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ABSTRACT The perpetual growth in vehicle numbers, coupled with traffic congestion, environmental
challenges, and the suboptimal utilization of transport networks, underscores the necessity for intel-
ligent traffic management strategies. A pivotal component of such management involves the efficient
identification of optimal routes, which contribute to shortened travel times, reduced fuel consumption,
and diminished environmental pollution. This paper introduces a route planning method for smart city
transport infrastructure utilizing a genetic algorithm. The proposed approach comprises two principal
stages: identifying the primary route and generating a set of alternative routes amidst dynamic urban road
congestion. The essential genetic algorithm operators, which are integral to the solution’s evolutionary
process, are delineated. To assess the effectiveness of the proposed method, comparisons are drawn with
a greedy algorithm and an ant colony optimization algorithm. Analysis of the results illustrates that the
genetic algorithm–based method proposed herein reduces vehicle travel time by 18% compared to the ant
colony algorithm, owing to its ability to ascertain the optimal route. The greedy algorithm, characterized
by its locally focused decision-making processes, was unable to establish a complete route, terminating
at intermediate nodes without reaching the intended destination.

KEYWORDS Genetic algorithm; intelligent transport systems; ant colony optimization; greedy algo-
rithm.

I. INTRODUCTION

INCREASING pressure on urban road infrastructure,
coupled with a continuous increase in vehicle numbers,

has resulted in severe congestion during peak hours, with
adverse effects on both the economy and the environment.
Navigation systems are an integral part of modern transport
infrastructure, contributing to optimizing traffic flow and
reducing congestion [1], [2]. They help redistribute traffic,
ease the load on arterial roads, and help avoid heavily
congested areas.

Modern navigation systems and mobile applications such
as Google Maps, Waze, and Garmin employ route search
algorithms to ensure efficient vehicle movement in urban
environments. These algorithms enable not only the identi-
fication of the shortest path between two points but also the
adaptation of routes according to real-time traffic conditions,
incidents, and weather changes.

Heuristic search–based algorithms play an important role

in navigation services. Genetic algorithms are considered
a promising approach to optimizing vehicle routes [3]–[7],
especially given the complexity of traffic patterns in large
cities, where traditional algorithms (e.g., Dijkstra or A*)
often prove inefficient due to the dynamic nature of traffic
and the large number of possible routes [8]. Genetic algo-
rithms, inspired by natural selection, crossover, and mutation
mechanisms, enable effective optimization in complex and
dynamically changing environments.

Thus, route-search algorithms are a core component of
modern navigation systems. Navigation technologies have
significantly simplified both urban and intercity travel.
However, they often do not meet the operational needs
of emergency services, such as ambulances, police, or
fire departments. Furthermore, traffic congestion frequently
shifts from one route to another because navigation systems
provide identical directions to all users simultaneously [9].
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II. RELATED WORK
In [10], the authors introduced a congestion detection and
mitigation framework for road intersections leveraging the
Internet of Vehicles (IoV) paradigm. In this approach, the
Road Side Unit (RSU) evaluates traffic conditions by ana-
lyzing road-segment occupancy as a function of the vehicle
arrival rate. The effectiveness of the proposed method was
quantified using two performance indicators: path cost and
travel time. For route optimization, a modified EG-Dijkstra
algorithm was employed. Simulation results indicated that
the IoV-based scheme supports real-time traffic state es-
timation and facilitates the provision of alternative route
recommendations.

In [11], the authors proposed an Improved Enhanced
Cooperative Algorithm (IECA) for optimal route planning
of electric vehicles with constrained battery capacity. The
method utilizes two concurrently evolving populations and
exploits the best solutions from each, which are then inte-
grated with an enhanced ant colony optimization scheme to
update pheromone information efficiently while simultane-
ously promoting the generation of diverse route configura-
tions. Simulation results demonstrated a 4% reduction in the
average route length, thereby substantiating the effectiveness
of the proposed approach.

Although swarm intelligence techniques such as Ant
Colony Optimization (ACO) and Artificial Bee Colony
(ABC) exhibit strong performance in graph-based pathfind-
ing problems owing to their pheromone-mediated feedback
mechanisms, they encounter distinct difficulties when ap-
plied to parameter optimization. As highlighted in compar-
ative analyses [12], Genetic Algorithms (GA) frequently
display greater robustness than Tabu Search in discrete
parameter optimization tasks, such as tuning of traffic signal
timings. This advantage is largely attributable to the GA’s
capacity to preserve population diversity, thereby mitigating
the risk of premature convergence to local optima, a phe-
nomenon commonly observed in Tabu Search when the tabu
list is not adapted dynamically.

The study in [13] addresses the electric vehicle routing
problem through a three-stage methodological framework.
The first stage focuses on vehicle dispatching, the second
stage employs a genetic algorithm to determine the optimal
route, and the third stage identifies and selects the most
appropriate charging stops required to complete the route.
The algorithm was implemented in Google Colab Pro Plus,
and numerical simulations demonstrated its effectiveness on
data sets comprising between 5 and 15 clients.

In [14], the authors propose a deep reinforcement
learning-based, multi-objective path planning (DMOP)
method that simultaneously considers travel distance and
energy consumption. The proposed framework incorporates
a convolutional neural network architecture, a reward func-
tion with penalty mechanisms, a hybrid learning strategy
that integrates conventional and heuristic techniques, and
cubic spline interpolation for generating the final planned
path. Simulation results demonstrated that the proposed

method outperforms classical A* and Dijkstra algorithms,
particularly with respect to planning speed.

Furthermore, contemporary studies reveal an increasing
adoption of hybrid metaheuristic frameworks aimed at im-
proving decision-making accuracy. In particular, the inte-
gration of Artificial Neural Networks with Fuzzy Logic,
commonly referred to as Neuro-Fuzzy systems, has attracted
considerable attention [15], [16]. Such hybrid architectures
exploit the adaptive learning and pattern-recognition capa-
bilities of neural networks in conjunction with the trans-
parency and rule-based reasoning of fuzzy logic, thereby
providing an effective means of modeling and managing the
uncertainty and imprecision inherent in traffic-related data.
Although these methods substantially decrease the com-
putational time associated with decision-making, Genetic
Algorithms continue to be widely employed for global op-
timization, especially in contexts characterized by complex,
high-dimensional, and non-convex search spaces.

In [17], a multicriteria shortest path search method was
proposed that incorporates temporal parameters to generate
sets of optimal routes in real time. The recommended
routes are adaptive and user-specific, as they account for
individual requirements such as trip departure time and
current traffic conditions (e.g., congestion, accidents). The
solution integrates geospatial information from heteroge-
neous data sources within the smart city infrastructure to
enable personalized routing. To efficiently process large vol-
umes of geospatial data and ensure scalability, an Attributes
Time Aggregated Graph structure was employed. System
performance was evaluated in terms of processor time and
memory consumption, and the obtained results demonstrated
the effectiveness and scalability of the proposed approach.

The study in [18] introduces an Internet of Things (IoT)
network model for electric vehicle routing that employs a
fuzzy logic-based data fusion technique to assess congestion
levels based on sensor measurements. The Open Source
Routing Machine (OSRM) was utilized to compute shortest
paths while accounting for real-time traffic conditions. Geo-
referenced sensors deployed along road segments collected
data on vehicle speed, CO2 concentration, noise levels, and
temperature. Experimental validation confirmed the effec-
tiveness and practical applicability of the proposed solution.

In [19], the authors proposed a hierarchical, two-level
path planning framework for autonomous vehicles. At the
road level, a classical A* algorithm is applied for global
route planning, with the objective of reducing the number of
lane nodes and the associated computational complexity. At
the lane level, an additional optimization stage is introduced
to mitigate frequent lane changes, dead ends, and other local
inefficiencies. This is achieved via a hierarchical lane plan-
ning method based on a Proportional–Integral–Derivative
(PID) Q-network, constructed upon an enhanced deep Q-
network. Simulation results demonstrated that the proposed
model outperforms the conventional A* algorithm in terms
of both efficiency and route quality.

The work in [20] presented an enhanced path planning
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algorithm designed to improve the detection and correction
of irregular routes based on the A* algorithm. The method
integrates A* with interpolation techniques and further re-
fines the resulting paths using geometric optimization rules.
A filtering function was implemented to remove excessive
turning angles and other irregularities, while cubic B-spline
interpolation was employed to generate smooth trajectories.
The proposed algorithm effectively reduced both the number
of turns and the total route length.

III. MATERIALS AND METHODS
In the context of smart cities, several fundamental categories
of vehicular communication can be distinguished, namely
Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I),
and communication involving Roadside Units (RSUs) [21],
[22].

V2V denotes a communication paradigm that enables
direct wireless data exchange between vehicles without the
need for intermediate infrastructure. An RSU is a stationary
communication device deployed along roadways or embed-
ded within traffic management infrastructure. These units
are usually connected by optical transport infrastructure
over end-to-end virtual channels. It constitutes a critical
component of the vehicular communication architecture in
smart cities, as it supports both inter-vehicular commu-
nication (V2V) and communication between vehicles and
infrastructure (V2I).

Consequently, RSUs, V2V, and V2I form core elements
of the intelligent transportation system infrastructure, en-
abling continuous, real-time interaction between vehicles
and the surrounding environment. The data collected from
these communication channels are exploited to model and
predict traffic congestion, optimize traffic signal control, and
support route planning and guidance.

Figure 1 depicts a road intersection in a smart city
scenario, designed for route planning applications, where
multiple communication modes may coexist, including
Infrastructure-to-Infrastructure (I2I), V2V, V2I, and Vehicle-
to-Everything (V2X). The latter encompasses, for example,
communication with pedestrians, personal mobile devices,
and other connected entities in the urban environment.

Direct inter-device and vehicle-to-vehicle/vehicle-to-
infrastructure communication relies on wireless access tech-
nologies, such as 5G [23]–[25]. Traffic signs and traffic
lights are equipped with intelligent sensor systems that
monitor vehicular flow and implement adaptive signal con-
trol as a function of traffic density. Vehicles continuously
broadcast data regarding their position, speed, and direction
both to neighboring vehicles and to the roadside infrastruc-
ture. Sensor data from vehicles and roadside units (RSUs)
are integrated with cloud-based services to enable real-
time road-condition assessment, traffic-congestion predic-
tion, and route optimization.

In conventional vehicle routing optimization, route se-
lection criteria typically prioritize either minimal distance
or minimal travel time. However, actual traffic conditions

Figure 1. A segment of a transportation infrastructure
scheme for a smart city.

are inherently complex, highly dynamic, and influenced by
multiple factors.

Consequently, effective routing must account for a
broader set of variables, such as congestion, roadworks, and
other transient disruptions that can substantially affect actual
travel time and may render nominally shorter routes less
efficient than longer but less congested alternatives.

The proposed approach consists of two primary stages
(Figure 2): (i) determining the optimal route under the cur-
rent traffic and infrastructure conditions and (ii) generating
a set of alternative (backup) routes by employing a genetic
algorithm.

Depending on the specific characteristics of the transport
network, either the full approach (including both stages) or
only the first stage (focused on identifying a single optimal
route) may be applied.

The network is modelled as a graph G(V,E), where V
denotes the set of vertices (locations), and E represents
the set of edges (distances between nodes/vertices). During
the initial population generation phase, individual solutions
(routes) are formed Vi = (v1, v2, . . . , vn), each of which
has identical starting and ending points. The fitness func-
tion F (Xi) evaluates the quality (i.e., optimality) of each
potential route by summing the weighted distances of the
path segments:

F (Xi) = min

n−1∑
j=1

(wk · d(vj , vj+1)) , (1)

where n is the number of nodes in the route, d(vj , vj+1)
is the Euclidean distance between nodes, and wk ∈
{w1, w2, w3, w4} is the weight coefficient selected based
on the current congestion level of the edge (vj , vj+1).

The weight coefficients are defined as follows: w1 = 1
(free flow), w2 = 1.5 (low congestion), w3 = 2 (moderate
congestion), and w4 = 3 (severe congestion/blockage).
These values were justified empirically: w1 serves as the
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Figure 2. Block diagram of the proposed method.(a) - optimal route identification; (b) - generation of a set of backup routes
based on the number of transitions criterion.

baseline for ideal conditions, while w4 reflects a scenario
where travel time is tripled, effectively penalizing routes that
pass through blocked or heavily congested sectors despite
shorter physical distances.

A multi-criteria matrix is employed to evaluate the fitness
of each route. This matrix contains data on the nodes,
the distances between them, and penalty values of 10,000
applied in cases where a direct connection between two
vertices is absent or inaccessible due to roadworks or other
force majeure conditions.

The generation of a set of alternative routes is grounded in
the determination of an admissible range for the number of
transitions, which is, in turn, derived from the corresponding
parameter value associated with the best-performing route.
The availability of these alternative routing options enables
the system to adapt dynamically to perturbations in the
road infrastructure—such as accidents, traffic congestion,
and other disruptions—without requiring a complete recom-
putation of the globally optimal route.

Moreover, the use of alternative routes helps to achieve

a more balanced distribution of traffic flows, as reliance
on a single route by all vehicles increases the likelihood
of congestion. The core operators of the GA are selection,
crossover, and mutation, each playing a critical role in the
evolutionary process of solution improvement. To ensure
reproducibility of the experimental results, the specific pa-
rameter settings used in the genetic algorithm are detailed
in Table 1.

Table 1. Genetic Algorithm Parameter Settings

Parameter Value
Population Size 50
Max Generations 100
Crossover Rate 0.8
Mutation Rate 0.05
Selection Method Tournament (k = 3)

Tournament selection is among the most commonly used
selection mechanisms, offering a balance between global
exploration of the solution space and the prevention of
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premature convergence:

S = {x1, x2, . . . , xk}, xbest = argmax
x∈S

f(x), (2)

where S is a subset of randomly selected individuals, f(x)
is the fitness function, xbest is the best individual that passes
to the next generation, k is the size of the tournament. In
this work k = 3 [26].

Ordered crossover is used for permutation problems, in
particular route optimization. According to the principles
of this operator, two positions in the route are randomly
selected, and the fragment between them is passed on to
the offspring unchanged. The rest of the genes are copied
in the corresponding order from the other parent individual.
Mutation is necessary to maintain genetic diversity. The
shuffling operator randomly selects a part of the sequence in
the route and shuffles its elements, after which the updated
route is added to the population.

IV. RESULTS
For simulation modelling, smart city nodes (sensors, RSU,
etc.) are assumed to be randomly distributed across the study
area, subject to a maximum communication range of 200
meters.

Additionally, nodes are placed at every intersection and
turn in the transport network to improve connectivity and
maintain communication where traffic changes direction.

The study focuses on the Sykhiv district of Lviv, a large,
dynamic area with developed transport infrastructure, dense
buildings, and heavy traffic, making it suitable for evaluating
the effectiveness of vehicle routes.

The route between two control points is analyzed. Figure
3 shows the location of smart city nodes in the study area.

Figure 3. Placement of nodes in the study area to determine
the route between points A and B.

The geographical coordinates of each network node are
determined, and Euclidean distances between all 73 nodes

are calculated and stored in a distance matrix. Using these
distances, a network graph is constructed (Fig. 4), where
node 0 is the departure point and node 22 is the arrival
point.

A. UNDER VARYING ROAD CONDITIONS
Taking into account the coefficients according to (1), the
transport network of the studied territory is presented in Fig.
5a, where green corresponds to w1, yellow to w2, orange to
w3, and red to w4.

At the second stage of the method, a set of alternative
routes was formed by selecting routes whose number of
transitions lay within ktrans_best_r ± 4, where ktrans_best_r
is the number of transitions on the best route. Since this
value was 23, the range was 19–27.

For comparison, the simulation results are shown in Table
2, assuming a vehicle speed of 30 km/h to determine travel
time. The data demonstrate that the proposed solution identi-
fies multiple routes with similar characteristics, highlighting
its ability to adapt to different scenarios and offer flexible
path selection under traffic congestion.

To evaluate the efficiency of the developed algorithm, a
comparative analysis was performed against routes gener-
ated using the Greedy algorithm [27] and the ACO algorithm
[28] (Fig. 8 a,b).

The following parameters were used for the ACO al-
gorithm: nantx = 10,niterations = 100, α = 1, β =
2,rateevaporation = 50%,q = 100, where nantx is the number
of ants, niterations is the number of algorithm iterations, α
is coefficient determining the influence of pheromone level
on the selection of the next node, β is coefficient deter-
mining the influence of edge weight on the selection of the
next node, rateevaporation is parameter controlling pheromone
evaporation rate after each iteration, q is parameter for
pheromone update.

As shown in Fig. 8 a, the Greedy algorithm failed to reach
the destination node, stopping at node 39. In contrast, the
ACO (Fig. 8 b) successfully constructed a complete route
to the target node.

Table 3 presents the simulation results obtained from Figs.
5-8.

The analysis of the data in Table 3 reveals that the GA
developed produced the optimal route under the examined
conditions.

B. UNDER CONDITIONS OF VARYING CONGESTION
AND ROAD INACCESSIBILITY
An additional experiment examined route generation under
restricted network accessibility, accounting for blocked road
segments. Figure 9 shows the study area’s transport network,
with two inaccessible segments in purple. Figure 10 shows
the solution produced by the proposed algorithm.

Figures 11 shows the set of routes generated by the
genetic algorithm, with their simulation results summarized
in Table 4. As shown in Figure 12, the greedy algorithm
failed to reach the terminal node, stopping at node 24.
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Figure 4. Graph of the investigated network.

Table 2. Routes Obtained Using the Developed GA, Taking into Account Road Congestion

Route
number Nodes of the formed route Number of

transitions
The value of
route assessment

Time of vehicle
movement, s

1 [0, 1, 2, 3, 4, 5, 6, 37, 49, 50, 51, 53, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] 23 2655 318.6

2 [0, 1, 2, 3, 4, 5, 6, 37, 49, 50, 51, 52,
44, 36, 16, 17, 18, 19, 20, 21, 22] 20 2680 321.6

3 [0, 1, 2, 3, 4, 5, 6, 37, 49, 50, 51, 52, 54,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] 23 2682 321.84

4 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22] 22 2710 325.2

5 [0, 1, 2, 3, 4, 5, 6, 37, 32, 33, 34,
44, 36, 16, 17, 18, 19, 20, 21, 22] 19 2735 328.2

6 [0, 1, 2, 3, 4, 5, 6, 37, 49, 50, 72, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] 23 2799 335.88

7 [0, 1, 2, 3, 4, 5, 6, 37, 49, 50, 51, 53, 11,
12, 54, 52, 44, 36, 16, 17, 18, 19, 20, 21, 22] 24 2943 353.16

8 [0, 1, 2, 24, 25, 26, 27, 28, 38, 43,
34, 44, 36, 16, 17, 18, 19, 20, 21, 22] 19 2944 353.28

Table 3. Comparison of Routes Obtained Using Genetic, Greedy and ACO Algorithms, Taking into Account Road Congestion

Type of
algorithm Nodes of the generated route Route value Vehicle travel

time, s
Genetic [0, 1, 2, 3, 4, 5, 6, 37, 49, 50, 51, 53, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] 2655 318.6
Greedy [0, 1, 2, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 49, 50, 51, 53, 11, 12, 13, 14, 15, 16,

36, 71, 35, 41, 40, 48, 47, 46, 45, 42, 38, 39]
- -

ACO [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 72, 50, 51, 53, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22]

2952 354.24

Table 5 compares route construction results in the trans-
port network (Figures 10 and 12), considering traffic dynam-
ics and inaccessible road sections, for three approaches: a
genetic algorithm, a greedy algorithm, and an ant colony
optimization (ACO) algorithm.

The genetic algorithm achieved the best balance between
route length and travel time. Its strong global search capa-
bility enabled it to find an efficient route despite restricted

links, resulting in a relatively low total route cost and the
shortest travel time, indicating its suitability for complex,
dynamic transport logistics.

The ACO algorithm produced a feasible alternative route
but with worse execution time. The greedy algorithm could
not construct a complete route, confirming its limitations in
obstacle-rich, constrained networks.

To allow comparison under the same conditions, route

710 VOLUME 24(4), 2025



Yaroslav Pyrih et al./ International Journal of Computing, 24(4) 2025, 705-716

Figure 5. (a) - Transport network of the studied areas with road congestion; (b) - The optimal route for the considered
transport network obtained using the developed GA.

Figure 6. Set of backup routes numbered 1–4.
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Figure 7. Set of backup routes numbered 5–8.

Figure 8. Route generated using (a) - the greedy algorithm; (b) - the ACO.
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Figure 9. Transport network of the study area considering
road congestion and inaccessible segments.

Figure 10. Optimal route generated using the developed
GA.

Table 4. Routes Obtained Using the Developed GA under Conditions of Varying Load and Road Inaccessibility

Route
number Nodes of the formed route Number of

transitions
The value of route
assessment

Time of vehicle
movement, s

1 [0, 1, 2, 3, 4, 5, 6, 37, 32, 31, 30, 29, 28, 38, 39, 40, 48,
55, 56, 68, 57, 58, 59, 60, 61, 62, 64, 65, 66, 21, 22] 30 3787 454.44

2 [0, 1, 2, 3, 4, 5, 6, 37, 32, 33, 34, 43, 38, 39, 40, 48,
55, 56, 68, 57, 58, 59, 60, 61, 62, 64, 65, 66, 21, 22] 29 3805 456.6

3 [0, 1, 2, 3, 4, 5, 6, 37, 49, 50, 51, 52, 44, 36, 71, 70,
69, 56, 68, 57, 58, 59, 60, 61, 62, 64, 65, 66, 21, 22] 29 3904 468.48

4 [0, 1, 2, 3, 4, 5, 6, 37, 32, 33, 34, 44, 36, 71, 70, 69,
56, 68, 57, 58, 59, 60, 61, 62, 64, 65, 66, 21, 22] 28 3959 475.08

5 [0, 1, 2, 3, 4, 5, 6, 37, 32, 33, 34, 35, 41, 40, 48, 55, 56,
68, 57, 58, 59, 60, 61, 62, 64, 65, 66, 21, 22] 28 4082 489.84

6 [0, 1, 2, 3, 4, 5, 6, 37, 32, 33, 34, 35, 71, 70, 69, 56, 68,
57, 58, 59, 60, 61, 62, 64, 65, 66, 21, 22] 27 4124 494.88

7 [0, 1, 2, 3, 4, 5, 6, 37, 49, 50, 51, 52, 44, 36, 71, 35, 41,
40, 48, 55, 56, 68, 57, 58, 59, 60, 61, 62, 64, 65, 66, 21, 22] 32 4150 498.0

8 [0, 1, 2, 3, 4, 5, 6, 37, 49, 50, 51, 52, 44, 34, 43, 38, 39,
40, 48, 55, 56, 68, 57, 58, 59, 60, 61, 62, 64, 65, 66, 21, 22] 32 4152 498.24

searches were also performed using greedy [27] and ACO
[28] algorithms (Fig. 12).

V. CONCLUSION
This study presents a two-stage genetic-algorithm-based
method for vehicle route planning in smart urban infras-
tructures, explicitly modelling traffic congestion and road
inaccessibility via weighting coefficients and penalty func-
tions. To improve search efficiency, the genetic algorithm
uses standard evolutionary operators: tournament selection,
ordered crossover, and shuffle mutation. The transportation
network is modelled as a graph of nodes (intersections)
and edges (road segments). The method’s performance was
compared with a greedy algorithm and an Ant Colony
Optimization (ACO) algorithm. Simulations show that the

proposed approach reduces travel time by 18% compared
with ACO through more efficient route selection, while the
greedy algorithm was unable to reach the destination node
under the tested conditions.
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Figure 11. Set of backup routes numbered 1–4.

Figure 12. Route generated using (a) - the greedy algorithm; (b) - the developed GA.
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Table 5. Comparison of Routes Obtained Using the Genetic, Greedy, and ACO Algorithms under Varying Traffic Conditions
and Road Inaccessibility

Type of
algorithm Nodes of the route Route value Vehicle travel

time, s

Genetic [0, 1, 2, 3, 4, 5, 6, 37, 32, 31, 30, 29, 28, 38, 39, 40,
48, 55, 56, 68, 57, 58, 59, 60, 61, 62, 64, 65, 66, 21, 3787 454.44

Greedy [0, 1, 2, 24] - -

ACO
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 72, 50, 49, 37, 32, 31,
30, 29, 28, 38, 39, 40, 48, 55, 56, 68, 57, 58, 59, 60,
61, 62, 64, 65, 66, 21, 22]

4470 536.4
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