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ABSTRACT Underground tunnel identification remains difficult in spite of the development of recognition methods.

There is often no direct access to the Earth's surface above bunkers; above-ground structures may be located there; the
soil structure may contain dense layers opaque to radio waves. Therefore, it is promising to use geophysics acoustic
recognition methods. The study aims to develop an information system schematic diagram for identifying man-made
underground cavities using machine learning methods based on acoustic reconnaissance data. In contrast to known
methods for monitoring vibration waves during earthquakes, the initiation of vibration waves can be carried out by
delivering precise strikes of known power to specified surface points. However, solving the inverse problem for the
propagation of acoustic waves is problematic due to the small relative sizes of these structures. The scientific novelty
lies in the fact that we find a solution to this problem using machine learning methods based on model calculations for
a known geological structure of the soil. Combining it with satellite observation data on the above-ground structures

makes it possible to build a neural network for analyzing the vibrations of sensors located in controlled territory.

KEYWORDS underground voids, acoustic waves, inverse problems, neural networks, machine learning.

I. INTRODUCTION
Defensive underground fortifications have been one of the
oldest means of protection for more than a millennium.
These structures have been under intense development starting
from the period of the WWI, where they demonstrated their
reliability in preserving manpower. Underground storage and
tunnels take a form of man-made cavities and their
identification by existing methods poses a significant
challenge, despite the almost two-thousand-year history of the
development of recognition methods and the use of satellite
mapping systems. For example, even though the war in Gaza
has been going on for more than 500 days, Israel has managed
to destroy only 20-40% of the extensive network of tunnels
created by Hamas [ 1, 2]. It is clear that scouts do not have direct
access to the earth's surface above bunkers and crossings. The
task is complicated by the fact that above-ground structures
may be located there, as is the case in the Gaza Strip. In
addition, the soil structure can be heterogeneous and contain
dense layers and inclusions that reflect radio waves [3, 4].
Therefore, it is promising to use acoustic recognition methods,

which are already used in geophysics [5-7].

The purpose of the study is to develop a schematic diagram
of an information system for the identification of man-made
underground cavities using machine learning methods based on
acoustic reconnaissance data. The scientific novelty lies in the
fact that we find a solution to this problem by the use of
machine learning methods based on model calculations for the
known geological structure of the soil.

The structure of this work is as follows: Section II presents
an overview of existing models for voids recognition and
technique of computer vision; Section IIT describes the basic
local and FEM problems statements; Section IV presents
examples of the scheme application to determine the state of
underground voids, the obtained results and discusses them.

Il. INVESTIGATION METHODS REVIEW

A. EXISTING MODELS FOR VOIDS RECOGNITION

Seismic exploration is a suit of acoustic methods for studying
the geological structure of the earth's crust, which are based on
the study of the propagation of artificially generated elastic
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waves (by explosions, shocks) or by an earthquake. Elastic
waves, which arise from an explosion or impact, propagate in
rocks at different speeds [4, 8, 9]. At the boundary that
separates rocks of different compositions, elastic waves are
reflected, refracted, and partially returned to the Earth's surface.
By studying the time and velocity of wave propagation, their
amplitude, signal shape, and the nature of ground vibrations on
which vibrating receivers (seismic receivers or geophones) are
installed, it is possible to determine the depth and shape of
boundaries in the surrounding environment, their angle of
incidence, the direction of propagation, and many other
characteristics of the geological environment. The wave
propagation and detection diagram is shown in Figure 1. Pulsed
excitation generates an acoustic wave that propagates within
the layer and is reflected from its boundary. The reflected and
refracted waves are recorded by a system of acoustic sensors.

Seismic Source

Receivers

Refracted
" Layer
tooemm-- Gnasall y

boundary

*** Refracted wave

Figure 1. Part of an algorithm of acoustic wave processing

Longitudinal waves, less often transverse and mixed waves,
are used in seismic exploration. The reflected wave method has
become the most widely used, which makes it possible to map
boundaries with an accuracy of up to 1-2% at depths of up to
7-10 km [10]. A greater depth of investigation characterizes the
method of refracted waves [5]. Still, it has lower accuracy and
resolution, which makes it possible to study only layers with an
increased speed of seismic waves. For the detection of
minerals, modifications of the method are used by adding
signals reflected from the common depth point, three-
dimensional seismic, multi-wave seismic, etc. [5, 17].

Hydrogeological seismic surveying is used in engineering
seismic surveys [6, 10]. It is used to study the depth of rock
deposits, dismemberment of sedimentary strata, determine the
strength of the weathering crust, map permafrost, study
discontinuous faults, fractured, karstified zones, study
landslides, determine the level of underground water
Engineering-hydrogeological seismic exploration deals with
small depths, therefore the excitation of elastic waves is carried
out with the help of small explosions. Profiles and
measurement points are located at a short distance from the
sources of wave excitation. Therefore, high-frequency waves
(150 - 200 Hz) are recorded, increasing the method's resolution.

In seismic exploration, the complete formulation of the
problem consists of solving the equations of propagation of
elastic oscillations with piecewise continuous coefficients
under the condition that they are excited by a point explosion
[5, 17]. The solution of this task is currently carried out only
for the simplest models of the structure of the environment. The
main measured value in seismic exploration is the arrival time
of reflected signals. The signal delay time is measured at
various points on the earth's surface [7, 10].

A significant number of seismic systems operate in
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conditions where the intensity of the useful seismic signal
exceeds the interference level, mainly due to the use of
explosive sources of elastic wave formation [11]. However,
when studying small structures relative to the plan, special
methods should be used to recognize their influence on acoustic
waves, among which automatic processing of geoinformation
data using a combination of computer vision and machine
learning methods can be considered the most promising [12,
16, 18, 19]. When using ML, fuzzy logic is used to increase the
sensitivity and accuracy of conventional neural networks, for
example [14, 15, 43], and also the Radon transform, which
effectively detects hidden objects [44].

B. APPLICATION OF COMPUTER VISION AND ML
Computer vision is the theory and technology of creating
machines that can detect, track, and identify objects [4, 16].
Acoustic object recognition is also a field of computer vision
[6, 27]. Depending on the software, it can analyze objects at a
higher speed and perform its task more efficiently and cheaply
than a human [16]. Military applications are currently the
largest area of computer vision used for tasks such as detecting
enemy soldiers, vehicles, and fortifications, as well as
controlling drones and missiles. Control systems send drones
or missiles to a given area instead of a specific target, and target
identification occurs based on incoming video data when the
controlled object reaches the given area. The modern military
term '"combat awareness" is based on various sensors,
including acoustic and optical, providing information about the
battlefield, which is used to make tactical decisions.

To reduce labor intensity and increase the reliability of the
information obtained, automatic data processing is carried out
based on machine learning (ML) [6, 7, 12, 18]. The inverse
problems of geophysics under consideration belong to the class
of computationally complex ones. Traditional methods of
solving them are often unstable and require additional
regularization [10]. Machine learning studies methods for
constructing algorithms that can improve the performance of
calculations based on experience. The main method of machine
learning is the use of multi-level neural networks for the tasks
of identifying and separating objects. Machine learning
algorithms can process huge amounts of data in a reasonable
time, identify hidden patterns in them, and provide the
necessary information for decision-making.

lll. SEISMIC EXPLORATION OF ANTHROPOGENIC VOIDS

A. BASIC LOCAL PROBLEM STATEMENT

Based on the statement, we intend to solve the local oscillation
problem of an infinite elastic body with a thin inhomogeneity
[8]. The material properties of the thin-walled interphase
inclusion W, , matrix W, , and scatterer W, are given by
densities p; and Lamé moduli 4;, p;, respectively. In the
process of obtaining models of the dynamic interaction of fine
heterogeneity with the surrounding environment it is
convenient to use a set of Cauchy equations of motion and the
relationship of Hooke's law:

H,H,H, doy, Hp
mrm (1
s Z e, Ju; e,du; e; Ju;
Ojmi = 41 Omi £ Hy da, "\ H, 0a, H,da,)
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u; (%, w) =f u;(x, t)exp(iwt) dt, u;(x,t)

1 (® ]
= ﬂf_wu]-(x, w)exp(—iwt) dt,

where u; — movement in interphase inclusion, matrix, and
scatterer, respectively, t — time, 0jp;— stress tensor
components in regions W;, x — Cartesian coordinates of points,
o — coordinates of the local tri-orthogonal system with basis
(e, e,,€3), H — Lamé coefficients of curvilinear orthogonal
coordinate system o

X = (X1, X3, X3), a = (@, ay, 3),
ox

day

2

Hi(ay, a3, a3) =

Conditions of the perfect mechanical contact are met on the
surfaces of the connection of components of the form
g.(a;,a;) and g_(a,, ay) determined in the local basis as it
can be seen in figure 2. We obtain an analytical approximation
of these functions, which provide sufficient accuracy and
smoothness, by applying our developed method of
approximating wireframe inclusion points by fifth-order Bezier
surfaces [20, 21] or multiply Fourier series [22, 23].

N\

Figure 2. Scheme of thin-walled interphase inclusion

The wave field in the matrix is formed by the superposition
of the field of given incident u;, (X, t) and scattered ug. (X, t)
waves:

u(x,t) = u; (X t) + ug(x, t). 3)
Zero initial conditions should also be taken into account:
u,.(x,0)=0. @)
According to the scheme of the asymptotic approach [37,
38], we introduce an artificial small parameter ¢ and an internal
variable @5 into the domain W, as follows
a3z = &as. (5)
The displacement and components of the stress tensors are

presented in the form of asymptotic expansions in a series with
a small parameter

O'kij(x) = z 6"6,(3,)- (ay, ay, @3)
~ (6)

0,.-1,(-1) =
+ 0xeT 0y (ay, az, @3),
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u,(x) = Z s”ugcn) (ay,ay,@3), k €{0,1,2,in,sc},

n=0

where & — &function.

Then we substitute the series into the Cauchy equation and
the boundary conditions. Having equated the coefficients with
the same powers of ¢, we obtain a recurrent sequence of
ordinary differential equations in the variable @; with respect
to the sought terms of the expansions. When the contact
conditions are satisfied, the asymptotic terms in the equations
are represented by Taylor series in vicinity of a5 equals zero,
which are convergent under the conditions of applying a
generalized summation to them by using the previously
developed Padé transformation [25, 26]. In this way, the
restriction [8, 24] on the length of waves propagating in a
composite body is eliminated, which requires them to be much
longer than the thickness of the interphase inhomogeneity for
the convergence of the obtained asymptotic solution,

Let us present the Cauchy equation of motion, the
relationship of Hooke's law, as well as the conditions of contact
of inhomogeneity with the matrix and inclusion in the variables
(a4, 0, @3). Considering the solutions of the obtained ordinary
differential equations and equating the terms with the same
powers of the parameter ¢ from the boundary conditions, we
determine the effective contact conditions of the bodies
adjacent to the fine inhomogeneity. The type of effective
contact conditions of the bodies adjacent to the thin
inhomogeneity is determined by the order of smallness of the
parameters of the mechanical contrast y;, of the thin-walled
interphase inclusion:

max(4o,io)
Vie = max(Zp,lg) ™
B. BASIC FEM PROBLEM STATEMENT
The resulting local analytical model is used to construct a full-
size model based on FEM [11]. This makes it possible to avoid
significant mesh thickening in the tunnel zone and significantly
speed up the calculation, which is important for multiple
calculations. FEM allows one to consider soil heterogeneous in
a specific area where underground structures are located.

Usually, we can use the ANSYS package, or PyFEM
framework, or any other FEM package which allows for the
calculation of the propagation of vibrations under pulsed and
explosive loads [27, 35]. The mesh of three-dimensional 16-
point nonlinear elements was refined until the stability of the
results was achieved.

The effect of voids was defined as the difference between
the calculated parameters and the oscillations of the region
without voids in phase and amplitude, which increases the
accuracy of determining the influence of voids. When
calculating the vibrations of a soil massif with a void, we must
consider the massif's geological structure and the presence of
capital buildings, canals, and other man-made objects on the
surface. For this purpose, we use the data accumulated at
Dnipro University of Technology over many years on the
geological structure of our country and satellite mapping data
[41]. This is possible due to the digital databases in the RAPID
and CONTOUR systems [28, 29] created in our department.
We have specialized information systems for collecting,
storing, and processing satellite, geological, and seismic survey
data containing long-term observation data.
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GIS RAPID [29] is a geo-information system for
forecasting and supporting decision-making in nature
management, ecology, mineral exploration, and emergency
forecasting. It contains the following data

e Materials of geological, geophysical and geochemical
studies.

e  Results of testing and description of wells, pits, ditches,

etc.

Cartographic sources.

Materials of aerospace survey.

Data of environmental studies.

Attributive information (tables, codifiers, etc.).

GIS RAPID allows Input, storage, conversion, filtering, and
visualization of grid, raster, and vector data (spatial images,
geophysical fields, geological and environmental data, maps,
images, etc.), and forecasts of natural and man-made objects on

Auxiliary
programs

Wizards
! Table
| manager

Block for
work with
tables

GIS CONTOUR

the earth's surface.

The main purpose of technology based on GIS CONTOUR
[28] is to allow the specialist to build three-dimensional models
of geological objects (GO). Since before creating three-
dimensional models, users operate with two-dimensional
representations of the GO, the system also allows obtaining
geological sections, horizon plans and creating their printed
copies (Figure 3). The developed GIS solves the following set
of problems:

e Automated creation of 3D models and visualization of
geological observation data.

e Vector and raster representation of data, management of
data layers.

e  Visual analysis of borehole sample data.

e Data display filtering.

Block for
data layers
export

3D representation
management
Data
visualizer

Layers
> manager

GIS CONTOUR

kernel ?

Data layers

Block for
reading/writing [
data layers

property
analyzer

Figure 3. GIS CONTOUR structure diagram

Thus, the recognition task comes down to constructing a
neural network specific to a given area and the location of
troops. The input parameters of the network are the coordinates
of the location of seismic sensors and their readings, the output
parameters are the location of the ends and nodes of linear
underground voids. Due to the specifics of the task, training
such neural networks cannot use full-scale training data sets,
but only the results of simulation calculations [8, 30].

The Dnipro University of Technology has a huge
knowledge base about the geological structure of Ukraine,
which can now be used to build the described neural networks.
We have specialized information systems for collecting,
storing and processing satellite, geological and seismic survey
data containing long-term observation data.

C. SECOND LEVEL INVERSE PROBLEM STATEMENT
To effectively and quickly identify enemy protective
underground structures in combat conditions, it is necessary to
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rationally select the number and location of seismic sensors, as
well as the location, power and number of explosions [5, 31,
32]. We solve this problem as the inverse problem [34, 35, 42]
to the previous one by constructing a second-level neural
network [33, 36, 37].

Thus, after receiving information about the specific location
of the enemy and one’s own troops on the ground, geological
information about the soil structure in the area is extracted.
Next, several neural networks are trained on simulated data,
representing the geological structure and for a different number
of sensors and locations of explosion points. After this, the
inverse problem of optimizing the number and location of
sensors and explosion coordinates is solved. Seismic sensors
are located at suitable points and explosions are applied with a
given power and location.

As a result of the research, an information system was
created to form the architecture and parameters of a rational
neural network for identifying linear man-made voids based on
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active seismic exploration data in combat conditions.

IV. EXAMPLES OF METHOD APPLICATION

A. APPLICATION OF THE SCHEME TO DETERMINE THE
STATE OF UNDERGROUND VOIDS

Let us consider the application of the described calculation
scheme to determine the state of underground voids of two
types — adjacent to the soil surface and located deep in the soil
(Figure 4). In both cases, the void is considered a soft
heterogeneity, but in the first case, W, is air, and in the second,
W, and W, are soil with possibly different mechanical
characteristics. By equating the material characteristics of the
matrix and bulk inclusion, we obtain separate models of thin-
walled inclusion in a homogeneous elastic medium.

B. EXAMPLES OF DIRECT FEM SOLUTION

As an example of calculating the reaction of underground
voids, an experiment was considered for a 100 m x 100
mx100 m, the scheme of which can be seen in Figure Sa.

C

Figures 5b-5d represent a transparent grid diagram for the
calculated area, a view of finite element mesh on the vertical
section near the void, and a view of finite element greed on the
soil surface near a phased array of acoustic sensors.

Figure 4. Scheme for calculating underground voids using the
proposed method

AN
A Sl X
"\’{\" ‘gﬂV‘ ;/“« N

d

Figure 5. Scheme of FEM grid near a void and phased array of acoustic sensors: a — opaque diagram of the relative position of
the soil mass, void, a phased array of acoustic sensors and finite element mesh; b — transparent diagram of the same objects; ¢ —
view of finite element mesh on the vertical section near void; d — view of a finite element mesh on the soil surface near a phased

array of acoustic sensors

During the theoretical considerations, it has been decided
that modeling the system in the discrete-time domain directly
would be ineffective in terms of precision and use of
computational resources. As an alternative, the research was
conducted in the frequency domain, with the resulting
frequency responses then used to obtain the result for an
explosion model via linear filtering techniques.

The source was placed close to the soil model and the
frequency response for the acoustic pressure was calculated for
a grid of virtual microphones, similar to the classic planar
phased antenna array [4, 31]. The obtained frequency responses
were then used as a linear filter transfer function in order to
allow for the easy and less computer-intensive modeling of
responses to arbitrary input signals by multiplying their
frequency representation by the filter transfer function and
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using the inverse DFT, or by directly convolving the filter’s
impulse response with the signal in the time domain.

The resulting signals are classically then fed into direction-
finding algorithms, which can be facilitated by using the
MUSIC method, the ESPRIT method, Prony’s method, or the
matrix pencil method [38, 41].

In the current paper, instead of standard approaches, an
artificial neural network is applied. In this case the resulting
output can then be either directly fed into a neural network or
pretreated via such techniques as matched filtering in order to
compress the signal and thus reduce the number of needed input
nodes. For the initial research, the explosion was modeled via
a delta-function, which yields the impulse response as the
output of the filter. This impulse response can be calculated
using the inverse fast Fourier transform.

VOLUME 24(4), 2025
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During research, the depth D and distance L to the tunnel
were chosen from the ranges of 50 to 100 m and 200 to 400 m,
respectively. The slope angle a of the tunnel was chosen from
the values between 0 and 30 degrees. The radius of the tunnel
R is between 10 and 25 m for this initial testing stage.

An example of the frequency response H obtained during
the experiment can be seen in Figure 6. The resulting impulse
response /4, taking into account the reflected wave, which can
be used to model the explosion, can be seen in Figure 7.

50000 ]
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&' 20000 4
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0 200 400 600
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0 o
B 2000 \
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5 —4000 4
—60001 ! ] 1
0 200 400 600
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Figure 6. Frequency response for the middle sensor
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Figure 7. Impulse response for the central sensor

C. EXAMPLE OF INVERSE SOLUTION
To solve the inverse problem, a special neural network was

built based on the TensorFlow 2.0 framework [39, 40]. This
task is essentially a pattern recognition task, for which it is
convenient to use a stacked neural network [12]. Each layer can
learn features at a different level of abstraction. However,
training neural networks with multiple hidden layers can be
difficult. One can effectively train a neural network by training
a special type of network known as an autoencoder for each
hidden layer (Figure 8). First, we train the hidden layers
individually in an unsupervised fashion using autoencoders.
Then, we train a final layer and join the layers together to form
a stacked network (SAE), which we train once in a supervised
neural network training.

Classical Neural Network

Inputs Features | Features Il

convolution

Figure 8. Scheme of a deep stacked neural network with
2 layers of autoencoders (SAE)

In order to simulate the response of the microphone array to
any disturbance without the need to use computationally heavy
finite element simulations, it has been decided to employ linear
filtering techniques. This is possible due to linear laws
governing the propagation of acoustic waves in a solid medium.
During the initial investigation it was found that most of the
energy of the initial disturbance is concentrated in the
frequency band between 0 and 1000 Hz. It is important to note
that due to the average speed of sound in the soil being equal to
1900 m/s, the minimum frequency of the wave needed for the
tunnel width, which is assumed to be around 5 meters, to pass
the diffraction limit is 380 Hz, which is included in the
obtained range.

Some examples of variants of the training set calculations’
frequency response and impulse response are represented in
Figure 9 and 10.

Figure 9. Elements of the training set (R=25 m): a — D=100 m, L= m, a=0°; b — D=100 m, a=0°; ¢ — D=50 m, a=30°

In order to suppress the time-domain aliasing effects, the
number of points for the spectral analysis was set to 4000, thus
leading to the maximum length of the allowable impulse
response of 4 s. Due to the impulse response being real, only
the 4000 points over 1000 Hz included only the part
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containing the positive frequencies with the other being
restored as a conjugate reverse signal. In order to separate the
response of the tunnel from the background response of the
signal traveling through air and propagating inside the soil, the
frequency response of a model with the tunnel filled with soil
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was subtracted from the response of the air-filled tunnel. This
approach was chosen instead of using a model of a solid block
of soil in order to preserve the mesh geometry and exclude the
errors arising from the calculation inaccuracies.

Autoencoders extract useful features of their input data
unsupervised by separating the factors of variation [12]. For the
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first autoencoder hidden representation size was set to 100,
which means that 100 features were selected for each sensor.
The input of the second autoencoder was fed by the training set
passed through the first one. The second autoencoder hidden
layer size was reduced to 50 to form an even smaller feature
set.
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Figure 10. A frequency and an impulse response for the middle sensor for corresponding variants of the training set in Figure 9

The maximum number of epochs was set to 400 for the first
autoencoder and then reduced to 100 for the second one. Both
autoencoders were trained with the scaled conjugate gradient
algorithm. The last layer is applied to the 50-dimensional
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feature vectors from its input and represents the 10-dimensional
feature vectors of the detected void.

Testing the obtained neural network on a set of 100
experiments to identify voids when localizing an explosion at a

VOLUME 24(4), 2025
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distance of 10 m behind the projection of the void onto the
surface of the massif and at a height of 5 m above the surface
showed that it identifies the presence of a void with an accuracy
of 72% and determines the parameters of its location with an
accuracy of 70%. In this case, the orientation and location of
the void in the vertical plane perpendicular to the direction of
wavefront propagation are determined more accurately. Thus,
determining the location of the void requires solving the second
inverse problem on the optimal location of the pulse source and
sensors. In addition, it is apparently necessary to consider the
adaptive architecture of the neural network, which allows it to
be further trained.

A comparative quantitative evaluation of our model with
known models for detecting underground cavities shows its
effectiveness for cases of small cavities and large distance to
sensors [2, 4, 9]. One of the related works is [44], which
considers the identification of underground artificial cavities
based on a Bayesian convolutional neural network and the
frequency-domain SAEM method. The interior of this model is
divided into two parts: the upper part is the atmosphere with a
size of 6000 m % 4000 m x 1000 m (length x width x height),
and the lower part is a large stratum with a size of 6000 m x
4000 m x 1000 m. The dimensions of the cavity in question are
50-30 m wide and 150-250 m long. The classification accuracy
of the neural network achieved in this way as a result of training
is 75.05%. Considering that the cavity being sought in our
studies is smaller and the size of the analyzed soil is
significantly larger, the achieved recognition result of 70-75%
is sufficient.

V. CONCLUSIONS

Thus, we have developed an information system, method, and
schematic diagram for identifying artificial underground
cavities using machine learning techniques based on acoustic
exploration data. It identifies the presence of a void with 72%
accuracy and determines its location parameters with 70%
accuracy. We solved this problem based on model calculations
for a known geological soil structure. The developed method
for identifying artificial underground cavities is significantly
innovative, as it allows us to determine the parameters of
relatively small underground cavities at significant distances
from the sensor locations. It can be used to create practical
seismic exploration systems in conditions where the ground
surface above the voids is inaccessible. Future research
directions include studying the influence of noise, structure
sizes and overhead structures on the efficiency of subsurface
void recognition.
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