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 ABSTRACT The increasing proliferation of smart grids and the growing share of renewable energy sources call 
for innovative and intelligent approaches to energy distribution management. Conventional energy management 
techniques encounter significant limitations, including suboptimal energy allocation, elevated operational 
expenses, and limited adaptability to dynamic load variations within the network. This study introduces an 
advanced smart grid architecture that incorporates IoT-based sensors and a control mechanism powered by deep 
learning algorithms. By leveraging data from IoT devices and centralized databases, the proposed system enables 
continuous monitoring of grid parameters, supports real-time analytics, and facilitates adaptive and predictive 
decision-making. These capabilities contribute to enhanced energy distribution efficiency, reduced technical 
losses, and improved overall system reliability. Furthermore, the architecture ensures robust resource allocation, 
even under conditions of unforeseen failures of energy assets, including generation units, distribution 
infrastructure, or end-users. The system also supports accurate demand forecasting and contributes to maintaining 
grid stability. Through the integration of IoT technologies, deep learning models, and real-time data processing, 
the proposed intelligent energy management framework is well equipped to address the challenges of increasing 
energy demand and the variability inherent in renewable energy generation. 
 

 KEYWORDS energy-efficient IoT solutions; deep learning; resource distribution management; network 
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I.  INTRODUCTION 
he rapid increase in global population and the growing 
deployment of renewable energy technologies are key 

factors driving the transformation of energy systems, 
necessitating advanced power management strategies [1]. 
Modern smart grids, enhanced by artificial intelligence (AI) 
and the Internet of Things (IoT), significantly contribute to 
efficient energy management by enabling automated control of 
energy flows, real-time monitoring, and data-driven decision-
making, which collectively improve the utilization of available 
resources [2]. 

Recent advancements in IoT technologies have enhanced 
data acquisition, communication, and processing within smart 
grids, resulting in more accurate forecasting of energy 
consumption and more efficient energy distribution [3]. 

Nonetheless, conventional energy management techniques still 
pose serious limitations, such as inefficient power allocation, 
high operational expenditures, and poor adaptability to rapidly 
changing grid conditions [4]. 

To address these shortcomings, intelligent energy 
management systems incorporating deep learning methods are 
being actively explored. Such systems offer adaptive energy 
allocation, improved loss reduction, and increased grid 
resilience [5]. Powerful AI tools set for deep learning is 
particularly effective in analyzing vast datasets from diverse 
sources, offering novel solutions to complex energy system 
challenges [6]. Its application in smart grids enables enhanced 
analysis of consumption patterns, improved optimization of 
resource allocation, and higher reliability of overall grid 
performance [7]. 

T
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The fusion of deep learning with IoT-based control 
frameworks allows for dynamic, real-time distribution of 
energy resources, contributing to waste reduction and 
improved operational efficiency [8]. However, this integration 
also introduces new challenges, including computational 
demands, scalability issues, and the need for robust network 
adaptability [9]. Addressing these challenges requires ongoing 
refinement of deep learning algorithms tailored for energy 
systems, with the goal of maximizing performance and 
efficiency [10]. 

In [11], a model proposed for forecasting the intra-hourly 
trends of electricity market imbalances in the Czech Republic, 
achieving a prediction accuracy of 81.8%. In [12], a global 
model developed to forecast imbalances in the Belgian energy 
system with a 15-minute resolution. The accuracy evaluation 
based on metrics such as the Winkler score and the Continuous 
Ranked Probability Score (CRPS). This model outperformed 
baseline (naive) approaches as well as commonly used 
algorithms like ARIMA and Quantile Regression Forests 
(QRF). Furthermore, Urdiales in [13] introduced a hybrid 
forecasting methodology for Belgian imbalance prediction, 
combining linear and nonlinear machine learning techniques to 
enhance modeling robustness. 

In [14], an enhanced artificial intelligence (AI) with DL 
based approach proposed for predicting the signs of energy 
imbalances in the day-ahead electricity market. Additionally, 
in [15] presented a multi-step variant of the distributed lag 
autoregressive model for short-term forecasting of system 
imbalances. Their approach based on the assumption that the 
imbalance correlated not only with historical system 
measurements but also with forecasts of exogenous variables. 

In the work [16], approaches to the optimal operation of 
cascade hydropower plants for forming the day-ahead 
electricity market schedule are presented. The authors apply 
mathematical optimization models considering hydrological, 
technical, and market constraints to improve water resource 
utilization efficiency and power system stability. The proposed 
optimization algorithms have strong potential for integration 
into IoT-enabled Smart Grid systems to enhance forecasting 
accuracy and automation in energy management processes. 

In the work [17] an advanced Long Short-Term Memory 
(LSTM)-based approach is proposed for forecasting electricity 
imbalances in the Ukrainian power system. The authors 
conduct a comparative analysis of deep learning models to 
improve prediction accuracy and ensure grid stability under 
variable load and generation conditions. The research 
highlights the advantages of LSTM architectures in capturing 
nonlinear temporal dependencies, making them highly 
effective for real-time energy management within IoT-enabled 
Smart Grid environments. 

In the paper [18] comprehensive optimization framework 
for off-grid hybrid renewable energy systems at Gaita Selassie, 
Ethiopia, is developed to achieve cost-effective and reliable 
electricity supply. The study integrates solar, wind, and battery 
storage technologies, using advanced optimization algorithms 
to balance system cost, reliability, and sustainability. The 
results demonstrate that such hybrid configurations can 
significantly enhance energy access and resilience, aligning 
with Smart Grid and IoT-based energy management strategies 
for decentralized power systems. 

In paper [19] proposes an approach based on federated deep 
reinforcement learning (FDRL) for energy management in 
smart microgrids equipped with distributed resources (solar 

panels, batteries). Each local agent (in a home or building) is 
trained locally and then aggregates knowledge at the energy 
management system level to improve the solution across the 
entire microgrid. The primary goals are to reduce costs, reduce 
CO₂ emissions, increase autonomy, and protect user privacy. 
The study demonstrates that the federated approach enables 
efficient scalability while maintaining accuracy and reliability 
in IoT contexts. 

This paper proposes a framework [20] that combines deep 
learning and IoT for real-time energy management. 
Specifically, the system includes short-term energy 
forecasting, communication between the energy manager and 
the consumer via IoT devices, and data preprocessing and 
normalization algorithms optimized for resource-constrained 
devices. The results demonstrate low prediction errors (MSE, 
RMSE) for both residential and commercial datasets, making 
the approach practical for Smart Grid/IoT environments. 

In the work [21] proposes a framework for optimizing 
power distribution in smart grids with bidirectional dispatch 
(supply vs. demand) using data from IoT sensors. LSTM and 
MLP models are used to forecast demand and generation, as 
well as to adjust load and generation management in real time. 
The results demonstrate reduced load forecast errors, lower 
operating costs, and lower CO₂ emissions, especially during 
peak hours. This is a good example of how deep models and 
IoT can aid in grid management and balancing. 

In the paper [22] proposes a comprehensive approach 
combining deep learning and graph neural networks for smart 
grid data analysis. The "GridOptiPredict" model includes three 
main components: load forecasting, state sensing, and resource 
allocation optimization. Experiments demonstrate high 
forecast accuracy, good sensitivity in network state detection, 
and efficient resource allocation. The paper demonstrates how 
the integration of various deep learning components can 
improve smart grid performance across various dimensions. 

By leveraging real-time data and advanced machine 
learning models, deep learning-based platforms can provide 
accurate demand forecasts, support intelligent resource 
management, and stabilize smart grids under dynamic 
operating conditions [23]. These systems are capable of 
continuously learning and adapting to evolving energy 
consumption and production patterns, thereby maintaining grid 
balance and enhancing energy efficiency in real time [24]. 

This approach integrates the Internet of Things (IoT), real-
time data analytics, and deep learning to effectively tackle the 
fundamental challenges associated with smart grid 
management, ultimately leading to the development of more 
adaptive, intelligent, and efficient energy distribution systems. 
The main goal paper is analyze possibilities of using smart 
grids based on the Internet of Things for intelligent energy 
management. 

II.  ARCHITECTURE SMART GRID WITH IOT ENABLED 
SENSOR AND DEVICES 
In Fig. 1 shown structural model of energy resource distribution 
in a modern smart grid. This model combines edge computing, 
the Internet of Things (IoT), and deep learning algorithms. 

In the proposed system, sensors and IoT devices constantly 
monitor and control many parameters of energy equipment. 
Key parameters include voltage, current, temperature, 
vibration, load, and the operational state of switches and 
transformers. Monitoring these factors enables early detection 
of irregularities and supports prompt action in case of faults or 
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emergencies. In parallel, IoT sensors capture variations in the 
environment, shifts in demand, and real energy consumption. 
The resulting dataset provides valuable insights for deeper 
analysis and contributes to more efficient allocation of energy 
resources. 

IOT Sensors&Devises Data collection

Processing tools

NetworkData Base or 
Claud Base

Optimization 
tools 

 

Figure 1. Smart Grid Architecture with IoT devices. 

III.  IOT AND DEEP LEARNING FOR SMART GRIDS 
SOLUTIONS 
Smart grids that integrate deep learning, artificial intelligence, 
and the Internet of Things enable the most efficient use of 
resources and energy.  As a result, they contribute to the 
development of more powerful and environmentally friendly 
energy sources that meet the requirements of sustainable 
development. Consider in detail the most used methods. 

Energy-Net: A Deep Learning Model for Temporal 
Forecasting. The Energy-Net model introduces a deep learning 
framework tailored for forecasting temporal energy 
consumption. It incorporates spatio-temporal modules that 
utilize a Temporal Transformer (TT) to model temporal 
dependencies and a Spatial Transformer (ST) enhanced with 
convolutional layers and self-attention mechanisms to capture 
spatial features [25]. Validated on the IHPEC and ISO-NE 
datasets, Energy-Net demonstrates lower Root Mean Squared 
Error (RMSE) compared to existing models, while maintaining 
computational efficiency suitable for IoT environments in 
smart grids. 

Energy Efficiency Optimization in Smart Grids via 
Machine Learning. This approach proposes a machine 
learning-based framework designed to enhance energy 
efficiency in smart grids. By analyzing residents’ movement 
patterns and generating short-term consumption forecasts, the 
system aims to maximize the integration of renewable energy 
sources. It utilizes indoor localization technologies and smart 
meters to collect real-time data on user behavior and 
consumption, which is processed using an online machine 
learning model [26]. This enables dynamic optimization of 
solar energy distribution, reduces peak demand on central 
grids, and improves forecasting accuracy–achieved using 
limited computational resources. 

Optimization of IoT-DRL-Based Smart Grids. This 
approach leverages resource management optimization in 
smart grids by integrating Deep Reinforcement Learning 
(DRL) within an Internet of Things (IoT) infrastructure [27]. 
The dynamic adaptability of DRL models to real-time changes 
in network conditions–including user behavior and sensor 
feedback–enables efficient energy utilization and waste 
reduction. This results in improved economic performance. A 

practical outcome of this method is a reduction in the number 
of energy units from 2700 to 2300 as the number of deployed 
IoT sensors increased from 100 to 500, highlighting enhanced 
throughput, resilience, and reliability of the smart grid system. 

Energy Forecasting for Smart Buildings Using LSTM. This 
method applies a multi-level Long Short-Term Memory 
(LSTM) neural network within an IoT-based architecture to 
forecast and manage energy usage in smart buildings [28]. The 
LSTM model significantly outperforms traditional machine 
learning algorithms such as linear regression and random 
forests, achieving lower Mean Absolute Error (MAE) and 
RMSE. By enhancing prediction accuracy and operational 
efficiency, this approach contributes to cost savings, improved 
energy utilization, and more stable building energy systems. 

Energy Optimization in Smart Cities Using Deep Learning 
This method focuses on reducing energy consumption in smart 
cities by applying deep learning techniques, particularly neural 
networks and recurrent neural networks (RNNs), within IoT-
supported environments. Real-time data collected from 
sensors, devices, and smart grid infrastructures is analyzed to 
optimize energy usage, support operational decision-making, 
and improve device management. The resulting benefits 
include lower energy costs, reduced resource consumption, and 
decreased greenhouse gas emissions, contributing to 
sustainable urban development [29]. This solution is scalable 
and adaptable for implementation across different urban 
settings. 

Energy Optimization in Hybrid Smart Grids. The proposed 
hybrid smart grid framework integrates multiple renewable 
energy sources–including photovoltaic, hydro, and thermal 
power–while supporting real-time energy expenditure 
optimization and cost recovery for urban environments [30]. 
The system incorporates a Flexible Operations Layer (FoL) to 
manage distribution and control functions efficiently. By 
promoting intelligent resource usage, the approach ensures 
reliable and sustainable energy delivery while improving the 
overall performance of hybrid smart grid infrastructures. 

IoT-ML Integration for Enhanced Smart Grid Management. 
This approach explores the effective integration of Internet of 
Things (IoT), Machine Learning (ML), and Smart Grid (SG) 
technologies to optimize energy management in smart 
buildings. The system emphasizes remote monitoring and 
configuration of smart grid functions, enhancing occupant 
comfort and safety while reducing energy consumption [31]. 
By processing data from smart meters and IoT sensors, ML 
algorithms provide insights into consumption patterns and 
enable real-time optimization. The result is a more efficient, 
responsive, and intelligent smart grid infrastructure. 

For effective energy management in the context of 
reasonable measures and places of integration of Internet of 
speech technologies (IoT), deep progress and predictive 
modeling from distributed systems, the most promising is the 
system with deep learning. The system continuously processes 
data in real time and adapts to optimize energy distribution, 
while maintaining reliability and cost-effectiveness. The 
solution will ensure a reduction in energy costs, increased 
operational efficiency and support for increased development. 

IV. MATHEMATICAL FRAMEWORK FOR THE 
REALIZATION OF DEEP LEARNING FOR SMART GRIDS 
The rapid evolution of intelligent energy grids has been 
significantly driven by the integration of advanced 
technologies such as the Internet of Things (IoT), edge 
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computing, and deep learning. These innovations are 
transforming traditional energy systems by enabling more 
efficient management and real-time monitoring of energy 
resources. IoT devices, sensors, and smart meters collect vast 
amounts of data from energy networks, providing real-time 
insights into energy consumption patterns, grid performance, 
and potential issues. The integration of advanced technologies, 
such as IoT, edge computing, and deep learning, within 
intelligent energy grids requires a robust mathematical 
framework to optimize decision-making and data processing. 
One such framework that has gained traction in the 
management of energy systems is ORA-DL (Optimal Resource 
Allocation with Deep Learning). This framework combines 
optimization techniques with deep learning models to enhance 
the efficiency and adaptability of energy distribution networks, 
reducing latency and improving the responsiveness of the grid 
to changing conditions. In this study, the deep learning 
component is used primarily for forecasting key indicators 
from IoT-derived time-series data, and these forecasts are then 
integrated into the ORA-DL optimization-oriented decision 
framework. 

The method of deep learning to ensure the optimal 
distribution of resources at reasonable measures with the 
vicinity of adaptive vagal coefficients  flg  and the formation 

of demand   wja    the optimal distribution of energy 

 quwKa   in intellectual measures  euwJa   can be 

representations to get relatives by next eq.: 

     euwJaquwKawjaflg  : .     (1) 

To promote the efficiency of resource utilization, smart 
power is connected to the Internet of Things (IoT) by adopting 
solutions based on deep knowledge. Maximize the distribution 
of energy in intellectual measures  wiuw  : 

     quewVawiuwquwXawPa : .     (2) 

Eq. (2) describes the adaptive distribution of tension wPa  
with the help of predictive  quewVa   modifiers of pain 

 quwXa   and systemic pain. Level 2 guarantees that the 
measure is stable and results in intelligent decision making with 
low energy consumption. The result wVa  of the integration of 
system characteristics  quw    and voltage adjustment 

ACa :  to optimize the level of adaptive output  quwBa   
allows optimizing the energy distribution: 

    wVaquwBaquwACa  *: .         (3) 

By preserving electrical stability and energy efficiency, the 
system guarantees an economically efficient distribution of 
resources. With the understanding that commercial and 
industrial enterprises can increase their energy savings through 
energy management systems, charging electric vehicles and 
saving energy. Residents will benefit from the availability of 
intelligent healthcare providers, energy storage, and home 
displays that allow for more efficient energy management. The 
core system combines energy management with additional 
advanced infrastructure, further development of monitoring 
and automation, ensuring increased distribution of hybrid 
energy, stabilization boundaries and rational energy utilization. 

This will make it possible to achieve a more reliable and 
environmentally friendly environment 

     wfsaKeanfiLswuaeZa  *: .   (4) 

stability of the operating voltage  wua   of the system 
  wfsaK   and dynamically adjusted parameters (

 eanfiLs  ) to predict the coefficient of adaptive vicoristic 
energy  eZa . This ensures improved resource management, 
less inefficiency and greater energy efficiency 

     wusKajdcJamsaosfc  *: .     (5) 

The function  sfc , which optimizes the performance of the 
intelligent network  jdcJa   based on  wusKa   scaling 
adaptation, changes the system adjustment   msao  , as 
shown in line (5). Due to the flexible flexibility of the circuit, 
level 5 guarantees an effective distribution of energy with 
minimal operating inputs and outputs 

     wusVawtcdhdmsaksM x  : .   (6) 

Adaptive power modulation  sM x  is optimized for the 
distribution of power resources   wusVa   by eq. (6) by 
enabling dynamic water control   msak   and frequency 
regulation   wtcdhd  . Therefore, minimizing wasted 
energy and increasing the stability of the flow, the system 
guarantees efficient energy consumption. 

V.  EXPERIMENTAL VALIDATION 
The study of the feasibility of the deep learning method based 
on the selected framework was made for hourly data on 
balancing energy volumes (up and down). The history consists 
8704 points. The test period is 21 days. Studies were performed 
with a forecast horizon of 72 points (7 by 72) and 504 points. 
RMSE was selected as the primary metric due to its 
interpretability in the original units and common use in 
forecasting; additional metrics and baseline models (e.g., 
MAE, R2, ARIMA, linear regression) will be included in an 
extended evaluation. Moreover, according to the obtained 
RMSE values (for down and up samples) and RMSE (for up 
sample), in a third of the cases, the values of the ensemble 
forecast errors are lower than the real data. Preliminary, the 
accuracy of the forecast of demand volumes for balancing 
resources is considered sufficient to use the obtained 
forecasting results in the procedures for situational planning of 
additional supply of services for loading and unloading from 
hydroelectric units. So in this case considering that, statistical 
indicators for price time series from the point of view are more 
stable. The presented experimental validation is intended as a 
feasibility study on real hourly balancing-energy time series; 
broader cross-period and multi-baseline experiments are 
planned as future work.  

In Fig. 2 and Fig. 3 show random day graphs (30 history 
point) for this day price time series in the upward (loading) and 
downward (unloading) directions, respectively. 
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Figure 2. Example of forecasting time series of prices for 
loading and unloading respectively. 

 

Figure 3. Example of forecasting time series of unloading 
prices. 

Several experiments with different forecasting horizons and 
history volumes were conducted when forecasting using the 
mathematical framework for the realization of deep learning for 
smart grids. The model demonstrated an advantage over 
moving averages in the accuracy of reproducing actual data. 
However, both models turned out to be quite inaccurate, 
especially in the case of forecasting prices for unloading 
services, where the root-mean-square error reached high 
values. 

The conducted experiments demonstrate that the deep 
learning framework, when applied to balancing energy 
volumes with horizons of up to 504 points, achieves forecast 
accuracy sufficient for preliminary integration into situational 
planning of hydroelectric unit loading and unloading. Despite 
some variations in RMSE across up and down samples, in 
nearly one-third of the cases, ensemble forecast errors were 
lower than deviations observed in real operational data. This 
indicates that the use of data-driven forecasting tools is 
promising for supporting market mechanisms and short-term 
operational decision-making. Moreover, the obtained results 
confirm that statistical properties of price time series in 
balancing markets remain relatively stable, which further 
strengthens the potential for embedding advanced predictive 
models into real-world grid management processes. 

Nevertheless, moving from isolated forecasting 
experiments toward holistic smart grid management reveals 
deeper challenges. Current infrastructures still face limitations 
in resource allocation efficiency, difficulties in maintaining 
stability under fluctuating demand, and risks of excessive or 
uncoordinated energy usage. These issues highlight the need 

for systems that go beyond simple prediction and instead 
enable proactive optimization and adaptive control. 

In this context, improving the automation and optimization 
of energy distribution requires the combined use of energy-
efficient Internet of Things technologies and deep learning 
models. Their integration has already begun to reshape the way 
smart grids respond to dynamic demand–supply conditions, 
creating opportunities for more resilient and sustainable energy 
ecosystems. However, without targeted mechanisms, the 
benefits of such integration are constrained by persistent 
inefficiencies, such as suboptimal allocation of balancing 
resources and energy losses during peak load conditions. 

To address these challenges, we introduce ORA-DL, a 
novel deep learning–based system that not only improves 
demand forecasting but also leverages predictive insights to 
optimize resource distribution across the grid. ORA-DL 
enhances situational awareness by integrating multi-source IoT 
data, enables adaptive allocation of balancing resources, and 
contributes to overall grid stability even under uncertain 
demand conditions. Unlike traditional forecasting tools, ORA-
DL incorporates optimization-oriented feedback loops, 
allowing it to bridge the gap between accurate prediction and 
sustainable decision-making. In addition, the system is 
designed with scalability and robustness in mind, making it 
suitable for integration into large-scale energy infrastructures 
and adaptable to future changes in consumption patterns and 
renewable generation dynamics. 

As a result, ORA-DL provides a comprehensive foundation 
for future energy management systems, aligning predictive 
analytics with environmentally responsible smart grid 
operations. By combining advanced forecasting, intelligent 
optimization, and sustainable management strategies, it 
addresses the shortcomings of existing solutions and creates a 
pathway toward more efficient, stable, and resilient energy 
networks. 

VI.  DISCUSSION 
The experimental and analytical results obtained in this study 
confirm the effectiveness of integrating deep learning 
techniques with IoT-enabled architectures for intelligent 
energy management in smart grids. The findings highlight that 
the proposed ORA-DL framework not only enhances the 
accuracy of energy demand forecasting but also contributes to 
adaptive and optimized resource distribution across complex 
energy networks. Compared with traditional methods such as 
moving averages or linear regression models, the deep learning 
approach demonstrated higher predictive stability and 
adaptability to dynamic grid conditions, particularly when 
managing balancing energy volumes in hydroelectric systems. 
A broader quantitative benchmark against classical and ML 
baselines (e.g., ARIMA and linear regression) is an important 
next step and is planned for an extended version of the study. 

The results also indicate that the integration of IoT sensors 
and real-time analytics allows for continuous monitoring of key 
grid parameters, improving situational awareness and enabling 
proactive decision-making. These capabilities are essential in 
addressing fluctuations in renewable generation and variable 
consumer demand, which are major challenges for modern 
power systems. The observed improvements in Root Mean 
Squared Error (RMSE) values across forecasting horizons up 
to 504 points suggest that the system can reliably support short-
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term operational planning and market balancing processes. 
Despite these advances, the study also reveals persistent 

limitations. Forecasting accuracy decreases when predicting 
price trends for unloading operations, suggesting that the 
current model may be sensitive to noise or abrupt market 
fluctuations. Moreover, while the proposed ORA-DL 
framework effectively integrates forecasting and optimization, 
its computational complexity could present challenges for 
deployment in resource-constrained IoT environments. Key 
limitations include sensitivity to abrupt fluctuations for certain 
series and potential computational overhead for deployment on 
resource-constrained IoT/edge devices. Therefore, further 
research is required to enhance algorithmic efficiency and 
scalability, particularly for large-scale distributed energy 
systems. 

From a practical perspective, the implementation of ORA-
DL in real-world infrastructures – such as the Integrated 
Energy System of Ukraine – could significantly improve 
demand forecasting accuracy, facilitate better balancing of 
generation and consumption, and reduce technical losses. This 
is especially relevant in contexts where the integration of 
renewable energy sources introduces higher variability and 
uncertainty. By coupling deep learning models with IoT-
enabled monitoring, operators can achieve more flexible and 
sustainable management of energy assets. 

The comparative analysis with related works demonstrates 
that the proposed approach aligns with global trends in AI-
driven energy systems. Similar architectures – such as Energy-
Net [25] and federated DRL-based management systems [19] 
– also report improved prediction and optimization outcomes, 
confirming that deep learning represents a transformative 
direction in smart grid evolution. However, unlike most 
existing approaches focused solely on forecasting, ORA-DL 
incorporates feedback-based optimization loops, bridging the 
gap between prediction and control. 

Overall, the discussion emphasizes that while the 
combination of IoT and deep learning offers clear benefits for 
intelligent energy management, success depends on addressing 
challenges of scalability, interoperability, and cybersecurity. 
Future efforts should focus on hybrid architectures that 
combine deep learning with reinforcement learning for 
adaptive control, edge computing for latency reduction, and 
privacy-preserving mechanisms for distributed data 
processing. By doing so, next-generation smart grids can 
evolve toward self-organizing, resilient, and environmentally 
responsible energy ecosystems. 

VII.  CONCLUSIONS 
This paper has presented a comprehensive framework for IoT-
enabled smart grids that integrates deep learning methods with 
energy optimization strategies. The use of data from IoT devices 
and sensors in real-time analytics and predictive modeling 
significantly enhances the automation of grid operations, 
improves the efficiency of resource utilization, and strengthens 
grid stability. The conducted experiments with balancing energy 
volumes demonstrated that deep learning–based forecasting 
achieves sufficient accuracy for preliminary integration into 
situational planning, particularly in the management of 
hydroelectric unit loading and unloading. These findings 
emphasize the practical potential of advanced forecasting tools 

to support short-term operational decisions and market 
mechanisms. 

The proposed ORA-DL system extends beyond isolated 
prediction tasks by incorporating optimization-oriented feedback 
loops and adaptive allocation mechanisms. Through the 
integration of multi-source IoT data, ORA-DL enhances 
situational awareness, optimizes balancing resource distribution, 
and contributes to maintaining grid stability under uncertain and 
fluctuating demand conditions. This holistic approach not only 
addresses existing challenges, such as inefficient resource 
allocation and excessive energy consumption, but also provides 
a scalable and robust platform for sustainable energy 
management. The optimization aspect is represented in the 
proposed feedback-based allocation mechanism; an explicit 
optimization/convergence curve will be provided in future 
extended work. 

In the context of the Integrated Energy System of Ukraine, 
improving forecasting accuracy and more precise accounting of 
consumption are of particular importance. Enhancing these 
aspects is essential for ensuring the effective operation of 
electricity market participants and for maintaining the overall 
sustainability, flexibility, and reliability of the energy system. 
Furthermore, the implementation of intelligent forecasting and 
optimization tools contributes to achieving environmental 
objectives by reducing unnecessary energy usage and supporting 
the integration of renewable energy sources. 

Nevertheless, further research is required to refine the 
proposed approaches, ensuring their robustness, scalability, and 
long-term effectiveness under diverse operating conditions. 
Future work should focus on expanding the system to include 
reinforcement learning–based control mechanisms, 
incorporating advanced market-driven optimization models, and 
testing the framework under scenarios with high penetration of 
distributed and renewable generation. In this way, the presented 
concepts lay the groundwork for next-generation smart grids that 
are adaptive, resilient, and capable of meeting the increasing 
demands of modern energy systems. 
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