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 ABSTRACT Underground tunnel identification remains difficult in spite of the development of recognition methods. 
There is often no direct access to the Earth's surface above bunkers; above-ground structures may be located there; the 
soil structure may contain dense layers opaque to radio waves. Therefore, it is promising to use geophysics acoustic 
recognition methods. The study aims to develop an information system schematic diagram for identifying man-made 
underground cavities using machine learning methods based on acoustic reconnaissance data. In contrast to known 
methods for monitoring vibration waves during earthquakes, the initiation of vibration waves can be carried out by 
delivering precise strikes of known power to specified surface points. However, solving the inverse problem for the 
propagation of acoustic waves is problematic due to the small relative sizes of these structures. The scientific novelty 
lies in the fact that we find a solution to this problem using machine learning methods based on model calculations for 
a known geological structure of the soil. Combining it with satellite observation data on the above-ground structures 
makes it possible to build a neural network for analyzing the vibrations of sensors located in controlled territory. 
 

 KEYWORDS underground voids, acoustic waves, inverse problems, neural networks, machine learning. 
 

I. INTRODUCTION 
efensive underground fortifications have been one of the 
oldest means of protection for more than a millennium. 

These structures have been under intense development starting 
from the period of the WWI, where they demonstrated their 
reliability in preserving manpower. Underground storage and 
tunnels take a form of man-made cavities and their 
identification by existing methods poses a significant 
challenge, despite the almost two-thousand-year history of the 
development of recognition methods and the use of satellite 
mapping systems. For example, even though the war in Gaza 
has been going on for more than 500 days, Israel has managed 
to destroy only 20-40% of the extensive network of tunnels 
created by Hamas [1, 2]. It is clear that scouts do not have direct 
access to the earth's surface above bunkers and crossings. The 
task is complicated by the fact that above-ground structures 
may be located there, as is the case in the Gaza Strip. In 
addition, the soil structure can be heterogeneous and contain 
dense layers and inclusions that reflect radio waves [3, 4]. 
Therefore, it is promising to use acoustic recognition methods, 

which are already used in geophysics [5-7]. 
The purpose of the study is to develop a schematic diagram 

of an information system for the identification of man-made 
underground cavities using machine learning methods based on 
acoustic reconnaissance data. The scientific novelty lies in the 
fact that we find a solution to this problem by the use of 
machine learning methods based on model calculations for the 
known geological structure of the soil. 

The structure of this work is as follows: Section II presents 
an overview of existing models for voids recognition and 
technique of computer vision; Section III describes the basic 
local and FEM problems statements; Section IV presents 
examples of the scheme application to determine the state of 
underground voids, the obtained results and discusses them. 

II. INVESTIGATION METHODS REVIEW 
A. EXISTING MODELS FOR VOIDS RECOGNITION 
Seismic exploration is a suit of acoustic methods for studying 
the geological structure of the earth's crust, which are based on 
the study of the propagation of artificially generated elastic 
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waves (by explosions, shocks) or by an earthquake. Elastic 
waves, which arise from an explosion or impact, propagate in 
rocks at different speeds [4, 8, 9]. At the boundary that 
separates rocks of different compositions, elastic waves are 
reflected, refracted, and partially returned to the Earth's surface. 
By studying the time and velocity of wave propagation, their 
amplitude, signal shape, and the nature of ground vibrations on 
which vibrating receivers (seismic receivers or geophones) are 
installed, it is possible to determine the depth and shape of 
boundaries in the surrounding environment, their angle of 
incidence, the direction of propagation, and many other 
characteristics of the geological environment. The wave 
propagation and detection diagram is shown in Figure 1. Pulsed 
excitation generates an acoustic wave that propagates within 
the layer and is reflected from its boundary. The reflected and 
refracted waves are recorded by a system of acoustic sensors. 
 

 

Figure 1. Part of an algorithm of acoustic wave processing 

Longitudinal waves, less often transverse and mixed waves, 
are used in seismic exploration. The reflected wave method has 
become the most widely used, which makes it possible to map 
boundaries with an accuracy of up to 1-2% at depths of up to 
7-10 km [10]. A greater depth of investigation characterizes the 
method of refracted waves [5]. Still, it has lower accuracy and 
resolution, which makes it possible to study only layers with an 
increased speed of seismic waves. For the detection of 
minerals, modifications of the method are used by adding 
signals reflected from the common depth point, three-
dimensional seismic, multi-wave seismic, etc. [5, 17]. 

Hydrogeological seismic surveying is used in engineering 
seismic surveys [6, 10]. It is used to study the depth of rock 
deposits, dismemberment of sedimentary strata, determine the 
strength of the weathering crust, map permafrost, study 
discontinuous faults, fractured, karstified zones, study 
landslides, determine the level of underground water 
Engineering-hydrogeological seismic exploration deals with 
small depths, therefore the excitation of elastic waves is carried 
out with the help of small explosions. Profiles and 
measurement points are located at a short distance from the 
sources of wave excitation. Therefore, high-frequency waves 
(150 - 200 Hz) are recorded, increasing the method's resolution. 

In seismic exploration, the complete formulation of the 
problem consists of solving the equations of propagation of 
elastic oscillations with piecewise continuous coefficients 
under the condition that they are excited by a point explosion 
[5, 17]. The solution of this task is currently carried out only 
for the simplest models of the structure of the environment. The 
main measured value in seismic exploration is the arrival time 
of reflected signals. The signal delay time is measured at 
various points on the earth's surface [7, 10]. 

A significant number of seismic systems operate in 

conditions where the intensity of the useful seismic signal 
exceeds the interference level, mainly due to the use of 
explosive sources of elastic wave formation [11]. However, 
when studying small structures relative to the plan, special 
methods should be used to recognize their influence on acoustic 
waves, among which automatic processing of geoinformation 
data using a combination of computer vision and machine 
learning methods can be considered the most promising [12, 
16, 18, 19]. When using ML, fuzzy logic is used to increase the 
sensitivity and accuracy of conventional neural networks, for 
example [14, 15, 43], and also the Radon transform, which 
effectively detects hidden objects [44]. 

 
B. APPLICATION OF COMPUTER VISION AND ML 
Computer vision is the theory and technology of creating 
machines that can detect, track, and identify objects [4, 16]. 
Acoustic object recognition is also a field of computer vision 
[6, 27]. Depending on the software, it can analyze objects at a 
higher speed and perform its task more efficiently and cheaply 
than a human [16]. Military applications are currently the 
largest area of computer vision used for tasks such as detecting 
enemy soldiers, vehicles, and fortifications, as well as 
controlling drones and missiles. Control systems send drones 
or missiles to a given area instead of a specific target, and target 
identification occurs based on incoming video data when the 
controlled object reaches the given area. The modern military 
term "combat awareness" is based on various sensors, 
including acoustic and optical, providing information about the 
battlefield, which is used to make tactical decisions. 

To reduce labor intensity and increase the reliability of the 
information obtained, automatic data processing is carried out 
based on machine learning (ML) [6, 7, 12, 18]. The inverse 
problems of geophysics under consideration belong to the class 
of computationally complex ones. Traditional methods of 
solving them are often unstable and require additional 
regularization [10]. Machine learning studies methods for 
constructing algorithms that can improve the performance of 
calculations based on experience. The main method of machine 
learning is the use of multi-level neural networks for the tasks 
of identifying and separating objects. Machine learning 
algorithms can process huge amounts of data in a reasonable 
time, identify hidden patterns in them, and provide the 
necessary information for decision-making. 

III. SEISMIC EXPLORATION OF ANTHROPOGENIC VOIDS 
A. BASIC LOCAL PROBLEM STATEMENT 
Based on the statement, we intend to solve the local oscillation 
problem of an infinite elastic body with a thin inhomogeneity 
[8]. The material properties of the thin-walled interphase 
inclusion 𝑊଴ , matrix 𝑊ଵ , and scatterer  𝑊ଶ  are given by 
densities 𝜌௝ and Lamé moduli ௝, 𝜇௝, respectively. In the 
process of obtaining models of the dynamic interaction of fine 
heterogeneity with the surrounding environment it is 
convenient to use a set of Cauchy equations of motion and the 
relationship of Hooke's law: 
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where 𝐮௝ – movement in interphase inclusion, matrix, and 
scatterer, respectively, 𝑡 – time, 𝜎௝௠௜  – stress tensor 
components in regions 𝑊௜, 𝒙 − Cartesian coordinates of points, 
𝛂 − coordinates of the local tri-orthogonal system with basis 
(𝐞ଵ, 𝐞ଶ, 𝐞ଷ), 𝐻௟ − Lamé coefficients of curvilinear orthogonal 
coordinate system 𝛂: 
 

𝐱 = (𝑥ଵ, 𝑥ଶ, 𝑥ଷ), 𝛂 = (𝛼ଵ, 𝛼ଶ, 𝛼ଷ),  

𝐻௟(𝛼ଵ, 𝛼ଶ, 𝛼ଷ) = ቚ
డ𝐱

డఈ೗
ቚ. (2) 

 
Conditions of the perfect mechanical contact are met on the 

surfaces of the connection of components of the form 
 gା(αଵ, αଶ) and gି(αଵ, αଶ) determined in the local basis as it 
can be seen in figure 2. We obtain an analytical approximation 
of these functions, which provide sufficient accuracy and 
smoothness, by applying our developed method of 
approximating wireframe inclusion points by fifth-order Bezier 
surfaces [20, 21] or multiply Fourier series [22, 23]. 
 

 

Figure 2. Scheme of thin-walled interphase inclusion 

 
The wave field in the matrix is formed by the superposition 

of the field of given incident 𝐮௜௡(𝐱, 𝑡) and scattered 𝐮௦௖(𝐱, 𝑡) 
waves: 

 
𝐮𝟏(𝐱, 𝑡) = 𝐮௜௡(𝐱, 𝑡) + 𝐮௦௖(𝒙, 𝑡). (3) 

 
Zero initial conditions should also be taken into account: 
 

𝐮௦௖(𝒙, 0) = 0. (4) 
 
According to the scheme of the asymptotic approach [37, 

38], we introduce an artificial small parameter ε and an internal 
variable 𝛼തଷ into the domain 𝑊଴ as follows 

 
𝛼തଷ = 𝜀𝛼ଷ. (5) 

 
The displacement and components of the stress tensors are 

presented in the form of asymptotic expansions in a series with 
a small parameter 
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where 𝛿௞

଴ – -function. 
Then we substitute the series into the Cauchy equation and 

the boundary conditions. Having equated the coefficients with 
the same powers of ε, we obtain a recurrent sequence of 
ordinary differential equations in the variable 𝛼തଷ with respect 
to the sought terms of the expansions. When the contact 
conditions are satisfied, the asymptotic terms in the equations 
are represented by Taylor series in vicinity of 𝛼ଷ equals zero, 
which are convergent under the conditions of applying a 
generalized summation to them by using the previously 
developed Padé transformation [25, 26]. In this way, the 
restriction [8, 24] on the length of waves propagating in a 
composite body is eliminated, which requires them to be much 
longer than the thickness of the interphase inhomogeneity for 
the convergence of the obtained asymptotic solution, 

Let us present the Cauchy equation of motion, the 
relationship of Hooke's law, as well as the conditions of contact 
of inhomogeneity with the matrix and inclusion in the variables 
(αଵ, αଶ, αഥଷ). Considering the solutions of the obtained ordinary 
differential equations and equating the terms with the same 
powers of the parameter ε from the boundary conditions, we 
determine the effective contact conditions of the bodies 
adjacent to the fine inhomogeneity. The type of effective 
contact conditions of the bodies adjacent to the thin 
inhomogeneity is determined by the order of smallness of the 
parameters of the mechanical contrast 𝛾௞ of the thin-walled 
interphase inclusion: 

 

𝛾௞ =
୫ୟ୶(బ,ఓబ)

୫ୟ୶(ೖ,ఓೖ)
. (7) 

 
B. BASIC FEM PROBLEM STATEMENT 
The resulting local analytical model is used to construct a full-
size model based on FEM [11]. This makes it possible to avoid 
significant mesh thickening in the tunnel zone and significantly 
speed up the calculation, which is important for multiple 
calculations. FEM allows one to consider soil heterogeneous in 
a specific area where underground structures are located. 

Usually, we can use the ANSYS package, or PyFEM 
framework, or any other FEM package which allows for the 
calculation of the propagation of vibrations under pulsed and 
explosive loads [27, 35]. The mesh of three-dimensional 16-
point nonlinear elements was refined until the stability of the 
results was achieved.  

The effect of voids was defined as the difference between 
the calculated parameters and the oscillations of the region 
without voids in phase and amplitude, which increases the 
accuracy of determining the influence of voids. When 
calculating the vibrations of a soil massif with a void, we must 
consider the massif's geological structure and the presence of 
capital buildings, canals, and other man-made objects on the 
surface. For this purpose, we use the data accumulated at 
Dnipro University of Technology over many years on the 
geological structure of our country and satellite mapping data 
[41]. This is possible due to the digital databases in the RAPID 
and CONTOUR systems [28, 29] created in our department. 
We have specialized information systems for collecting, 
storing, and processing satellite, geological, and seismic survey 
data containing long-term observation data.  
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GIS RAPID [29] is a geo-information system for 
forecasting and supporting decision-making in nature 
management, ecology, mineral exploration, and emergency 
forecasting. It contains the following data 

 Materials of geological, geophysical and geochemical 
studies. 

 Results of testing and description of wells, pits, ditches, 
etc. 

 Cartographic sources. 
 Materials of aerospace survey. 
 Data of environmental studies. 
 Attributive information (tables, codifiers, etc.). 
GIS RAPID allows Input, storage, conversion, filtering, and 

visualization of grid, raster, and vector data (spatial images, 
geophysical fields, geological and environmental data, maps, 
images, etc.), and forecasts of natural and man-made objects on 

the earth's surface. 
The main purpose of technology based on GIS CONTOUR 

[28] is to allow the specialist to build three-dimensional models 
of geological objects (GO). Since before creating three-
dimensional models, users operate with two-dimensional 
representations of the GO, the system also allows obtaining 
geological sections, horizon plans and creating their printed 
copies (Figure 3). The developed GIS solves the following set 
of problems: 

 Automated creation of 3D models and visualization of 
geological observation data. 

 Vector and raster representation of data, management of 
data layers. 

 Visual analysis of borehole sample data.  
 Data display filtering.  
 

 

 

Figure 3. GIS CONTOUR structure diagram 

Thus, the recognition task comes down to constructing a 
neural network specific to a given area and the location of 
troops. The input parameters of the network are the coordinates 
of the location of seismic sensors and their readings, the output 
parameters are the location of the ends and nodes of linear 
underground voids. Due to the specifics of the task, training 
such neural networks cannot use full-scale training data sets, 
but only the results of simulation calculations [8, 30]. 

The Dnipro University of Technology has a huge 
knowledge base about the geological structure of Ukraine, 
which can now be used to build the described neural networks. 
We have specialized information systems for collecting, 
storing and processing satellite, geological and seismic survey 
data containing long-term observation data. 
 
C. SECOND LEVEL INVERSE PROBLEM STATEMENT 
To effectively and quickly identify enemy protective 
underground structures in combat conditions, it is necessary to 

rationally select the number and location of seismic sensors, as 
well as the location, power and number of explosions [5, 31, 
32]. We solve this problem as the inverse problem [34, 35, 42] 
to the previous one by constructing a second-level neural 
network [33, 36, 37]. 

Thus, after receiving information about the specific location 
of the enemy and one’s own troops on the ground, geological 
information about the soil structure in the area is extracted. 
Next, several neural networks are trained on simulated data, 
representing the geological structure and for a different number 
of sensors and locations of explosion points. After this, the 
inverse problem of optimizing the number and location of 
sensors and explosion coordinates is solved. Seismic sensors 
are located at suitable points and explosions are applied with a 
given power and location. 

As a result of the research, an information system was 
created to form the architecture and parameters of a rational 
neural network for identifying linear man-made voids based on 
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active seismic exploration data in combat conditions. 

IV. EXAMPLES OF METHOD APPLICATION 
A. APPLICATION OF THE SCHEME TO DETERMINE THE 
STATE OF UNDERGROUND VOIDS 
Let us consider the application of the described calculation 
scheme to determine the state of underground voids of two 
types – adjacent to the soil surface and located deep in the soil 
(Figure 4). In both cases, the void is considered a soft 
heterogeneity, but in the first case, 𝑊ଶ is air, and in the second, 
𝑊ଵ and 𝑊ଶ are soil with possibly different mechanical 
characteristics. By equating the material characteristics of the 
matrix and bulk inclusion, we obtain separate models of thin-
walled inclusion in a homogeneous elastic medium. 
 
B. EXAMPLES OF DIRECT FEM SOLUTION 
As an example of calculating the reaction of underground 
voids, an experiment was considered for a 100 m × 100 
m×100 m, the scheme of which can be seen in Figure 5a. 

Figures 5b-5d represent a transparent grid diagram for the 
calculated area, a view of finite element mesh on the vertical 
section near the void, and a view of finite element greed on the 
soil surface near a phased array of acoustic sensors. 

 
Figure 4. Scheme for calculating underground voids using the 

proposed method 
 

   
a                                                                             b 

  
c                                                                                   d 

Figure 5. Scheme of FEM grid near a void and phased array of acoustic sensors: a – opaque diagram of the relative position of 
the soil mass, void, a phased array of acoustic sensors and finite element mesh; b – transparent diagram of the same objects; c – 
view of finite element mesh on the vertical section near void; d – view of a finite element mesh on the soil surface near a phased 
array of acoustic sensors 

 
During the theoretical considerations, it has been decided 

that modeling the system in the discrete-time domain directly 
would be ineffective in terms of precision and use of 
computational resources. As an alternative, the research was 
conducted in the frequency domain, with the resulting 
frequency responses then used to obtain the result for an 
explosion model via linear filtering techniques. 

The source was placed close to the soil model and the 
frequency response for the acoustic pressure was calculated for 
a grid of virtual microphones, similar to the classic planar 
phased antenna array [4, 31]. The obtained frequency responses 
were then used as a linear filter transfer function in order to 
allow for the easy and less computer-intensive modeling of 
responses to arbitrary input signals by multiplying their 
frequency representation by the filter transfer function and 

using the inverse DFT, or by directly convolving the filter’s 
impulse response with the signal in the time domain. 

The resulting signals are classically then fed into direction-
finding algorithms, which can be facilitated by using the 
MUSIC method, the ESPRIT method, Prony’s method, or the 
matrix pencil method [38, 41]. 

In the current paper, instead of standard approaches, an 
artificial neural network is applied. In this case the resulting 
output can then be either directly fed into a neural network or 
pretreated via such techniques as matched filtering in order to 
compress the signal and thus reduce the number of needed input 
nodes. For the initial research, the explosion was modeled via 
a delta-function, which yields the impulse response as the 
output of the filter. This impulse response can be calculated 
using the inverse fast Fourier transform. 
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During research, the depth D and distance L to the tunnel 
were chosen from the ranges of 50 to 100 m and 200 to 400 m, 
respectively. The slope angle α of the tunnel was chosen from 
the values between 0 and 30 degrees. The radius of the tunnel 
R is between 10 and 25 m for this initial testing stage. 

An example of the frequency response H obtained during 
the experiment can be seen in Figure 6. The resulting impulse 
response h, taking into account the reflected wave, which can 
be used to model the explosion, can be seen in Figure 7. 

 

 
Figure 6. Frequency response for the middle sensor 

 

 
Figure 7. Impulse response for the central sensor 

 
C. EXAMPLE OF INVERSE SOLUTION 
To solve the inverse problem, a special neural network was 

built based on the TensorFlow 2.0 framework [39, 40]. This 
task is essentially a pattern recognition task, for which it is 
convenient to use a stacked neural network [12]. Each layer can 
learn features at a different level of abstraction. However, 
training neural networks with multiple hidden layers can be 
difficult. One can effectively train a neural network by training 
a special type of network known as an autoencoder for each 
hidden layer (Figure 8). First, we train the hidden layers 
individually in an unsupervised fashion using autoencoders. 
Then, we train a final layer and join the layers together to form 
a stacked network (SAE), which we train once in a supervised 
neural network training. 
 

 
Figure 8. Scheme of a deep stacked neural network with 

2 layers of autoencoders (SAE) 
  

In order to simulate the response of the microphone array to 
any disturbance without the need to use computationally heavy 
finite element simulations, it has been decided to employ linear 
filtering techniques. This is possible due to linear laws 
governing the propagation of acoustic waves in a solid medium. 
During the initial investigation it was found that most of the 
energy of the initial disturbance is concentrated in the 
frequency band between 0 and 1000 Hz. It is important to note 
that due to the average speed of sound in the soil being equal to 
1900 𝑚 𝑠⁄ , the minimum frequency of the wave needed for the 
tunnel width, which is assumed to be around 5 meters, to pass 
the diffraction limit is 380 Hz, which is included in the 
obtained range. 

Some examples of variants of the training set calculations’ 
frequency response and impulse response are represented in 
Figure 9 and 10.  

 
 

            
                                               a                                                           b                                                                  c 

Figure 9. Elements of the training set (R=25 m): a – D=100 m, L= m, α=00; b – D=100 m, α=00; c – D=50 m, α=300  
 

In order to suppress the time-domain aliasing effects, the 
number of points for the spectral analysis was set to 4000, thus 
leading to the maximum length of the allowable impulse 
response of 4 s. Due to the impulse response being real, only 
the 4000 points over 1000 Hz included only the part 

containing the positive frequencies with the other being 
restored as a conjugate reverse signal. In order to separate the 
response of the tunnel from the background response of the 
signal traveling through air and propagating inside the soil, the 
frequency response of a model with the tunnel filled with soil 
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was subtracted from the response of the air-filled tunnel. This 
approach was chosen instead of using a model of a solid block 
of soil in order to preserve the mesh geometry and exclude the 
errors arising from the calculation inaccuracies. 

Autoencoders extract useful features of their input data 
unsupervised by separating the factors of variation [12]. For the 

first autoencoder hidden representation size was set to 100, 
which means that 100 features were selected for each sensor. 
The input of the second autoencoder was fed by the training set 
passed through the first one. The second autoencoder hidden 
layer size was reduced to 50 to form an even smaller feature 
set.

 

  
a 

  
b 

 
c 

Figure 10. A frequency and an impulse response for the middle sensor for corresponding variants of the training set in Figure 9 
 

The maximum number of epochs was set to 400 for the first 
autoencoder and then reduced to 100 for the second one. Both 
autoencoders were trained with the scaled conjugate gradient 
algorithm. The last layer is applied to the 50-dimensional 

feature vectors from its input and represents the 10-dimensional 
feature vectors of the detected void. 

Testing the obtained neural network on a set of 100 
experiments to identify voids when localizing an explosion at a 
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distance of 10 m behind the projection of the void onto the 
surface of the massif and at a height of 5 m above the surface 
showed that it identifies the presence of a void with an accuracy 
of 72% and determines the parameters of its location with an 
accuracy of 70%. In this case, the orientation and location of 
the void in the vertical plane perpendicular to the direction of 
wavefront propagation are determined more accurately. Thus, 
determining the location of the void requires solving the second 
inverse problem on the optimal location of the pulse source and 
sensors. In addition, it is apparently necessary to consider the 
adaptive architecture of the neural network, which allows it to 
be further trained. 

A comparative quantitative evaluation of our model with 
known models for detecting underground cavities shows its 
effectiveness for cases of small cavities and large distance to 
sensors [2, 4, 9]. One of the related works is [44], which 
considers the identification of underground artificial cavities 
based on a Bayesian convolutional neural network and the 
frequency-domain SAEM method. The interior of this model is 
divided into two parts: the upper part is the atmosphere with a 
size of 6000 m × 4000 m × 1000 m (length × width × height), 
and the lower part is a large stratum with a size of 6000 m × 
4000 m × 1000 m. The dimensions of the cavity in question are 
50-30 m wide and 150-250 m long. The classification accuracy 
of the neural network achieved in this way as a result of training 
is 75.05%. Considering that the cavity being sought in our 
studies is smaller and the size of the analyzed soil is 
significantly larger, the achieved recognition result of 70-75% 
is sufficient. 

 
V. CONCLUSIONS 
Thus, we have developed an information system, method, and 
schematic diagram for identifying artificial underground 
cavities using machine learning techniques based on acoustic 
exploration data. It identifies the presence of a void with 72% 
accuracy and determines its location parameters with 70% 
accuracy. We solved this problem based on model calculations 
for a known geological soil structure. The developed method 
for identifying artificial underground cavities is significantly 
innovative, as it allows us to determine the parameters of 
relatively small underground cavities at significant distances 
from the sensor locations. It can be used to create practical 
seismic exploration systems in conditions where the ground 
surface above the voids is inaccessible. Future research 
directions include studying the influence of noise, structure 
sizes and overhead structures on the efficiency of subsurface 
void recognition. 
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