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ABSTRACT The increasing proliferation of smart grids and the growing share of renewable energy sources call
for innovative and intelligent approaches to energy distribution management. Conventional energy management
techniques encounter significant limitations, including suboptimal energy allocation, elevated operational
expenses, and limited adaptability to dynamic load variations within the network. This study introduces an
advanced smart grid architecture that incorporates IoT-based sensors and a control mechanism powered by deep
learning algorithms. By leveraging data from IoT devices and centralized databases, the proposed system enables
continuous monitoring of grid parameters, supports real-time analytics, and facilitates adaptive and predictive
decision-making. These capabilities contribute to enhanced energy distribution efficiency, reduced technical
losses, and improved overall system reliability. Furthermore, the architecture ensures robust resource allocation,
even under conditions of unforeseen failures of energy assets, including generation units, distribution
infrastructure, or end-users. The system also supports accurate demand forecasting and contributes to maintaining
grid stability. Through the integration of IoT technologies, deep learning models, and real-time data processing,
the proposed intelligent energy management framework is well equipped to address the challenges of increasing
energy demand and the variability inherent in renewable energy generation.

KEYWORDS energy-efficient 10T solutions; deep learning; resource distribution management; network
infrastructure optimization; real-time data analysis; environmentally sustainable energy management; Smart Grids.

. INTRODUCTION

Nonetheless, conventional energy management techniques still

he rapid increase in global population and the growing

deployment of renewable energy technologies are key
factors driving the transformation of energy systems,
necessitating advanced power management strategies [1].
Modern smart grids, enhanced by artificial intelligence (AI)
and the Internet of Things (IoT), significantly contribute to
efficient energy management by enabling automated control of
energy flows, real-time monitoring, and data-driven decision-
making, which collectively improve the utilization of available
resources [2].

Recent advancements in IoT technologies have enhanced
data acquisition, communication, and processing within smart
grids, resulting in more accurate forecasting of energy
consumption and more efficient energy distribution [3].
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pose serious limitations, such as inefficient power allocation,
high operational expenditures, and poor adaptability to rapidly
changing grid conditions [4].

To address these shortcomings, intelligent energy
management systems incorporating deep learning methods are
being actively explored. Such systems offer adaptive energy
allocation, improved loss reduction, and increased grid
resilience [5]. Powerful Al tools set for deep learning is
particularly effective in analyzing vast datasets from diverse
sources, offering novel solutions to complex energy system
challenges [6]. Its application in smart grids enables enhanced
analysis of consumption patterns, improved optimization of
resource allocation, and higher reliability of overall grid
performance [7].
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The fusion of deep learning with IoT-based control
frameworks allows for dynamic, real-time distribution of
energy resources, contributing to waste reduction and
improved operational efficiency [8]. However, this integration
also introduces new challenges, including computational
demands, scalability issues, and the need for robust network
adaptability [9]. Addressing these challenges requires ongoing
refinement of deep learning algorithms tailored for energy
systems, with the goal of maximizing performance and
efficiency [10].

In [11], a model proposed for forecasting the intra-hourly
trends of electricity market imbalances in the Czech Republic,
achieving a prediction accuracy of 81.8%. In [12], a global
model developed to forecast imbalances in the Belgian energy
system with a 15-minute resolution. The accuracy evaluation
based on metrics such as the Winkler score and the Continuous
Ranked Probability Score (CRPS). This model outperformed
baseline (naive) approaches as well as commonly used
algorithms like ARIMA and Quantile Regression Forests
(QRF). Furthermore, Urdiales in [13] introduced a hybrid
forecasting methodology for Belgian imbalance prediction,
combining linear and nonlinear machine learning techniques to
enhance modeling robustness.

In [14], an enhanced artificial intelligence (AI) with DL
based approach proposed for predicting the signs of energy
imbalances in the day-ahead electricity market. Additionally,
in [15] presented a multi-step variant of the distributed lag
autoregressive model for short-term forecasting of system
imbalances. Their approach based on the assumption that the
imbalance correlated not only with historical system
measurements but also with forecasts of exogenous variables.

In the work [16], approaches to the optimal operation of
cascade hydropower plants for forming the day-ahead
electricity market schedule are presented. The authors apply
mathematical optimization models considering hydrological,
technical, and market constraints to improve water resource
utilization efficiency and power system stability. The proposed
optimization algorithms have strong potential for integration
into IoT-enabled Smart Grid systems to enhance forecasting
accuracy and automation in energy management processes.

In the work [17] an advanced Long Short-Term Memory
(LSTM)-based approach is proposed for forecasting electricity
imbalances in the Ukrainian power system. The authors
conduct a comparative analysis of deep learning models to
improve prediction accuracy and ensure grid stability under
variable load and generation conditions. The research
highlights the advantages of LSTM architectures in capturing
nonlinear temporal dependencies, making them highly
effective for real-time energy management within IoT-enabled
Smart Grid environments.

In the paper [18] comprehensive optimization framework
for off-grid hybrid renewable energy systems at Gaita Selassie,
Ethiopia, is developed to achieve cost-effective and reliable
electricity supply. The study integrates solar, wind, and battery
storage technologies, using advanced optimization algorithms
to balance system cost, reliability, and sustainability. The
results demonstrate that such hybrid configurations can
significantly enhance energy access and resilience, aligning
with Smart Grid and IoT-based energy management strategies
for decentralized power systems.

In paper [19] proposes an approach based on federated deep
reinforcement learning (FDRL) for energy management in
smart microgrids equipped with distributed resources (solar
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panels, batteries). Each local agent (in a home or building) is
trained locally and then aggregates knowledge at the energy
management system level to improve the solution across the
entire microgrid. The primary goals are to reduce costs, reduce
CO, emissions, increase autonomy, and protect user privacy.
The study demonstrates that the federated approach enables
efficient scalability while maintaining accuracy and reliability
in [oT contexts.

This paper proposes a framework [20] that combines deep
learning and IoT for real-time energy management.
Specifically, the system includes short-term energy
forecasting, communication between the energy manager and
the consumer via IoT devices, and data preprocessing and
normalization algorithms optimized for resource-constrained
devices. The results demonstrate low prediction errors (MSE,
RMSE) for both residential and commercial datasets, making
the approach practical for Smart Grid/IoT environments.

In the work [21] proposes a framework for optimizing
power distribution in smart grids with bidirectional dispatch
(supply vs. demand) using data from IoT sensors. LSTM and
MLP models are used to forecast demand and generation, as
well as to adjust load and generation management in real time.
The results demonstrate reduced load forecast errors, lower
operating costs, and lower CO, emissions, especially during
peak hours. This is a good example of how deep models and
0T can aid in grid management and balancing.

In the paper [22] proposes a comprehensive approach
combining deep learning and graph neural networks for smart
grid data analysis. The "GridOptiPredict" model includes three
main components: load forecasting, state sensing, and resource
allocation optimization. Experiments demonstrate high
forecast accuracy, good sensitivity in network state detection,
and efficient resource allocation. The paper demonstrates how
the integration of various deep learning components can
improve smart grid performance across various dimensions.

By leveraging real-time data and advanced machine
learning models, deep learning-based platforms can provide
accurate demand forecasts, support intelligent resource
management, and stabilize smart grids under dynamic
operating conditions [23]. These systems are capable of
continuously learning and adapting to evolving energy
consumption and production patterns, thereby maintaining grid
balance and enhancing energy efficiency in real time [24].

This approach integrates the Internet of Things (IoT), real-
time data analytics, and deep learning to effectively tackle the
fundamental challenges associated with smart grid
management, ultimately leading to the development of more
adaptive, intelligent, and efficient energy distribution systems.
The main goal paper is analyze possibilities of using smart
grids based on the Internet of Things for intelligent energy
management.

Il. ARCHITECTURE SMART GRID WITH IOT ENABLED
SENSOR AND DEVICES

In Fig. 1 shown structural model of energy resource distribution
in a modern smart grid. This model combines edge computing,
the Internet of Things (IoT), and deep learning algorithms.

In the proposed system, sensors and [oT devices constantly
monitor and control many parameters of energy equipment.
Key parameters include voltage, current, temperature,
vibration, load, and the operational state of switches and
transformers. Monitoring these factors enables early detection
of irregularities and supports prompt action in case of faults or
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emergencies. In parallel, IoT sensors capture variations in the
environment, shifts in demand, and real energy consumption.
The resulting dataset provides valuable insights for deeper
analysis and contributes to more efficient allocation of energy

resources.
~
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Figure 1. Smart Grid Architecture with IoT devices.

lll. 10T AND DEEP LEARNING FOR SMART GRIDS
SOLUTIONS

Smart grids that integrate deep learning, artificial intelligence,
and the Internet of Things enable the most efficient use of
resources and energy. As a result, they contribute to the
development of more powerful and environmentally friendly
energy sources that meet the requirements of sustainable
development. Consider in detail the most used methods.

Energy-Net: A Deep Learning Model for Temporal
Forecasting. The Energy-Net model introduces a deep learning
framework tailored for forecasting temporal energy
consumption. It incorporates spatio-temporal modules that
utilize a Temporal Transformer (TT) to model temporal
dependencies and a Spatial Transformer (ST) enhanced with
convolutional layers and self-attention mechanisms to capture
spatial features [25]. Validated on the THPEC and ISO-NE
datasets, Energy-Net demonstrates lower Root Mean Squared
Error (RMSE) compared to existing models, while maintaining
computational efficiency suitable for IoT environments in
smart grids.

Energy Efficiency Optimization in Smart Grids via
Machine Learning. This approach proposes a machine
learning-based framework designed to enhance energy
efficiency in smart grids. By analyzing residents’ movement
patterns and generating short-term consumption forecasts, the
system aims to maximize the integration of renewable energy
sources. It utilizes indoor localization technologies and smart
meters to collect real-time data on user behavior and
consumption, which is processed using an online machine
learning model [26]. This enables dynamic optimization of
solar energy distribution, reduces peak demand on central
grids, and improves forecasting accuracy—achieved using
limited computational resources.

Optimization of IoT-DRL-Based Smart Grids. This
approach leverages resource management optimization in
smart grids by integrating Deep Reinforcement Learning
(DRL) within an Internet of Things (IoT) infrastructure [27].
The dynamic adaptability of DRL models to real-time changes
in network conditions—including user behavior and sensor
feedback—enables efficient energy utilization and waste
reduction. This results in improved economic performance. A
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practical outcome of this method is a reduction in the number
of energy units from 2700 to 2300 as the number of deployed
IoT sensors increased from 100 to 500, highlighting enhanced
throughput, resilience, and reliability of the smart grid system.

Energy Forecasting for Smart Buildings Using LSTM. This
method applies a multi-level Long Short-Term Memory
(LSTM) neural network within an IoT-based architecture to
forecast and manage energy usage in smart buildings [28]. The
LSTM model significantly outperforms traditional machine
learning algorithms such as linear regression and random
forests, achieving lower Mean Absolute Error (MAE) and
RMSE. By enhancing prediction accuracy and operational
efficiency, this approach contributes to cost savings, improved
energy utilization, and more stable building energy systems.

Energy Optimization in Smart Cities Using Deep Learning
This method focuses on reducing energy consumption in smart
cities by applying deep learning techniques, particularly neural
networks and recurrent neural networks (RNNs), within IoT-
supported environments. Real-time data collected from
sensors, devices, and smart grid infrastructures is analyzed to
optimize energy usage, support operational decision-making,
and improve device management. The resulting benefits
include lower energy costs, reduced resource consumption, and
decreased greenhouse gas emissions, contributing to
sustainable urban development [29]. This solution is scalable
and adaptable for implementation across different urban
settings.

Energy Optimization in Hybrid Smart Grids. The proposed
hybrid smart grid framework integrates multiple renewable
energy sources—including photovoltaic, hydro, and thermal
power—while supporting real-time energy expenditure
optimization and cost recovery for urban environments [30].
The system incorporates a Flexible Operations Layer (FoL) to
manage distribution and control functions efficiently. By
promoting intelligent resource usage, the approach ensures
reliable and sustainable energy delivery while improving the
overall performance of hybrid smart grid infrastructures.

[oT-ML Integration for Enhanced Smart Grid Management.
This approach explores the effective integration of Internet of
Things (IoT), Machine Learning (ML), and Smart Grid (SG)
technologies to optimize energy management in smart
buildings. The system emphasizes remote monitoring and
configuration of smart grid functions, enhancing occupant
comfort and safety while reducing energy consumption [31].
By processing data from smart meters and IoT sensors, ML
algorithms provide insights into consumption patterns and
enable real-time optimization. The result is a more efficient,
responsive, and intelligent smart grid infrastructure.

For effective energy management in the context of
reasonable measures and places of integration of Internet of
speech technologies (IoT), deep progress and predictive
modeling from distributed systems, the most promising is the
system with deep learning. The system continuously processes
data in real time and adapts to optimize energy distribution,
while maintaining reliability and cost-effectiveness. The
solution will ensure a reduction in energy costs, increased
operational efficiency and support for increased development.

IV. MATHEMATICAL FRAMEWORK FOR THE
REALIZATION OF DEEP LEARNING FOR SMART GRIDS
The rapid evolution of intelligent energy grids has been
significantly driven by the integration of advanced
technologies such as the Internet of Things (IoT), edge
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computing, and deep learning. These innovations are
transforming traditional energy systems by enabling more
efficient management and real-time monitoring of energy
resources. IoT devices, sensors, and smart meters collect vast
amounts of data from energy networks, providing real-time
insights into energy consumption patterns, grid performance,
and potential issues. The integration of advanced technologies,
such as IoT, edge computing, and deep learning, within
intelligent energy grids requires a robust mathematical
framework to optimize decision-making and data processing.
One such framework that has gained traction in the
management of energy systems is ORA-DL (Optimal Resource
Allocation with Deep Learning). This framework combines
optimization techniques with deep learning models to enhance
the efficiency and adaptability of energy distribution networks,
reducing latency and improving the responsiveness of the grid
to changing conditions. In this study, the deep learning
component is used primarily for forecasting key indicators
from IoT-derived time-series data, and these forecasts are then
integrated into the ORA-DL optimization-oriented decision
framework.

The method of deep learning to ensure the optimal
distribution of resources at reasonable measures with the

vicinity of adaptive vagal coefficients (l o ) and the formation

of demand ([a - jw”]) the optimal distribution of energy
Ka[w—ugq"] in intellectual measures Ja[w —ue"] can be
representations to get relatives by next eq.:

lgf[a — jw"]:— Ka[w—uq"]+ Ja[w-ue"]. (1)

To promote the efficiency of resource utilization, smart
power is connected to the Internet of Things (IoT) by adopting
solutions based on deep knowledge. Maximize the distribution
of energy in intellectual measures [w — iuw"]:

Pw:— Xa[w—uq"]+[w—iww"|-Valew—-uq"]. ()

Eq. (2) describes the adaptive distribution of tension P,w
with the help of predictive Valew —ug"] modifiers of pain
Xa[w - uq"j) and systemic pain. Level 2 guarantees that the
measure is stable and results in intelligent decision making with
low energy consumption. The result Vaw” of the integration of
system characteristics [w—ug"] and voltage adjustment
Ca :— A to optimize the level of adaptive output Ba [w - uq"]
allows optimizing the energy distribution:

Ca -~ Alw—uq"]+ Ba[w —uq"]* Vaw" . 3)

By preserving electrical stability and energy efficiency, the
system guarantees an economically efficient distribution of
resources. With the understanding that commercial and
industrial enterprises can increase their energy savings through
energy management systems, charging electric vehicles and
saving energy. Residents will benefit from the availability of
intelligent healthcare providers, energy storage, and home
displays that allow for more efficient energy management. The
core system combines energy management with additional
advanced infrastructure, further development of monitoring
and automation, ensuring increased distribution of hybrid
energy, stabilization boundaries and rational energy utilization.
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This will make it possible to achieve a more reliable and
environmentally friendly environment

Zela —uw"]:— Ls[fi — ane"]* Ka'[s — fw"]. (4)

stability of the operating voltage [a —uw”] of the system
(Ka'[s - ' ) and dynamically adjusted parameters (
Ls| fi — ane"|) to predict the coefficient of adaptive vicoristic
energy (Zae). This ensures improved resource management,
less inefficiency and greater energy efficiency

f.slao — sm"):— Jalc - dj"]* Ka[s —uw"].  (5)

The function ( fcs), which optimizes the performance of the
intelligent network Ja[c — dj"] based on Ka[s —uw"] scaling
adaptation, changes the system adjustment (|ao —sm"]), as
shown in line (5). Due to the flexible flexibility of the circuit,
level 5 guarantees an effective distribution of energy with
minimal operating inputs and outputs

M s[ak — sm"]:— dhd[c — tw"]+ Vals —uw"]. (6)

Adaptive power modulation (M s) is optimized for the
distribution of power resources Va|s —uw”ﬁ by eq. (6) by
enabling dynamic water control ([ak - sm"]) and frequency
regulation (dhd[c —tw"]). Therefore, minimizing wasted
energy and increasing the stability of the flow, the system

guarantees efficient energy consumption.

V. EXPERIMENTAL VALIDATION
The study of the feasibility of the deep learning method based
on the selected framework was made for hourly data on
balancing energy volumes (up and down). The history consists
8704 points. The test period is 21 days. Studies were performed
with a forecast horizon of 72 points (7 by 72) and 504 points.
RMSE was selected as the primary metric due to its
interpretability in the original units and common use in
forecasting; additional metrics and baseline models (e.g.,
MAE, R?, ARIMA, linear regression) will be included in an
extended evaluation. Moreover, according to the obtained
RMSE values (for down and up samples) and RMSE (for up
sample), in a third of the cases, the values of the ensemble
forecast errors are lower than the real data. Preliminary, the
accuracy of the forecast of demand volumes for balancing
resources is considered sufficient to use the obtained
forecasting results in the procedures for situational planning of
additional supply of services for loading and unloading from
hydroelectric units. So in this case considering that, statistical
indicators for price time series from the point of view are more
stable. The presented experimental validation is intended as a
feasibility study on real hourly balancing-energy time series;
broader cross-period and multi-baseline experiments are
planned as future work.

In Fig. 2 and Fig. 3 show random day graphs (30 history
point) for this day price time series in the upward (loading) and
downward (unloading) directions, respectively.
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Figure 2. Example of forecasting time series of prices for
loading and unloading respectively.
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Figure 3. Example of forecasting time series of unloading
prices.

Several experiments with different forecasting horizons and
history volumes were conducted when forecasting using the
mathematical framework for the realization of deep learning for
smart grids. The model demonstrated an advantage over
moving averages in the accuracy of reproducing actual data.
However, both models turned out to be quite inaccurate,
especially in the case of forecasting prices for unloading
services, where the root-mean-square error reached high
values.

The conducted experiments demonstrate that the deep
learning framework, when applied to balancing energy
volumes with horizons of up to 504 points, achieves forecast
accuracy sufficient for preliminary integration into situational
planning of hydroelectric unit loading and unloading. Despite
some variations in RMSE across up and down samples, in
nearly one-third of the cases, ensemble forecast errors were
lower than deviations observed in real operational data. This
indicates that the use of data-driven forecasting tools is
promising for supporting market mechanisms and short-term
operational decision-making. Moreover, the obtained results
confirm that statistical properties of price time series in
balancing markets remain relatively stable, which further
strengthens the potential for embedding advanced predictive
models into real-world grid management processes.

Nevertheless, moving from isolated forecasting
experiments toward holistic smart grid management reveals
deeper challenges. Current infrastructures still face limitations
in resource allocation efficiency, difficulties in maintaining
stability under fluctuating demand, and risks of excessive or
uncoordinated energy usage. These issues highlight the need
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for systems that go beyond simple prediction and instead
enable proactive optimization and adaptive control.

In this context, improving the automation and optimization
of energy distribution requires the combined use of energy-
efficient Internet of Things technologies and deep learning
models. Their integration has already begun to reshape the way
smart grids respond to dynamic demand—supply conditions,
creating opportunities for more resilient and sustainable energy
ecosystems. However, without targeted mechanisms, the
benefits of such integration are constrained by persistent
inefficiencies, such as suboptimal allocation of balancing
resources and energy losses during peak load conditions.

To address these challenges, we introduce ORA-DL, a
novel deep learning-based system that not only improves
demand forecasting but also leverages predictive insights to
optimize resource distribution across the grid. ORA-DL
enhances situational awareness by integrating multi-source IoT
data, enables adaptive allocation of balancing resources, and
contributes to overall grid stability even under uncertain
demand conditions. Unlike traditional forecasting tools, ORA-
DL incorporates optimization-oriented feedback loops,
allowing it to bridge the gap between accurate prediction and
sustainable decision-making. In addition, the system is
designed with scalability and robustness in mind, making it
suitable for integration into large-scale energy infrastructures
and adaptable to future changes in consumption patterns and
renewable generation dynamics.

As aresult, ORA-DL provides a comprehensive foundation
for future energy management systems, aligning predictive
analytics with environmentally responsible smart grid
operations. By combining advanced forecasting, intelligent
optimization, and sustainable management strategies, it
addresses the shortcomings of existing solutions and creates a
pathway toward more efficient, stable, and resilient energy
networks.

VI. DISCUSSION
The experimental and analytical results obtained in this study
confirm the effectiveness of integrating deep learning
techniques with IoT-enabled architectures for intelligent
energy management in smart grids. The findings highlight that
the proposed ORA-DL framework not only enhances the
accuracy of energy demand forecasting but also contributes to
adaptive and optimized resource distribution across complex
energy networks. Compared with traditional methods such as
moving averages or linear regression models, the deep learning
approach demonstrated higher predictive stability and
adaptability to dynamic grid conditions, particularly when
managing balancing energy volumes in hydroelectric systems.
A broader quantitative benchmark against classical and ML
baselines (e.g., ARIMA and linear regression) is an important
next step and is planned for an extended version of the study.
The results also indicate that the integration of IoT sensors
and real-time analytics allows for continuous monitoring of key
grid parameters, improving situational awareness and enabling
proactive decision-making. These capabilities are essential in
addressing fluctuations in renewable generation and variable
consumer demand, which are major challenges for modern
power systems. The observed improvements in Root Mean
Squared Error (RMSE) values across forecasting horizons up
to 504 points suggest that the system can reliably support short-

691



)

levgen Zaitsev et al. / International Journal of Computing, 24(4) 2025, 687-694

term operational planning and market balancing processes.

Despite these advances, the study also reveals persistent
limitations. Forecasting accuracy decreases when predicting
price trends for unloading operations, suggesting that the
current model may be sensitive to noise or abrupt market
fluctuations. Moreover, while the proposed ORA-DL
framework effectively integrates forecasting and optimization,
its computational complexity could present challenges for
deployment in resource-constrained IoT environments. Key
limitations include sensitivity to abrupt fluctuations for certain
series and potential computational overhead for deployment on
resource-constrained IoT/edge devices. Therefore, further
research is required to enhance algorithmic efficiency and
scalability, particularly for large-scale distributed energy
systems.

From a practical perspective, the implementation of ORA-
DL in real-world infrastructures — such as the Integrated
Energy System of Ukraine — could significantly improve
demand forecasting accuracy, facilitate better balancing of
generation and consumption, and reduce technical losses. This
is especially relevant in contexts where the integration of
renewable energy sources introduces higher variability and
uncertainty. By coupling deep learning models with IoT-
enabled monitoring, operators can achieve more flexible and
sustainable management of energy assets.

The comparative analysis with related works demonstrates
that the proposed approach aligns with global trends in Al-
driven energy systems. Similar architectures — such as Energy-
Net [25] and federated DRL-based management systems [19]
— also report improved prediction and optimization outcomes,
confirming that deep learning represents a transformative
direction in smart grid evolution. However, unlike most
existing approaches focused solely on forecasting, ORA-DL
incorporates feedback-based optimization loops, bridging the
gap between prediction and control.

Overall, the discussion emphasizes that while the
combination of IoT and deep learning offers clear benefits for
intelligent energy management, success depends on addressing
challenges of scalability, interoperability, and cybersecurity.
Future efforts should focus on hybrid architectures that
combine deep learning with reinforcement learning for
adaptive control, edge computing for latency reduction, and
privacy-preserving mechanisms for  distributed data
processing. By doing so, next-generation smart grids can
evolve toward self-organizing, resilient, and environmentally
responsible energy ecosystems.

VIl. CONCLUSIONS

This paper has presented a comprehensive framework for IoT-
enabled smart grids that integrates deep learning methods with
energy optimization strategies. The use of data from IoT devices
and sensors in real-time analytics and predictive modeling
significantly enhances the automation of grid operations,
improves the efficiency of resource utilization, and strengthens
grid stability. The conducted experiments with balancing energy
volumes demonstrated that deep learning—based forecasting
achieves sufficient accuracy for preliminary integration into
situational planning, particularly in the management of
hydroelectric unit loading and unloading. These findings
emphasize the practical potential of advanced forecasting tools
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to support short-term operational decisions and market
mechanisms.

The proposed ORA-DL system extends beyond isolated
prediction tasks by incorporating optimization-oriented feedback
loops and adaptive allocation mechanisms. Through the
integration of multi-source IoT data, ORA-DL enhances
situational awareness, optimizes balancing resource distribution,
and contributes to maintaining grid stability under uncertain and
fluctuating demand conditions. This holistic approach not only
addresses existing challenges, such as inefficient resource
allocation and excessive energy consumption, but also provides
a scalable and robust platform for sustainable energy
management. The optimization aspect is represented in the
proposed feedback-based allocation mechanism; an explicit
optimization/convergence curve will be provided in future
extended work.

In the context of the Integrated Energy System of Ukraine,
improving forecasting accuracy and more precise accounting of
consumption are of particular importance. Enhancing these
aspects is essential for ensuring the effective operation of
electricity market participants and for maintaining the overall
sustainability, flexibility, and reliability of the energy system.
Furthermore, the implementation of intelligent forecasting and
optimization tools contributes to achieving environmental
objectives by reducing unnecessary energy usage and supporting
the integration of renewable energy sources.

Nevertheless, further research is required to refine the
proposed approaches, ensuring their robustness, scalability, and
long-term effectiveness under diverse operating conditions.
Future work should focus on expanding the system to include
reinforcement learning—based control mechanisms,
incorporating advanced market-driven optimization models, and
testing the framework under scenarios with high penetration of
distributed and renewable generation. In this way, the presented
concepts lay the groundwork for next-generation smart grids that
are adaptive, resilient, and capable of meeting the increasing
demands of modern energy systems.

References

[11 Y. Chi et al., “Deep reinforcement learning based edge computing
network aided resource allocation algorithm for smart grid,” IEEE
Access, vol. 11, pp. 6541-6550, 2022.
https://doi.org/10.1109/ACCESS.2022.3221740.

[2] Z. Tang et al., “Machine learning assisted energy optimization in smart
grid for smart city applications,” J. Interconnect. Netw., vol. 22, no.
Supp03, p. 2144006, 2022. https://doi.org/10.1142/S0219265921440060.

[3] Q. Xin, M. Alazab, V. G. Diaz, C. E. Montenegro-Marin, and R. G.
Crespo, “A deep learning architecture for power management in smart
cities,”  Energy  Rep., vol. 8, pp. 1568-1577, 2022.
https://doi.org/10.1016/j.egyr.2021.12.053.

[4] M. Arun, and et al., “Internet of things and deep learning-enhanced
monitoring for energy efficiency in older buildings,” Case Stud. Therm.
Eng., vol. 61, p- 104867, 2024.
https://doi.org/10.1016/j.csite.2024.104867.

[5] L. Xi, and et al., “Deep reinforcement learning-based service-oriented
resource allocation in smart grids,” IEEE Access, vol. 9, pp. 77637—
77648, 2021. https://doi.org/10.1109/ACCESS.2021.3082259.

[6] K.R.Deepa, and N. Thillaiarasu, “Integrated architecture for smart grid
energy management: Deep attention-enhanced sequence-to-sequence
model with energy-aware optimized reinforcement learning for demand
response,” SN Comput. Sci., vol. 5, no. 8, p. 1017, 2024.
https://doi.org/10.1007/s42979-024-03305-2.

[71 S. O. Olatinwo, and T. H. Joubert, “Deep learning for resource
management in Internet of Things networks: A bibliometric analysis and
comprehensive review,” IEEE Access, vol. 10, pp. 94691-94717, 2022.
https://doi.org/10.1109/ACCESS.2022.3195898.

VOLUME 24(4), 2025



levgen Zaitsev et al. / International Journal of Computing, 24(4) 2025, 687-694

)

(8]

[10

=

[1

—

[12

—

[13

—

[14]

[16

[}

[17

—

[18

=

[19]

[20

=

[21

—

[23

—

[24]

P. Anusha, and et al., “Empowering IoT devices with energy-efficient Al
and machine learning,” Proceedings of the 2024 7th Int. Conf. Circuit
Power Comput. Technol. (ICCPCT), Aug. 2024, vol. 1, pp. 720-725.
https://doi.org/10.1109/ICCPCT61902.2024.10672916.

H. S. Shreenidhi, and N. S. Ramaiah, “A two-stage deep convolutional
model for demand response energy management system in loT-enabled
smart grid,” Sustain. Energy Grids Netw., vol. 30, p. 100630, 2022.
https://doi.org/10.1016/j.segan.2022.100630.

B. Sellami, A. Hakiri, S.B. Yahia, and P. Berthou, “Energy-aware task
scheduling and offloading using deep reinforcement learning in SDN-
enabled IoT network,” Comput. Netw., vol. 210, p. 108957, 2022.
https://doi.org/10.1016/j.comnet.2022.108957.

S. Kratochvil, and J. Bejbl, “Analysis and the methods of forecasting of
the intra-hour system imbalance,” Power, vol. 11, issue 9, 2015.
https://poster.fel.cvut.cz/poster2016/proceedings/Section M/M 014 Kr
atochvil.pdf.

J.F. Toubeau, J. Botticau, Y. Wang, and F. Vallée, “Interpretable
probabilistic forecasting of imbalances in renewable-dominated
electricity systems,” IEEE Transactions on Sustainable Energy, vol. 13,
issue 2, . 1267-1277, 2021.
https://doi.org/10.1109/TSTE.2021.3092137.
T. Urdiales, "Forecasting Grid System Imbalance: Case Study in
Belgium", 2023.

D. Carnevale, M. Cavaiola, and A. Mazzino, “A novel Al-assisted
forecasting strategy reveals the energy imbalance sign for the day-ahead
electricity market,” Energy Reports, 11, pp. 4115-4126, 2024.
https://doi.org/10.1016/j.egyr.2024.03.058.

1. Balazs, A. Fodor, A. Magyar, “Short-term system imbalance forecast
using linear and non-linear methods,” Energy Systems, pp. 1-22, 2024.
https://doi.org/10.1007/s12667-024-00667-7.

L. Blinov, E. Parus, D. Olefir, O. Rybina, V. Sychova, 1. Zaitsev, and V.
Rassovskyi, “Approaches to the cascade hydropower plants optimum
operation for forming the day-ahead electricity market schedule,” In:
Systems, Decision and Control in Energy VI., vol. 552. Springer, Cham,
2024, pp. 445-472. https://doi.org/10.1007/978-3-031-67091-6_20.

L. Blinov, L. Zaitsev, M. Bajaj, V. Miroshnyk, V. Sychova, P. Shymaniuk,
V. Blazek, and L. Prokop, “Advanced LSTM-based forecasting of
electricity imbalances in the ukrainian power system: Enhancing
accuracy and stability with comparative model analysis,” Energy
Exploration & Exploitation, 25, 2025.
https://doi.org/10.1177/01445987251360272.

E.F. Agajie, T.F. Agajie, I. Amoussou, A. Fopah-Lele, W.B. Nsanyuy, B.
Khan, M. Bajaj, 1. Zaitsev, and E. Tanyi, “Optimization of off-grid hybrid
renewable energy systems for cost-effective and reliable power supply in
Gaita Selassie Ethiopia,” Scientific Reports, vol. 14, article ID 10929,
2024, 25 p. https://doi.org/10.1038/s41598-024-61783-z.

T. Han, K. Muhammad, T. Hussain, J. Lloret, and S.W. Baik, “An
efficient deep learning framework for intelligent energy management in
0T networks,” IEEE Internet of Things, vol. 8, issue 5, pp. 3170-3179,
2025. https://doi.org/10.1109/J10T.2020.3013306.

F. Rezazadeh, N. Bartzoudis, “A federated DRL approach for smart
micro-grid energy control with distributed energy resources,”
Proceedings of the 2022 IEEE 27th International Workshop on Computer
Aided Modeling and Design of Communication Links and Networks
(CAMAD), Paris, France, 2022, pp- 108-114,
https://doi.org/10.1109/CAMADS55695.2022.9966919.

Y. Chang, D. Jiang, J. Wu, J. Peng, and X. Xu, “Research on power data
analysis and its mining technology in smart grid,” Applied Mathematics
and  Nonlinear  Sciences, vol. 9(2024), issue 1, 2024,
https://doi.org/10.2478/amns-2024-3014.

F.A. Alijoyo, “Al-powered deep learning for sustainable industry 4.0 and
Internet of Things: Enhancing energy management in smart buildings,”
Alex. Eng. J, vol. 104, pp. 409422, 2024.
https://doi.org/10.1016/j.aej.2024.07.110.

T. Ahmad, R. Madonski, D. Zhang, C. Huang, and A. Mujeeb, “Data-
driven probabilistic machine learning in sustainable smart energy/smart
energy systems: Key developments, challenges, and future research
opportunities in the context of smart grid paradigm,” Renew. Sustain.
Energy Rev., vol. 160, p- 112128, 2022.
https://doi.org/10.1016/j.rser.2022.112128.

M. Abdel-Basset, H. Hawash, R. K. Chakrabortty, and M. Ryan,
“Energy-net: A deep learning approach for smart energy management in
IoT-based smart cities,” IEEE Internet Things J., vol. 8, no. 15, pp.
12422-12435, 2021. https://doi.org/10.1109/JI0T.2021.3063677.

VOLUME 24(4), 2025

[25]

[26]

[27]

(28]

[29]

R. Yao, J. Li, B. Zuo, and J. Hu, “Machine learning-based energy efficient
technologies for smart grid,” Int. Trans. Electr. Energy Syst., vol. 31, no.
9, p. €12744,2021. https://doi.org/10.1002/2050-7038.12744.

R. Mishra, V. V. Desai, R. Krishnamoorthy, M. A. Begum, J. Ranga, and
S. N. Taqui, “Energy-efficient IoT with deep learning: Optimizing
resource allocation in smart grids,” Proceedings of the 2023 9th Int. Conf.
Smart  Struct.  Syst. (ICSSS), Nov. 2023, pp. 1-6.
https://doi.org/10.1109/ICSSS58085.2023.10407067.

D. P. Ruiz, R. A. D. Vasquez, and B. V. Jadan, “Predictive energy
management in Internet of Things: Optimization of smart buildings for
energy efficiency,” J. Intell. Syst. Internet Things, vol. 10, no. 2, 2023.
https://doi.org/10.54216/J1S10T.100201.

A. Aljohani, “Deep learning-based optimization of energy utilization in
IoT-enabled smart cities: A pathway to sustainable development,” Energy
Rep., vol. 12, pp. 29462957, 2024.
https://doi.org/10.1016/j.egyr.2024.08.075.

M. L Khalil, and et al., “Hybrid smart grid with sustainable energy
efficient resources for smart cities,” Sustainable Energy Technol.
Assessments, vol. 46, p. 101211, 2021.
https://doi.org/10.1016/j.seta.2021.101211.

T. Mazhar, et al., “Analysis of challenges and solutions of IoT in smart
grids using Al and machine learning techniques: A review,” Electronics,
vol. 12, no. 1, p. 242, 2023. https://doi.org/10.3390/electronics12010242.

Dr. IEVGEN ZAITSEV received B.Tech.
and M.Tech degrees in measurement
engineering from National Technical
University of Ukraine "Kyiv
Polytechnic Institute”, Kyiv, Ukraine,
in 2005 and 2007, respectively. The Ph.
D. and Doctor of science degree from
Institute of Electrodynamics, NAS of
Ukraine, Kyiv, Ukraine, in 2012 and
2020, respectively. Currently Head of
the department of theoretical
electrical engineering and diagnostics

of electrical equipment, Institute of Electrodynamics, National
Academy of Sciences of Ukraine, Kyiv, Ukraine. The main

direction of scientific research

is create and practical

implementation smart sensor for fault diagnosis system of
energy equipment.

Dr. VALENTYNA PLESKACH received
a degree in applied mathematics from
Taras Shevchenko National University
of Kyiv, PhD in Technical Sciences in
specialty of mathematics and software
for computing machines and systems
in the Institute of Mathematical Ma-
chines and Systems Problems of the
National Academy of Sciences (1996)

of Ukraine, a Doctor of Economics degree from the State
Educational and Scientific Institution ‘Academy of Financial
Management’ of the Ministry of Finance of Ukraine (2007).
Currently Head of the Department of Applied Information
Systems, Taras Shevchenko National University of Kyiv,
Ukraine. The main direction of scientific research is applied
information systems, information and analytical and automated
information systems (ERP), economic and mathematical
modelling, planning and forecasting systems, digital economy,
e-commerce.

Prof. VOLODYMYR KOCHAN, a
Professor at Department of
Information Computer System and
Control, West Ukrainian National
University, Ternopil, Ukraine.
Research interests: Microcontroller’s
temperature measurement, distribu-
ted sensor network etc.

693



—
Sl

levgen Zaitsev et al. / International Journal of Computing, 24(4) 2025, 687-694

Ph. D VIKTORIIA BEREZNYCHENKO
received B.Tech. and M.Tech degrees
in measurement engineering from
National Technical University of
Ukraine "Kyiv Polytechnic Institute”,
Kyiv, Ukraine, in 2016 and 2018,
respectively. The Ph. D. degree from
| Institute of Electrodynamics, NAS of
Ukraine, Kyiv, Ukraine in 2022.
N Currently  research fellow  of
department of theoretical electrical
engineering and diagnostics of electrical equipment, Institute of
Electrodynamics, National Academy of Sciences of Ukraine,
Kyiv, Ukraine. The main direction of R&D research and
development of diagnostic system components for energy
facilities with a focus on Multiphysics modeling.

Dr. ROMANAS TUMASONIS graduated
in 1992 Vilnius University (ISCED5) in
Computer Software. In 2006 received
Doctoral degree in Mathematics and
Informatics Institute Informatics (09P)
in Data mining, Algorithms. Work
positions: Assoc. Professor of
Vilniaus Kolegija/Higher education

institution; assistant of Vilnius
Gediminas  Technical  University
(VilniusTech).

Research areas: Operating systems, Algorithms and data
structures, Data mining, Artificial intelligence.

694

Dr. NATALIIA DZIUBANOVSKA,
Acting Head of the Department of
Information and Computing Systems
and Control, West Ukrainian National
University, Ternopil, Ukraine.
Received the Ph.D. degree (2015) in
specialty of mathematical methods,
models and information technologies
in economics from Vasyl Stefanyk
Precarpathian National University,

- Ukraine, and the Doctor of Economic
Sciences degree in the same specialty (2021).

Research interests lie in mathematical modelling of the
development and functioning of economic systems at various
management levels, forecasting, and the applied use of
mathematical models. Additional interests include data analysis
and intelligent data mining. Current research also covers
modelling and optimization of energy systems, as well as the
integration of smart grid technologies.

VOLUME 24(4), 2025



