the
level of similarity of a new job with the history jobs, a
feedback guided job modeling scheme predicts the resource
requirements, i.e. the expected after execution parameters
of a newly arrived job prior to its execution. The study
presented in [3] demonstrates that although the proposed
technique can effectively predict resource requirements for
exact clones, for near-miss clone and miss-clone jobs, real
resource consumption and anticipated resource requirements
differ. It may also be noted that efficient resource scheduling
based on the available knowledge has not been addressed in
the above research work. Furthermore, some studies show
that due to the uncertainty of the environment, even if
the resource requirements of jobs are predicted accurately,
it is almost impossible to predict their actual execution
time. Actual execution time of a job is only available after
its completion [4]]. In distributed environment like cloud,
resources are available for a limited period of time and
inaccurate prediction of resource requirements may lead to
either under or over provisioning of resources.

This paper attempts to address the above issues by
proposing a resource scheduling algorithm. In this work,
it is assumed that resources are available for a fixed period
of time, i.e. contract period is fixed. No job can be executed
on a resource once its contract period is over. During
execution of a job, if the contract period of the resource
on which it is executing ends, the job will be marked as
failed. In this work, a scheduling algorithm is proposed
that selects a resource for a job based on two critical
parameters simultaneously: the resource should offer the
fastest completion time for the job and have the highest
probability of being available until the job is completed,
compared to all other resources. We compare the efficiency
of our scheduling algorithm with some well-known job
scheduling algorithms.

The paper is organized as follows. A brief overview of
related works is discussed in Section[[Il Models and assump-
tions are discussed in Section [[TI] along with the algorithms
for resource scheduling. Some experimental results based
on the algorithms are shown in Section to demonstrate
the efficiency of proposed algorithm. Section [V] concludes
with a direction for future work.

Il. RELATED WORK

In distributed systems, a large set of heterogeneous pool of
resources are managed by resource management component.
By heterogeneity it is meant that resources have different

718

processing speed and memory, different pricing scheme and
different duration of available period. During the alloca-
tion of resources, a resource management component is
responsible to allocate appropriate resources to the jobs.
Scheduling tasks onto these heterogeneous resources in a
distributed environment is a challenging task. Finding an
optimal mapping of independent tasks onto the available
resources has been identified as an NP-complete problem [5]]
[6]]. During the last few decades, numerous researchers have
addressed this problem and proposed a large number of
mapping heuristics and task scheduling techniques. Braun
et al [S]] proposed a taxonomy for mapping heuristics. They
defined the taxonomy primarily in three major parts, first the
models used for applications and communication requests,
second the models used for target hardware platforms, and
third the characteristics of mapping heuristics.

In general, the scheduling problem is broadly classified
as static and dynamic scheduling. In the case of static
scheduling, it is assumed that information about resource
requirements of tasks and the availability of resources is
known in advance. On the other hand, in the case of a
dynamic scheduler such information is not available be-
forehand. A survey of various static scheduling algorithms
and their functionalities have been described in [7]] in a
contrasting fashion, and their relative merits were examined
in terms of performance and time complexity. A taxonomy
was also proposed that classifies the algorithms into different
categories. In another study [8], a few simple and straight-
forward static heuristics, including Opportunistic Load Bal-
ancing, Minimum Execution Time, Minimum Completion
Time, Min-min, Max—min, Duplex, Genetic Algorithm,
Simulated Annealing, Genetic Simulated Annealing, Tabu,
and A* were compared by implementing them and observ-
ing the results. This study helped to develop insights into cir-
cumstances where one technique would outperform another.
In [9]], dynamic scheduling heuristics for a class of indepen-
dent tasks have been discussed. The authors considered two
types of mapping heuristics — immediate mode and batch
mode. They also presented simulation results and observed
that the choice of heuristics in a heterogeneous environment
depends on parameters like structure of heterogeneity among
tasks and machines, arrival rate of the tasks etc. However,
the above studies do not address the issues related to modern
state-of-the-art distributed environments, such as cloud.

During the recent years several researchers focused on
task scheduling in cloud and other distributed environment.
Some researchers proposed static scheduling algorithms,
and others proposed dynamic algorithms in heterogeneous
distributed computing environment aiming at minimizing
makespan, reducing cost etc. Khan et al [10] presents
an elaborate study of the state-of-the-art task scheduling
algorithms in cloud and fog environments. They include
both static and dynamic scheduling and observed that
most of the scheduling algorithms are dynamic and non-
preemptive in nature, and also in most cases independent
tasks were considered. According to this study, scheduling

VOLUME 24(4), 2025

Uddalok Sen et al. / International Journal of Computing, 24(4) 2025, 717-726

)

algorithms are broadly classified into three categories, such
as heuristic, meta-heuristic, and hybrid meta-heuristic. The
scheduling algorithms have different scheduling objectives
including minimizing makespan, delay, energy consumption,
maximizing resource utilization, load balancing, etc. The
authors in [11] conducted a systematic literature review
of task scheduling in cloud computing. They introduced
a classification taxonomy and a comparative review of
various techniques. The proposed taxonomy categorized
metaheuristic scheduling techniques based on scheduling al-
gorithms, problem nature, task types, scheduling objectives,
task-resource mapping, scheduling constraints, and testing
environments.

In [12], a Static Independent Task Scheduling method
for cloud computing has been proposed, where tasks were
assigned to virtual machines (VMs) based on resource
availability, processing power, cost, and the number of pro-
cessing elements. Here, tasks were grouped by instruction
length, and the method was simulated using CloudSim. The
work was compared considering two metrics, total execution
time and execution cost with Shortest Job First (SJF) and
First Come First Serve (FCFS) algorithms. Another resource
management system RTF-RMS is proposed for executing
Real-Time Online Interactive Applications (ROIA) on cloud
infrastructures [13[]. The system introduces a dynamic load-
balancing strategy that selects among three possible actions:
user migration, replication enactment, and resource substitu-
tion, based on current system conditions. Additionally, RTF-
RMS supports cost-effective resource leasing by buffering
unused resources. The Minimum Makespan Scheduling
Framework (MMSF) and the Minimum Makespan Algo-
rithm (MMA) for cloud task scheduling have been pro-
posed in [14]. It aimed at minimizing total makespan and
maximizing VM utilization, the problem was formulated
as a multi-objective optimization. Experiments compared
MMA performance with traditional scheduling algorithms
in makespan reduction and VM utilization. A task schedul-
ing approach that groups tasks based on users’ resource
demands and cost considerations has been proposed in [|15].
Compared to traditional methods, this approach reduces
bandwidth, memory, and storage costs while staying within
budget constraints. A multi-objective Artificial Bee Colony
Algorithm (TA-ABC) for cloud task scheduling by opti-
mizing energy, cost, resource utilization, and processing
time has been proposed in [16]]. This work was simu-
lated using CloudSim, and was compared with existing
scheduling algorithms. In [17]], a two-stage task scheduling
method for cloud computing has been proposed. In the first
stage, a Bayes-inspired job classifier used historical data to
categorize tasks, enabling pre-creation of suitable VMs to
save scheduling time. In the second stage, tasks were dy-
namically matched with VMs. Experimental results demon-
strated scheduling performance and load balancing criteria
compared to some traditional methods. Sanaj et al [18]
proposed an Enhanced Round Robin (ERR) algorithm that
improves performance while retaining the advantages of

VOLUME 24(4), 2025

traditional Round Robin (RR) scheduling. This work was
implemented using CloudSim and results showed that ERR
reduces average waiting time compared to conventional
RR. They also compared their work with other algorithms
like ACO, GA, MPA, Min-Min, and PSO in execution
time and energy efficiency. The TQ (Three Queues) cloud
task scheduling algorithm, which uses dynamic priority
and categorizes jobs based on data input/output in the
Map phase, node task load, Map task completion time,
and disk I/O rate, has been proposed in [[19]. In this
work, jobs are placed in corresponding queues to enhance
hardware utilization and experiments show that TQ performs
cloud scheduling by reducing total task completion time
for mixed I/O-intensive and CPU-intensive jobs. Younes
et al [20] presented a genetic algorithm-based solution to
the task scheduling problem in distributed systems. They
have considered dependent tasks and constructed a directed
acyclic graph to show the dependencies. In [21], a dynamic
resource allocation model for responsive cloud services,
along with the Spacing Multi-Objective Antlion Algorithm
(S-MOAL), has been proposed to minimize makespan and
VM costs. It also examines fault tolerance and energy
consumption. Simulations were carried out to compare S-
MOAL with PBACO, DCLCA, DSOS, and MOGA al-
gorithms, particularly focusing on makespan reduction. In
another study [22[], the Whale Optimization Algorithm
(WOA) for cloud task scheduling using a multi-objective
optimization model to enhance cloud system performance
has been proposed. They presented simulation results to
compare the performance of their algorithm with existing
meta-heuristic algorithms in convergence speed, accuracy,
and system resource utilization for both small and large-
scale tasks. Another work [23] proposes a Particle Swarm
Optimization (PSO) algorithm using heuristic initialization
with Longest Job to Fastest Processor (LJFP) and Minimum
Completion Time (MCT) methods. The LJFP-PSO and
MCT-PSO algorithms are evaluated in terms of makespan,
execution time, imbalance, and energy consumption metrics.
They compared their work with conventional PSO and other
recent scheduling methods. Task scheduling problem in a
cloud computing environment has been addressed in [24].
A priority assignment strategy was proposed for the indi-
vidual tasks upon their arrival. Additionally, waiting queue
was implemented using Fibonacci heap for extracting the
task with the highest priority. The scheduling algorithm
was applied in a dynamic cloud computing environment.
A decentralized Belief-Desire-Intention (BDI) agent-based
scheduling framework has been proposed in [25] for cloud
environments to effectively manage task scheduling under
uncertainty. The framework utilizes asynchronous commu-
nication with a notify listener to prevent communication
deadlocks caused by real-world disruptions. It introduces
dedicated scheduling and rescheduling algorithms, along
with a cycle recommendation algorithm to reduce synchro-
nization overhead. A novel Unified Deep Learning (UDL)-
based model for optimizing task scheduling and resource

719

)

Uddalok Sen et al. / International Journal of Computing, 24(4) 2025, 717-726

allocation (TSRA) in cloud environments featuring multiple
task queues and VM clusters is proposed in [26].In this
work, the UDL model introduced a two-part DNN archi-
tecture—exploration and exploitation networks—to balance
randomness and learning efficiency. It dynamically adjusts
weights for optimizing energy consumption and task latency.

Chen et al, in their research work [4] argued that tra-
ditional scheduling approaches ignore the uncertainties in
the scheduling environment, such as the uncertain starting
and finishing time of the tasks, uncertain data transfer time
among tasks, sudden arrival of new workflows etc. They
proposed a scheduling architecture to improve the perfor-
mance of cloud service platforms by reducing uncertainty
propagation in scheduling workflow applications that have
both uncertain task execution time and data transfer time.

The researchers also proposed the incorporation of a
resource broker component for dynamic task scheduling in
a distributed environment. A resource broker acts as a cen-
tral coordinator, responsible for identifying, evaluating, and
allocating available resources across a network to incoming
tasks based on their requirements. A resource broker ensures
optimal utilization of the system by matching jobs with the
most suitable computing power and thereby ensures efficient
task execution. A resource broker that addresses scheduling
scenarios in large heterogeneous environment like grid using
the concepts of virtualization has been discussed in [27].
Necessary protocols and services to support creation and
management of virtual resources in the physical hosts were
proposed in this research work. Several failure cases of
application scheduling, such as nonavailability of enough
computing nodes in a cluster, nonavailability of software
execution environment in any of the grid resources were
discussed. A genetic algorithm-based resource broker for
a computational Grid has been proposed in [28]. It works
with the objective of minimizing the total cost of running the
jobs or maximizing the utilization of Grid resources. It was
observed that the search space was large as the problem
consisted of all possible allocations of submitted jobs to
available resource providers and genetic algorithms were
found to be efficient for such an optimization problems,
particularly for a dynamic workload.

In contrast with the above research works, this paper
proposes resource allocation based on similarity estimation
of jobs submitted to a distributed computing environment.
This research work considers two different criteria. One
such criterion is completion time of the newly submitted
job whose resource requirement and completion time are
predicted based on its clone level with reference to the jobs
executed earlier in the system (known as history jobs). The
other criterion deals with uncertainty of the environment as
the resources are available for a limited period of time and
will no longer be available once it is over. Moreover, the
actual completion time and predicted completion time of a
job may differ. Considering this uncertainty, the proposed
allocation strategy also tries to allocate a resource for a given
job such that there is a maximum chance that the resource

720

will be available until the job is finished.

lll. MODELING AND FORMULATION

a: Resource Modeling:

In a distributed system, like cloud, different types of re-
sources are provided by a service provider. These resources
have different processing speeds, architectures, and pricing
schemes. Here, we have assumed that all resources are
provided by a single service provider. Consider a set of n
resources represented as R, Ra, ..., R,. Processing speed,
i.e. number of CPU cycles per unit time offered by a
resource is capacity(R;). The price of a resource (R;) is
denoted by price(R;). In a distributed environment, like
cloud, resources are available only for a fixed period of
time. The available period of a resource (R;) is denoted
by availTime(R;). Here, we have assumed that once
availTtme(R;) = 0, i.e. the contract period of resource
R; is over, then resourceR; is no longer available in the
system and no job can be executed on it.

b: Job Modeling:

In a distributed system, a variety of jobs can arrive dy-
namically for execution. Here, we have assumed that before
and after execution information of previously executed
jobs are kept as history [3]. As per the feedback guided
job modeling [3] scheme, newly submitted jobs can be
categorized as an exact — clone, nearmiss — clone and
miss — clone based on the similarity found with one or
more job(s) kept in history. Suppose, there are m jobs,
which are represented as Jy, Ja, . . ., J,,,. The predicted CPU
cycle of J; is predCPU(J;). The predicted start time of
job J; on resource R; is denoted by predStart(i, j). If the
contract period of a resource is finished during the execution
of a job, the job will be considered as failed and cannot
be rescheduled on any other resources. However, the jobs
that are waiting to be executed on that resource can be
rescheduled on other resources.

c: Scheduling Architecture:
In this study, a space-shared scheduling approach is con-
sidered [29]], where jobs awaiting execution on resource
R; are placed in a queue and processed sequentially. The
predicted execution time of job J; on resource I2; is denoted
by predEx(i, j), which can be expressed by Eq(1).

_ predCPU(.J;)

dEx(7,7) = —m8M8——~ 1
predEx(7, j) capacity(R;) M

d: Problem Formulation:

Due to uncertainty in the environment, it has been observed
that actual execution time of a job J; on a resource R;
is denoted by actualFEx(i,j) and it is unpredictable. It
is assumed here that the execution time follows a normal
distribution [4].

VOLUME 24(4), 2025

Uddalok Sen et al. / International Journal of Computing, 24(4) 2025, 717-726

i
LSS

e: Definition:

In this work, it is assumed that actual Ex(i,7) is a con-
tinuous random variable following a normal distribution
with the task base execution time as the mean denoted by
predEx(i, j), and a relative task runtime standard deviation
(4, 7). Due to uncertainty in the environment, pred Ex(i, j)
can be at most K:*4(i,j) away from the mean. The (4, j)
will be considered as per Eq(2) as given below [4]:

(4,) = predEx (i, j) x VarianceET (2)

where, VarianceET is the variation in task execution
times. Then the following condition must be satisfied for
the successful completion of the job J; on the resource R;.
predStart(i,j) + predEx(i,j) + ki * 6(i,j) <
availTime(R;) Hence,
availTime(R;) — (predStart(, j) + predEx(z, j))
6(i,4)
3)
For the purpose of ranking the resources (Algorithm 1), we
compute the maximum value of k;'-, such that the Eq (3) is
satisfied. Thus, predCom(i, j) is the predicted completion

time of job J; on resource IR; which can be written as
follows:

i
ki<

predCom(i, j) = predStart(i, j) + predEx(i,5) (4)

It is obvious that the higher is the value of k;, the higher
is the chance that resource R; will be available until the
job J; is completed, reliability of resourceR; is high for
higher value of k:; higher for successful completion of job
Ji.

f: Objective:
Due to uncertainty in a distributed environment, a resource
will be withdrawn from the environment once its contract
period is over. So, if its contract period is over during
the execution of a job, then the job will fail to complete.
Further resource allocation for that job is not considered
in this work. Let S denote the set of successfully com-
pleted jobs. Then our objective is to Maximize |S| and to
Minimize }_; g actualCT(J;)

The workflow of the proposed approach is represented

in[

g: Algorithm Design:

In our approach, a heuristic based batch mode dynamic
scheduling algorithm is proposed. The main objective of
our scheduling algorithm is to select a resource for a job
such that the selected resource offers high reliability, as well
as low completion time. Our algorithm is divided into three
parts. The first part will compute rank of the resources for a
particular job based on reliability, i.e. higher the rank, higher
the reliability of that resource for successful completion of
the job. The following method computes every available
resource for the job .J;.

VOLUME 24(4), 2025

Algorithm 1

Rank_Reliability(J;, Rayailable)

Input: Job J;, available resource set Rayailable
L Shiavitiey = 0

2: for every resource R; € Rayailable
3: Compute k; as per the equation (3)
4: end for (2)

5: Select resource R, with minimum k;
6: for every resource R, € Ryilable
7
8
9
1

. R i L
: R;eliabililyﬂ‘ <_v(kw k)
. Qi — Qi

* Sreliability - Sreliability

: end for (6)

0: return Sygjiapirity

UR?

reliability ;

The next method is to compute the rank of resources for a
job based on its completion time on respective resources, i.e.
higher rank implies earlier completion time. The following
method computes the rank of every resource considering the
job completion time.

Algorithm 2

Rank_CTime(Ji, Ravai]able)

Input: Job J;, available resource set Rayailable

1 SéTime = @

2: for every resource R; € Rayailable

3: Compute predCom(i,j) as per the equation (3)
4: end for (2)

5: Select resource R, with maximum predCom(i, z)
6: for every resource R; € Ravailable

7t Riipe,; ¢ predCom(i, z) — predCom(i, j)

8: Sttime = SCTime Y Retiabiivy,
9: end for (6)

10: return Sipie

The third part, i.e. a heuristic-based batched mode dy-
namic scheduling algorithm is described below. Our
Uncertainity AwareResourceSelection(J, R) algorithm
selects a resource which offers early completion time with
high reliability where J is the set of jobs and R is the set
of resources. To select an optimal resource for a job ¢, we
will select the resource j that offers maximum of R_CTR;
where,

R_CTR;Z = Rank_CTime(J;, Rayailable) * Rank_Reliability(J;, Rayailable)

(5)
However, if multiple resources offer the same R_CTR;
then any one of them can be selected randomly. To avoid
the dominance of any one of the multipliers over the
other, we scale these two parameters [23], i.e. the values
of the two multipliers are changed to values between
0 and 1. Here, we have used the following algorithm
to scale multipliers Rank_CTime(J;, Ryvailable) and
Rank_Reliability(J;, Rayailaple)- The algorithm Scale(.S)
takes a set and return a scaled set where each of the element
is between 0 and 1.

721

Sl

Uddalok Sen et al. / International Journal of Computing, 24(4) 2025, 717-726

Algorithm 3
Normalise(S)

: end if(6), end if (3)

S - (S Smm)/(Smax - Smim)
10: end for (2)
11: return S

1: Select minimum Sy, and maximum Sy, of S
2: for every S; € S

3: if Spax = Smin

4: S,‘ = Si / Smax

5: else:

6: if Smax = Smin =0

7: Sl =0

8

9:

Next, we present the algorithm for scheduling a set of
jobs onto resources.

Algorithm 4
Uncertainity AwareResourceSelection(J, R)

Input: J, R

Initialization: R_CTR,,«n

1: for each job J; in task-set (in an arbitrary order)
2: Compute R_CTR; as per equation (4)

3: end for (1)

4: do until all jobs in task-set are mapped
S: for each job J; find the resource R;
maximum of R_CTR;. and find the

6: predCom(i, j)
7: R_CTRuxnli][j] =
8: end for (5)

9: select predCom(k,l) as maximum of R_CT Ruxn
10: assign job .Jj to the resource [

11: delete job Jj from the task-set

12: if actualEx(¢, j) > availTime(R;)

13: Mark J;, as failed job

14: remove R; from Ryyailable

15: end if (10)

16: update ready time of resource R;

17: Enddo(4)

that obtains

predCom(i, j)

Our algorithm always selects a resource which provides
optimal reliability and optimal completion time for a job.
In this section, we shall prove that the selection policy
always selects resource which is better than other available
resources in terms of one of the performance criteria, i.e.
reliability and completion time.

Proof. Selection of reliable resource:
As per Eq.3, the estimated reliability of the resources for J;

are computed as ki,...k;,. y, ,k:l (all kl > 0). Suppose,

722

k; is the minimum among these values, thus, resource R,
offers minimum reliability. Now if we subtract k% from all
k;’s then we have

(ki —ki)>0,...... , (K — K

L—k)=0,...... , (KL — K¢
and (k, —kl) > 0.

y— ki) >0

Selection of faster resource:
Let the predicted completion time of job j; on these resource
are predCom(i, 1), ..., predCom(i, x), ..., predCom(i,y),
, predCom(i,n), computed based on Eq.4. Suppose,
predCom(i,y) is the maximum among these values, i.e.
it offers maximum completion time. Next we perform
predCom(i,y) — predCom(i, 1) > 0, ..., predCom(i,y) —
predCom(i, z) > 0, ..., predCom(i,y) —predCom(i,y) =
0 and predCom(i,y) — predCom(i,n) > 0.

Selection of optimal resource:

We will assign job J; to the resource R, where

(ki —kL)*((predCom(i,y)—predCom(i, z)) is maximum.
Our resource selection heuristic always selects a resource
which is optimal in terms of at least one of the performance
criteria, i.e. either reliability or completion time or both.
Now it is clear that resource R, has minimum reliability
and I, offers maximum completion time. So, these two
resources will not be selected for this job, as the product in
Eq.5 results into zero.

Suppose R, is selected as per our selection criteria. Assume
that we have a resource R, that offers better reliability
(ki > k).

So, we can write k% — ki > ki — ki as k& > 0.

At the same time, assume that R, offers faster completion
time, i.e. predCom(i,r) < predCom(i, z).

So we can write predCom(i,y) — predCom(i,r) >
predCom(i,y) — predCom(, z)

as predCom(i,y) > predCom(i,r) > predCom/(i, z) and
predCom(i,y) > 0.

With the above assumptions, as per our resource selection
policy, the following equation must be true.

(k — k3) x (predCom(i, y)
> (k% — k%) x (predCom(i, y)

— predCom(i, z))
— predCom (%, 1))

As per our previous assumption, if k% — k% > k! — k|
then (k% —k:)/(ki —k) > 1. Based on our selection policy
((predCom(i,y) — predCom(i,z))/((predCom(i,y) —
predCom(i,r)) > (ki — kL) /(ki — kL) > 1

From the above discussion, we can conclude that
((predCom(i,y) — predCom(i, z)) > ((predCom(i,y) —
predCom(i,r))

VOLUME 24(4), 2025

Uddalok Sen et al. / International Journal of Computing, 24(4) 2025, 717-726

i
LSS

Resource

Specification

o
History
Jobs

Y Y

Arrival of Batch Estimation of CPU for each job compute the set of
ew Batch Jobs Jobs cycles for each job in »| available resources sorted by
thi batch reliability
Y
Assign the jobs onto resources for each job rank the avallable
based on reliability and resources based on completion
completion time time

Figure 1. Workflow of the proposed approach

Then, predCom(i, z) < predCom(i,r), which is contra-
dictory to the previous assumption that predCom(i,r) is
minimum or in other words, R, offers faster completion
time. So, our selection policy always selects a resource
which is better than other available resources in terms of
one of the performance criteria. O

Complexity Analysis:

To analyse the complexity of our proposed algorithm,
first we will analyse the complexity of algorithm
Rank_Reliability(J;, Ravailable) Which is O(n) where n is
the number of resources. Similarly, the complexity of
the algorithm Rank_CTime(J;, Rayailable) is O(n), where
n is the number of resources. The complexity of Nor-
malize (S) is also O(n). The complexity of line 1-2 of
Uncertainity AwareResourceSelection(J, R) is O(nm),
where n is the number of resources and m is the number
of jobs to be scheduled. The complexity of line 5-16 is
O(mn). These lines will be executed O(m) times. So
overall complexity of our proposed algorithm is O(m?n)
which is similar to the Min-Min and Min-Max scheduling.

IV. EXPERIMENTAL SETUP AND RESULT

To simulate our proposed scheduling algorithm, the mod-
eling of resources and jobs is required. In this section, we
represent the implementation details of resource modeling,
job modeling and show the experimental results.

Resource Modeling:

We considered a set of resources for the purpose of exper-
imentation. Characteristics of these resources are shown in
Table 1. The resources are similar to the resources available
from AWS (Amazon Web Services) EC2.

VOLUME 24(4), 2025

Availability of resources:

To avoid random initialization of available period of re-
sources, we use the following equation to initialize the
available period of a resource [29]. Here, parameter Agior
is used to set available period of a resource. A higher value
of Ag,eror T€presents a longer available period for a resource.

mean_avail = Tiin + Afacior X (Tmax - Tmin)

where T}, = Time required to process all jobs in parallel
on the fastest resource, and

Tmax = Time required to process all jobs serially on the
slowest resource

Job Modeling:

A set of sample history jobs have been extensively used
in [3]] for clone detection. Whenever a new job arrives in
the system, their clone level is detected in comparison with
these history jobs. A new job will be either an exact clone,
near-miss clone or a miss clone of one or more of these
history jobs. The description of history jobs used for our
experiments is shown in Table 2.

Experimental Results:

The experiments have been carried out under different
circumstances. Here, we have fixed Agcor = 0.01 and we
varied varianceE'T. Fig 2, Fig 4, Fig 6 show comparison
between our proposed algorithm and Min-Min Heuristics
for number of successfully completed tasks for different
variances (0.15, 0.20, 0.25) in execution time. Fig 3, Fig 5,
Fig 7 present comparison between our proposed algorithm
vs Min-Min Heuristics for number of failed tasks for differ-
ent variances (0.15, 0.20, 0.25) in execution time. Now, in
order to consider the uncertainty [4] in the execution time of
jobs, the execution time of each job on a resource (assumed
to follow normal distribution i.e., N(u,d)), where, p(mean)

723

J

Uddalok Sen et al. / International Journal of Computing, 24(4) 2025, 717-726

corresponds to task execution time on the resource and § is
defined as Fq(2).

ET is the execution time of the job. Here we have
considered that variance’T" fixed as well as varied as per
[4). In [3], predicted resource requirement (CPU cycles,
memory) and actual resource consumption of a job may
differ significantly for the near miss clone and miss clone
job.

W Proposed
Algorithm

B Min Min
heuristics

Task Completed successfully
&
8

S & & S & S s
LELELFL RSP LSS

TotalNo. of Tasks

Figure 2. Proposed Algorithm vs MinMin Heuristics for
no. of task completed successfully (varianceET = 0.15 and
Afactor = OO]—)

,..
I
8

Variance in exeution time = 0.15
Resource_Availabiity = 0.01

,_.
°
3

o
3

= Proposed
Algorithm

I
&
)

B Min Min
Heuristics

0
5
-

No. of Tasks failed during execution
@
g

o

O O D P P S P LS R N o
S ELL P PP S éF'c"-"\°'\"’<a°a§’°§Pq“".§§P

TotalNo. of Tasks

Figure 3. Proposed Algorithm vs MinMin Heuristics for no.
of failed tasks (variance ET = 0.15 and A_factor = 0.01)

Variance in exeution time = 0.20
Resource_Availabiity=0.01

= Proposed
Algorithm

= Min Min
Heuristics

Neo. of Tasks Completed successfully
w
8
g

o
&

TotalNo. of Tasks

P H o P D o P
R RN AR e

Figure 4. Proposed Algorithm vs MinMin Heuristics for no.
of task completed successfully(varianceET = 0.20 and
A_factor = 0.01)

V. CONCLUSION AND FUTURE WORK
In this paper, we addressed the challenge of efficient job
scheduling in distributed cloud environments with fixed

724

Variance in exeution time = 0.20

= Proposed
Algorithm

H Min Min
Heuristics

No. of Tasks failed during execution

Totalno.of Tasks

Figure 5. Proposed Algorithm vs MinMin Heuristics for no.
of failed tasks (variance ET = 0.20 and A_factor = 0.01)

Variancein exeution time = 0.25

I

H Proposed
Algorithm

B Min Min
Heuristics

Now of Tasks Completed suceessfully
4
5
8

Total No. of Tasks

Figure 6. Proposed Algorithm vs MinMin Heuristics for no.
of task completed successfully(varianceET = 0.25 and
A_factor = 0.01)

= Proposed
Algorithm

= Min Min
Heuristics

No. of Tasks failed during execution

o 9 g 9 g 2 g 29 9 @ 2 @ 9 99
S R8F 823828 R38R 8 R 3
4 Y N8 dmm S TN B @R~ ®

850
900
50
1000

Total No.of Tasks

Figure 7. Proposed Algorithm vs MinMin Heuristics for no.
of failed tasks (variance E'T = 0.25 and A_factor = 0.01)

resource availability periods. Recognizing the limitations of
traditional scheduling algorithms in handling uncertain ex-
ecution times and dynamic resource contracts, we proposed
a novel scheduling algorithm that selects resources based
on two key parameters: the expected job completion time
by the resource and the probability of resource availability
until the completion of the job. By incorporating both per-
formance and reliability into the resource selection process,
our method significantly reduces the risk of job failure due
to premature resource termination. Comparative evaluations
with established scheduling algorithms demonstrate that our
approach achieves better job success rates and improved
overall scheduling efficiency. This work contributes a prac-
tical and adaptive strategy for resource-aware scheduling in

VOLUME 24(4), 2025

Uddalok Sen et al. / International Journal of Computing, 24(4) 2025, 717-726

Sl

Table 1. Description of resources used for simulation purpose

Resource Operating System Purpose Processor Speed Usage
Instance Cost
t3.small Windows General Purpose 2.5 GHz Intel $0.026/hr
t3.small Windows General Purpose 2.5 GHz Intel $0.026/hr
(scalable)
C5.12xL Linux Compute Optimized 3.6-3.9 GHz $0.744/hr
C5n.2xlarge Linux High Performance Com- 3.0 GHz $0.137/hr
puting
Table 2. Description of sample history jobs
New Job Similarity with History Job Predicted CPU Cycles Actual CPU Cycle
NJ37 Gauss Elimination 382822 334611.08
NJ39 Matrix Multiplication 6237417473 4122369868
NJ33 Bisection Method 186958 192040
NJ29 Molecular Dynamics Program 56121355302 56786287824
NJ40 Fast Fourier Transformation 1440778794 1374159120
NJ41 Bubble Sort 1479676.332 1637830
NJ26 Jacobi Method 89860 92005
NJ32 Calculation of Factorial 462048 461798
NJ36 Fibonacci Series Calculation 511808 584805
NJ34 Binary Search 68412 69435
NJ44 Matrix Summation 2492529458 2708065275
NJ44 Jacobi Method 89860 92005
NI27 Calculation of GCD 105856 106572
NIJ35 Series Addition 5090547447 4512225937
NJ31 Linear Search 70226 70512
NIJ30 Steady StateHeat equation 1.92412E+11 1.92204E+11
NJ28 Inverse of a matrix 85907 91224

dynamic cloud environments and opens avenues for further
research into fault-tolerant and predictive scheduling mod-

els.

As a limitation, this work considers only independent

tasks without inter-dependencies. In future research, we
aim to extend our scheduling framework to handle cloned
dependent tasks, where task dependencies and data flow
between jobs will be accounted for to ensure coordinated
execution and further enhance scheduling reliability and
performance in more complex cloud scenarios.

References

(1]

[2]

[3]

[4]

L. Jiang, F. Zhao, and X. Xi, “Matching operation constrained job shop
scheduling problem based on backward heuristic scheduling algorithm,”
12 2010.

M. Sarkar, S. Roy, and N. Mukherjee, “Feedback-guided analysis for re-
source requirements in large distributed system,” in 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, 2010,
pp. 596-597.

M. Sarkar, T. Mondal, S. Roy, and N. Mukherjee, “Resource requirement
prediction using clone detection technique,” Future Generation Computer
Systems, vol. 29, no. 4, pp. 936-952, 2013, special Section: Utility and
Cloud Computing. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X12001835

H. H. Chen, X. Zhu, G. Liu, and W. Pedrycz, “Uncertainty-aware online

VOLUME 24(4), 2025

(6]

(71

(8]

[10]

scheduling for real-time workflows in cloud service environment,” IEEE
Transactions on Services Computing, vol. 14, no. 4, pp. 1167-1178, 2021.
T. Braun, H. Siegel, N. Beck, L. Oni, M. Maheswaran, A. Reuther,
J. Robertson, M. Theys, and B. Yao, “A taxonomy for describing matching
and scheduling heuristics for mixed-machine heterogeneous computing
systems,” in Proceedings Seventeenth IEEE Symposium on Reliable Dis-
tributed Systems (Cat. No.98CB36281), 1998, pp. 330-335.

K. B. Bey, F. Benhammadi, A. Mokhtari, and Z. Guessoum, “Independent
task scheduling in heterogeneous environment via makespan refinery
approach,” in 2010 International Conference on Machine and Web Intelli-
gence, 2010, pp. 211-217.

Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Comput. Surv., vol. 31,
no. 4, p. 406471, Dec. 1999. [Online]. Available: https://doi.org/10.1145/
344588.344618

T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran,
A. 1. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen,
and R. F. Freund, “A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed
computing systems,” Journal of Parallel and Distributed Computing,
vol. 61, no. 6, pp. 810-837, 2001. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/p1i/S0743731500917143

M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund, “Dynamic mapping of a class of independent tasks onto
heterogeneous computing systems,” Journal of Parallel and Distributed
Computing, vol. 59, no. 2, pp. 107-131, 1999. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731599915812

Z. A. Khan, 1. A. Aziz, N. A. B. Osman, and I. Ullah, “A review on

725

https://www.sciencedirect.com/science/article/pii/S0167739X12001835
https://www.sciencedirect.com/science/article/pii/S0167739X12001835
https://doi.org/10.1145/344588.344618
https://doi.org/10.1145/344588.344618
https://www.sciencedirect.com/science/article/pii/S0743731500917143
https://www.sciencedirect.com/science/article/pii/S0743731500917143
https://www.sciencedirect.com/science/article/pii/S0743731599915812

)

Uddalok Sen et al. / International Journal of Computing, 24(4) 2025, 717-726

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

726

task scheduling techniques in cloud and fog computing: Taxonomy, tools,
open issues, challenges, and future directions,” IEEE Access, vol. 11, pp.
143 417-143 445, 2023.

O.L. Abraham, M. A. B. Ngadi, J. B. M. Sharif, and M. K. M. Sidik, “Task
scheduling in cloud environment—techniques, applications, and tools: A
systematic literature review,” IEEE Access, vol. 12, pp. 138 252-138 279,
2024.

Y. T. H. Hlaing and T. T. Yee, “Static independent task scheduling on
virtualized servers in cloud computing environment,” in 2019 International
Conference on Advanced Information Technologies (ICAIT), 2019, pp.
55-59.

D. Meildnder, A. Ploss, F. Glinka, and S. Gorlatch, “A dynamic resource
management system for real-time online applications on clouds,” in Euro-
Par 2011: Parallel Processing Workshops. ~ Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 149-158.

N. Sasikaladevi, “Minimum makespan task scheduling algorithm in cloud
computing,” International Journal of Grid and Distributed Computing,
vol. 9, pp. 61-70, 11 2016.

M. A. Alworafi, A. Al-Hashmi, A. Dhari, Suresha, and A. B. Darem,
“Task-scheduling in cloud computing environment: Cost priority ap-
proach,” in Proceedings of International Conference on Cognition and
Recognition, D. S. Guru, T. Vasudev, H. Chethan, and Y. S. Kumar, Eds.
Singapore: Springer Singapore, 2018, pp. 99-108.

R. K. Jena, “Task scheduling in cloud environment: A multi-
objective abc framework,” Journal of Information and Optimization
Sciences, vol. 38, no. 1, pp. 1-19, 2017. [Online]. Available:
https://doi.org/10.1080/02522667.2016.1250460

P. Zhang and M. Zhou, “Dynamic cloud task scheduling based on a two-
stage strategy,” IEEE Transactions on Automation Science and Engineer-
ing, vol. 15, no. 2, pp. 772-783, April 2018.

M. S. Sanaj and P. M. Joe Prathap, “An enhanced round robin (err)
algorithm for effective and efficient task scheduling in cloud environment,”
in 2020 Advanced Computing and Communication Technologies for High
Performance Applications (ACCTHPA), 2020, pp. 107-110.

Y. Yu and Y. Su, “Cloud task scheduling algorithm based on three queues
and dynamic priority,” in 2019 IEEE International Conference on Power,
Intelligent Computing and Systems (ICPICS), 2019, pp. 278-282.

A. Younes, A. Salah, T. Farag, F. Alghamdi, and U. Badawi, “Task
scheduling algorithnm for heterogeneous multi processing computing
systems,” Journal of Theoretical and Applied Information Technology,
vol. 97, pp. 3477-3487, 07 2019.

A. Belgacem, K. Beghdad-Bey, H. Nacer, and S. Bouznad, “Efficient
dynamic resource allocation method for cloud computing environment,”
Cluster Computing, vol. 23, no. 4, pp. 2871-2889, 2020.

X. Chen, L. Cheng, C. Liu, Q. Liu, J. Liu, Y. Mao, and J. Murphy, “A
woa-based optimization approach for task scheduling in cloud computing
systems,” IEEE Systems Journal, vol. 14, no. 3, pp. 3117-3128, 2020.

S. A. Alsaidy, A. D. Abbood, and M. A. Sahib, “Heuristic initialization
of pso task scheduling algorithm in cloud computing,” Journal
of King Saud University - Computer and Information Sciences,
vol. 34, no. 6, Part A, pp. 2370-2382, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1319157820305279

S. Lipsa, R. Dash, N. Ivkovi¢, and K. Cengiz, “Task scheduling in cloud
computing: A priority-based heuristic approach,” IEEE Access, vol. 11,
pp. 27 111-27 126, 2023.

Y. Yang, F. Ren, M. Zhang, J. Yan, F. Xie, and W. Gao, “A bdi agent-based
asynchronous scheduling framework for cloud computing,” in 2024 IEEE
International Conference on Agents (ICA), 2024, pp. 1-6.

Q. Li, Z. Peng, D. Cui, J. Lin, and H. Zhang, “UDL: a cloud task
scheduling framework based on multiple deep neural networks,” Journal
of Cloud Computing, vol. 12, no. 1, p. 114, 2023. [Online]. Available:
https://doi.org/10.1186/s13677-023-00490-y

T. Selvi Somasundaram, B. R. Amarnath, R. Kumar, P. Balakrishnan,
K. Rajendar, R. Rajiv, G. Kannan, G. Rajesh Britto, E. Mahendran, and
B. Madusudhanan, “Care resource broker: A framework for scheduling
and supporting virtual resource management,” Future Generation
Computer Systems, vol. 26, no. 3, pp. 337-347, 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X09001551

[28] S. Singh, M. Sarkar, S. Roy, and N. Mukherjee, “Genetic
algorithm based resource broker for computational grid,”
Procedia Technology, vol. 10, pp. 572-580, 2013, first
International Conference on Computational Intelligence: Modeling
Techniques and Applications (CIMTA) 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2212017313005598

[29] R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing,” Concurrency and Computation: Practice and Experience,
vol. 14, 11 2002.

U ddalok Sen is currently serving as a faculty
member in the Department of Information Tech-
nology at MCKYV Institute of Engineering, 243,
G T Road North, Liluah, Howrah, West Bengal
711204 India. With over 16 years of teaching
experience, he has developed significant expertise
in cloud computing and distributed systems. His
research interests focus on advancing the under-
standing and implementation of cloud architec-
tures and distributed computing paradigms.

M adhulina Sarkar received the PhD degree in
computer science from the Jadavpur University,
Kolkata, West Bengal, India, in 2016. She is
currently serving as Assistant Professor (stage
II) in the Department of Computer Science and
Engineering, Govt. College of Engineering and
Textile Technology, Berhampore, West Bengal,
India. She has been served as Head of the De-
partment of Computer Science and Engineering,
Govt. College of Engineering and Textile Tech-
nology, Berhampore, since 2017. Her research interests focus on distributed
computing, cloud computing.

N andini Mukherjee received the PhD degree in
computer science from the University of Manch-
ester, UK, in 1999. She was a recipient of a Com-
monwealth Scholarship for her PhD study in the
UK. Since 1992, she has been a Faculty Member
with the Department of Computer Science and
Engineering, Jadavpur University, Kolkata, India,
where she has also been a Professor since 2006.
She served as the Director for School of Mobile
Computing and Communication, Jadavpur Uni-
versity for nearly six years and Head of the Department of Computer
Science and Engineering, Jadavpur University for two years. She is an
active researcher in her research areas, which currently include high
performance parallel computing, wireless sensor networks and Internet of
Things. Prof. Mukherjee is a senior member of the IEEE Computer Society
and a member of the ACM.

VOLUME 24(4), 2025

https://doi.org/10.1080/02522667.2016.1250460
https://www.sciencedirect.com/science/article/pii/S1319157820305279
https://doi.org/10.1186/s13677-023-00490-y
https://www.sciencedirect.com/science/article/pii/S0167739X09001551
https://www.sciencedirect.com/science/article/pii/S2212017313005598

	Introduction
	Related Work
	Modeling and Formulation
	Experimental Setup and Result
	Conclusion and future work
	References
	U
	M
	N

