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 ABSTRACT Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs) have emerged 
as a critical technology for privacy-preserving computation and blockchain applications. However, systematic 
performance analysis of practical implementations remains limited, hindering informed technology adoption 
decisions. This study presents a comprehensive benchmarking analysis of the Groth16 protocol implementation 
using the widely-adopted Circom-snarkjs framework. We developed an automated benchmarking platform that 
systematically measures performance across seven representative circuit types with varying computational 
complexity (1-11 R1CS constraints). Our methodology ensures reproducible measurements through controlled 
experimental design with statistical validation. The platform captures detailed metrics for all three phases of the 
Groth16 protocol: witness generation, proof creation, and verification. Results from 35 independent measurements 
reveal several important findings. Witness generation demonstrates consistent performance across circuit types, 
averaging 57.6±12.1 milliseconds. Proof generation times range from 832 to 1,147 milliseconds, showing non-
linear scaling with circuit complexity. Verification times remain relatively stable (741-884 milliseconds), 
confirming Groth16's theoretical constant-time verification advantage. All measurements achieved 100% success 
rate with complete proof validation. Notably, circuit structure significantly impacts performance beyond simple 
constraint counting. Comparison-based circuits achieve 13.22 constraints per second efficiency, substantially 
outperforming arithmetic circuits (1.02-4.36 constraints/second). This finding provides actionable guidance for 
circuit design optimization. The study contributes an open-source benchmarking framework for reproducible zk-
SNARK research and provides empirical performance data for technology adoption decisions. Our findings 
support the practical deployment of Groth16 for applications requiring efficient zero-knowledge proofs while 
highlighting optimization opportunities for circuit designers.  
 

 KEYWORDS zero-knowledge proofs; zk-SNARK; Groth16; performance benchmarking; Circom; 
cryptographic protocols; privacy-preserving computation. 
 

I. INTRODUCTION 
ero-knowledge proofs represent a fundamental 
breakthrough in cryptographic protocols, enabling one 

party to prove knowledge of information without revealing the 
information itself [1, 2]. This capability has transformative 
implications for privacy-preserving computation, blockchain 

applications, and secure verification systems [3, 4]. Among 
various zero-knowledge proof systems, zk-SNARKs (Zero-
Knowledge Succinct Non-Interactive Arguments of 
Knowledge) have gained widespread adoption due to their 
efficiency and practical applicability [5, 6]. 

The Groth16 protocol stands as the most widely deployed 
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zk-SNARK construction, offering optimal proof sizes and 
efficient verification [7]. Groth16 generates constant-size 
proofs regardless of computation complexity, making it 
particularly suitable for applications requiring proof 
transmission or storage. Major blockchain platforms including 
Zcash [8] and Ethereum [9] have successfully integrated 
Groth16 for privacy-preserving transactions and scalable 
computation verification [10, 11]. 

Despite theoretical advances and growing practical 
adoption, systematic performance analysis of Groth16 
implementations remains limited. Most existing studies focus 
on asymptotic complexity analysis or specific application 
domains. Comprehensive empirical evaluation of real-world 
implementations across diverse computational patterns is 
lacking. This gap hinders informed technology adoption 
decisions and optimization efforts. 

A.  PROBLEM STATEMENT 
Current zk-SNARK performance literature suffers from several 
limitations that impede practical deployment decisions [12, 
13]. First, theoretical complexity analysis provides asymptotic 
bounds but often fails to capture implementation-specific 
behavior and constant factors that dominate performance for 
typical applications. Second, application-specific studies focus 
on narrow use cases, limiting generalizability to other domains. 
Third, measurement methodologies vary significantly across 
studies, preventing meaningful comparison between different 
implementations and optimization approaches. 

The Circom-snarkjs framework [14] has emerged as a 
leading development platform for zk-SNARK applications, 
combining the Circom circuit description language with the 
snarkjs JavaScript implementation of Groth16. This technology 
stack enables rapid prototyping and deployment across diverse 
platforms while maintaining cryptographic correctness. 
However, systematic performance characterization of this 
widely-used framework is absent from current literature. 

Developers and researchers require empirical performance 
data to make informed decisions about technology adoption, 
resource provisioning, and optimization priorities. The absence 
of comprehensive benchmarking data forces practitioners to 
rely on theoretical estimates or limited anecdotal evidence, 
potentially leading to suboptimal design choices. 

B.  RESEARCH OBJECTIVES 
This study addresses the performance analysis gap through 
systematic benchmarking of Groth16 implementation using the 
Circom-snarkjs framework [15, 16]. Our primary objective is 
to provide comprehensive empirical performance data that 
supports informed technology adoption and optimization 
decisions. 

We designed our investigation to answer several key 
research questions. First, how do execution times scale with 
circuit complexity across different computational patterns? 
Second, what performance variations exist between different 
types of zero-knowledge computations? Third, how do 
empirical results compare with theoretical complexity 
predictions? Fourth, what optimization opportunities exist for 
practical circuit design? 

Our approach combines rigorous experimental 
methodology with practical relevance. We developed an 
automated benchmarking platform that ensures reproducible 

measurements while covering representative circuit types 
commonly encountered in zk-SNARK applications. The 
methodology addresses statistical validity through appropriate 
sample sizes and significance testing. 

C.  CONTRIBUTIONS 
This research makes several important contributions to zero-
knowledge proof research and practice. We provide the first 
systematic performance analysis of the Circom-snarkjs 
framework across diverse circuit types with varying 
computational complexity. Our measurements cover all phases 
of the Groth16 protocol [7]: witness generation, proof creation, 
and verification. 

The automated benchmarking platform represents a 
significant methodological contribution. The platform ensures 
reproducible measurements through controlled experimental 
design and comprehensive data collection. We release the 
complete framework as open-source software to enable 
replication and extension by other researchers. 

Our empirical findings reveal important patterns that 
challenge common assumptions about zk-SNARK 
performance. Circuit structure significantly impacts efficiency 
beyond simple constraint counting, with logic operations 
achieving substantially better performance than arithmetic 
computations. These insights provide actionable guidance for 
circuit designers seeking to optimize performance. 

The study contributes comprehensive performance data that 
supports practical deployment decisions. Our measurements 
provide realistic performance expectations for planning 
resource requirements, estimating computational costs, and 
evaluating scalability characteristics. 

Statistical analysis validates the significance of observed 
performance differences and provides confidence intervals for 
practical planning. The rigorous methodology ensures that 
findings are statistically sound and practically meaningful. 

D.  SCOPE AND LIMITATIONS 
Our investigation focuses specifically on the Circom-snarkjs 
implementation of Groth16, which represents a widely-adopted 
but not exhaustive sample of available zk-SNARK 
implementations. This focus enables deep analysis of a 
practically important system while acknowledging that results 
may not generalize to all implementations. 

The circuit complexity range (1-11 R1CS constraints) 
covers typical small to medium-scale applications but does not 
address very large circuits that might exhibit different scaling 
behavior. This constraint range represents a practical 
compromise between experimental feasibility and coverage of 
common use cases. 

Our experimental environment uses standardized cloud 
infrastructure to ensure reproducibility, but absolute 
performance values may vary on different hardware platforms. 
The relative performance comparisons and scaling 
characteristics should remain consistent across similar 
computational environments. 

The study measures performance through a Python 
automation interface that coordinates execution and timing 
measurement. This approach captures end-to-end performance 
characteristics including any coordination overhead, providing 
realistic performance expectations for practical deployments. 
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E.  PAPER ORGANIZATION 
The remainder of this paper is organized as follows. Section 2 
reviews related work in zero-knowledge proof performance 
analysis and identifies gaps addressed by our study. Section 3 
describes our experimental methodology, including circuit 
design, measurement procedures, and statistical analysis 
approaches. 

Section 4 presents the automated benchmarking platform 
architecture and implementation details. We describe the 
system components, workflow coordination, and quality 
assurance measures that ensure reliable measurements. 

Section 5 presents comprehensive experimental results, 
including temporal performance analysis, scaling behavior, and 
resource utilization characteristics. We provide detailed 
statistical analysis of performance differences and their 
practical significance. 

Section 6 discusses the implications of our findings for zk-
SNARK research and practice. We analyze optimization 
opportunities, deployment considerations, and limitations of 
current implementations. 

Section 7 concludes with a summary of contributions, 
practical recommendations, and directions for future research. 
We highlight the broader implications of our findings for zero-
knowledge proof adoption and optimization. 

F.  REPRODUCIBILITY AND OPEN SCIENCE 
In support of open science principles, we provide complete 
methodology documentation and release all experimental code 
as open-source software 
(https://colab.research.google.com/drive/1j52xw4wILcYcreX
UyaVrk6oA36T5h9XV). The benchmarking platform includes 
detailed installation instructions and example usage scenarios 
to facilitate replication by other researchers. 

All measurement data and analysis scripts are available in 
structured formats with comprehensive metadata. This data 
release enables independent validation of our findings and 
supports meta-analysis combining results from multiple 
studies. 

The reproducible methodology supports extension to other 
zk-SNARK implementations and circuit types. Researchers can 
adapt our approach to comparative studies or specialized 
application domains while maintaining methodological 
consistency. 

II. RELATED WORK 
This section reviews existing literature on zero-knowledge 
proof performance analysis, zk-SNARK implementations, and 
benchmarking methodologies. We identify research gaps that 
motivate our systematic performance evaluation approach. 

A.  ZERO-KNOWLEDGE PROOF PERFORMANCE 
STUDIES 
Recent research has increasingly focused on practical 
performance aspects of zero-knowledge proof systems. Ni and 
Zhu [17] presented one of the first comprehensive GPU 
acceleration studies for zk-SNARK kernels, achieving 
significant speedups for Groth16 implementations. Their work 
demonstrated 3.14× acceleration for Groth16 operations on 
BLS12-381 curves through optimized modular multiplication 
and Number-Theoretic Transform implementations. 

Wang et al. [18] addressed multi-scalar multiplication 
(MSM) bottlenecks in zk-SNARK systems through distributed 

computing approaches. Their clustering-based solution 
achieved 3.60× and 6.50× acceleration ratios in dual-node and 
quad-node configurations respectively. While focusing on 
specific computational kernels, these studies highlight the 
importance of implementation-level optimizations for practical 
zk-SNARK deployment. 

Kuznetsov et al. [2] evaluated ZKP performance in 
blockchain contexts, measuring proof verification times of 
approximately 4 milliseconds with constant proof sizes of 
180,112 bytes. However, their proof generation times ranged 
from 13-18 minutes per block, indicating substantial 
computational overhead for proof creation phases. 

B.  ZK-SNARK IMPLEMENTATION ANALYSIS 
Several studies have examined specific zk-SNARK 
implementations across different application domains. 
Petrosino et al. [19] integrated zero-knowledge proofs with 
federated learning systems, demonstrating practical 
deployment feasibility while noting performance trade-offs 
between privacy preservation and computational efficiency. 

Soler et al. [13] implemented zk-SNARK protocols for 
quantum random number generation key distribution, 
providing concrete performance measurements for 
cryptographic applications. Their work showed practical 
verification times while highlighting the computational 
overhead of proof generation phases. 

Lin et al. [20] evaluated zk-SNARK performance in cross-
chain cryptocurrency applications, reporting 39% additional 
time cost compared to non-private alternatives. This finding 
illustrates the performance trade-offs inherent in privacy-
preserving implementations. 

C.  BENCHMARKING METHODOLOGIES 
Existing performance studies employ diverse methodologies 
that limit direct comparison between implementations. Most 
studies focus on specific applications or optimization 
techniques rather than systematic evaluation across 
representative workloads. 

Tortola et al. [21] surveyed Layer 2 blockchain solutions 
and their proving schemes, identifying the need for 
standardized evaluation methodologies. Their analysis 
revealed that performance comparisons across different 
implementations remain challenging due to varying 
experimental conditions and measurement approaches. 

The absence of standardized benchmarking frameworks has 
led to fragmented performance data that provides limited 
guidance for practical deployment decisions. Most studies 
report absolute performance values without statistical analysis 
or confidence intervals, limiting the reliability of comparative 
assessments. 

D.  CIRCUIT COMPLEXITY AND PERFORMANCE 
Limited research has systematically examined the relationship 
between circuit complexity and performance across different 
computational patterns. Existing studies typically focus on 
specific circuit types or application domains without 
comprehensive analysis of scaling behavior. 

Qi et al. [22] surveyed privacy-preserving smart contract 
implementations, noting significant performance variations 
between different cryptographic approaches. However, their 
analysis lacked empirical performance data across diverse 
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circuit complexities. 
The relationship between circuit structure and performance 

remains poorly understood, with most literature relying on 
theoretical complexity analysis rather than empirical 
measurement. This gap limits the ability to provide concrete 
guidance for circuit design optimization. 

E.  IMPLEMENTATION PLATFORM ANALYSIS 
The Circom-snarkjs framework has gained widespread 
adoption for zk-SNARK development, yet systematic 
performance characterization remains absent from current 
literature. Most studies using this platform focus on specific 
applications rather than comprehensive performance analysis. 

Yu et al. [23] utilized zk-SNARK implementations for IoT 
identity management systems, reporting successful deployment 
but lacking detailed performance metrics. Similarly, Liu et al. 
[24] employed zero-knowledge proofs for data marketplace 
applications without comprehensive performance evaluation. 

The JavaScript-based nature of snarkjs implementations 
introduces unique performance characteristics that differ from 
native implementations. However, comparative analysis 
between JavaScript and native implementations remains 
limited in current literature. 

F.  RESEARCH GAPS AND LIMITATIONS 
Current zk-SNARK performance literature exhibits several 
significant limitations that impede practical deployment 
guidance. First, most studies focus on specific applications or 
optimization techniques rather than systematic evaluation 
across representative workloads. This application-specific 
focus limits generalizability to other use cases. 

Second, experimental methodologies vary substantially 
between studies, preventing meaningful performance 
comparisons. Different hardware platforms, measurement 
procedures, and statistical analysis approaches make it difficult 
to synthesize findings across multiple studies. 

Third, the relationship between circuit complexity and 
performance remains poorly characterized. Most studies 
examine specific circuit types without systematic analysis of 
how different computational patterns affect execution times 
and resource requirements. 

Fourth, implementation-specific performance 
characteristics receive limited attention. The growing adoption 
of frameworks like Circom-snarkjs requires dedicated 
performance analysis to support informed technology selection 
decisions. 

G.  MOTIVATION FOR CURRENT STUDY 
The identified gaps in existing literature motivate our 
systematic benchmarking approach. We address the lack of 
comprehensive performance evaluation for the Circom-snarkjs 
framework through controlled experimental design with 
statistical validation. 

Our study contributes standardized benchmarking 
methodology that enables reproducible performance 
measurement across different implementations and 
environments. The automated platform supports extension to 
other zk-SNARK systems while maintaining methodological 
consistency. 

The focus on circuit structure and complexity scaling 
provides practical guidance for circuit designers seeking to 

optimize performance. Our empirical analysis complements 
theoretical complexity studies with concrete performance data 
for real-world implementations. 

The comprehensive statistical analysis addresses the 
reliability concerns present in much of the existing literature. 
We provide confidence intervals and significance testing to 
support evidence-based decision making for zk-SNARK 
adoption. 

H.  POSITIONING OF CONTRIBUTIONS 
Our work extends the performance analysis literature by 
providing the first systematic benchmarking study of the 
Circom-snarkjs framework. While previous studies have 
examined specific applications or optimization techniques, our 
approach provides comprehensive evaluation across diverse 
circuit types with rigorous statistical analysis. 

The automated benchmarking platform represents a 
methodological contribution that supports reproducible 
research in zk-SNARK performance evaluation. This 
infrastructure enables comparative studies across different 
implementations and environments while maintaining 
experimental rigor. 

Our findings on circuit structure and performance scaling 
provide new insights that complement existing optimization 
research. The identification of substantial performance 
variations between different computational patterns offers 
actionable guidance for circuit design optimization. 

The comprehensive empirical dataset contributes to the 
growing body of evidence supporting practical zk-SNARK 
deployment. Our measurements provide realistic performance 
expectations that support resource planning and technology 
selection decisions. 

III.  METHODOLOGY  
This section describes our experimental approach for 
benchmarking Groth16 zk-SNARK performance. We designed 
a controlled experiment to measure computational costs across 
circuits of varying complexity. Our methodology ensures 
reproducible results and statistical validity. 

A.  EXPERIMENTAL DESIGN 
We conducted a factorial experiment with circuit complexity as 
the primary factor. The dependent variables were execution 
times for each phase of the Groth16 protocol: witness 
generation, proof creation, and verification. 

Our experimental model follows the structure: 

ij i ijT      , 

where ijT  represents the execution time for circuit type i  in 

repetition j ,   is the overall mean, i  is the effect of circuit 

complexity, and ij  is the random error term. 

We controlled for environmental factors by using a 
standardized cloud computing platform. All measurements 
were performed on identical virtual machines with consistent 
resource allocation. Software versions were fixed across all 
experiments to eliminate implementation drift effects. 

The experimental design (Figure 1) included five 
independent repetitions per circuit. This sample size provides 
adequate statistical power for detecting practically significant 
differences while remaining computationally feasible. We 
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randomized the execution order to minimize systematic bias 
from temporal effects such as system warming or degradation. 

 

Figure 1. Experimental Design Overview 

B.  TEST CIRCUIT SELECTION 
We designed seven test circuits representing common zk-
SNARK applications. The circuits span complexity from 1 to 
11 R1CS constraints, covering typical use cases in privacy-
preserving computation. 

Circuit selection followed three design principles. First, we 
included basic arithmetic operations that form building blocks 
for complex applications. Second, we incorporated 
cryptographic primitives commonly used in blockchain and 
privacy applications. Third, we added logic operations that 
demonstrate constraint efficiency variations. 

The basic_multiply circuit implements simple 
multiplication: c a b  . This circuit generates exactly one 
R1CS constraint and serves as our baseline measurement. It 
represents the minimum overhead of the Groth16 protocol. 

The double_multiply circuit chains two multiplication 

operations: temp a b  , then result temp c  . This 

creates two constraints with a linear dependency structure. It 
tests how constraint interaction affects performance. 

The quadratic circuit evaluates a second-degree 

polynomial: 
2result a x b x c     . This requires 

computing 
2x  as an intermediate value, creating two 

constraints. It represents polynomial evaluation patterns 
common in many applications. 

The polynomial_simple circuit extends to cubic evaluation: 

3 2result a x b x c x d       . This generates four 
constraints through sequential power computation. It tests 
performance scaling with polynomial degree. 

The hash_chain circuit models cryptographic hash 
operations through eight sequential multiplications. Each step 
depends on previous results, creating a linear dependency 
chain. This pattern appears in hash-based cryptographic 
constructions. 

The merkle_simple circuit implements a simplified Merkle 
tree proof verification. It uses three levels of hash operations, 
each combining two inputs. This represents common 
blockchain verification patterns. 

The comparison_chain circuit implements equality testing 
for four value pairs. Each equality test requires multiple 
constraints for zero-knowledge implementation. This 
demonstrates logic operation complexity. 

C.  TECHNOLOGY STACK 
We selected the Circom-snarkjs technology stack for its 
maturity and widespread adoption. Circom version 2.2.2 
provides circuit compilation from high-level descriptions to 
R1CS representations. The snarkjs library version 0.7.5 
implements the complete Groth16 protocol in JavaScript. 

Our implementation uses the BN128 elliptic curve, 
providing 128-bit security levels. This curve choice balances 
security requirements with computational efficiency. The curve 
parameters are widely supported across zk-SNARK 
implementations, enabling comparison with other studies. 

We executed all experiments on Google Colab 
infrastructure (free tier) accessed from a client workstation 
(AMD Ryzen 7 7840HS, 64GB RAM, Windows 11). All 
computations were performed on Google's remote servers, not 
the local machine. The allocated Colab instances provided: 
Intel Xeon CPU @ 2.20-2.30 GHz (2 virtual cores), 
approximately 12-13 GB RAM, Ubuntu 20.04 LTS, Python 
3.10.12. Google Colab's dynamic resource allocation means 
exact specifications vary between sessions, introducing 
controlled variability. This cloud-based approach ensures 
reproducibility without requiring specialized local hardware. 

The JavaScript runtime environment uses Node.js version 
18.x with V8 engine optimizations. This provides 
WebAssembly support required for efficient witness 
generation. The npm package manager version 10.8.2 handles 
dependency management. 

D.  PERFORMANCE METRICS 
We measured three primary temporal metrics for each circuit 
execution. Witness generation time captures the computational 
cost of evaluating the circuit with specific inputs. This phase 
executes compiled WebAssembly code to compute all 
intermediate values. 

Proof generation time measures the cryptographic 
operations required to create a zk-SNARK proof. This includes 
elliptic curve operations, polynomial evaluations, and random 
value generation. This phase typically dominates total 
execution time. 

Verification time measures the computational cost of proof 
validation. This involves bilinear pairing computations and 
algebraic verification. Groth16 verification should remain 
constant regardless of circuit complexity. 

We used high-precision timing with microsecond resolution 
through Python's time.perf_counter() function. Each 



 Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660 

650 VOLUME 24(4), 2025 

measurement captures wall-clock time rather than CPU time to 
reflect real-world performance characteristics. 

Secondary metrics include file sizes for circuit 
representations, cryptographic keys, and proof data. R1CS file 
sizes indicate circuit compilation efficiency. Key file sizes 
grow with circuit complexity and affect storage requirements. 
Proof sizes remain constant in Groth16, confirming protocol 
correctness. 

We recorded success rates to validate functional 
correctness. Each generated proof undergoes independent 
verification to ensure validity. Failed proofs indicate 
implementation errors rather than performance characteristics. 

E.  EXECUTION ENVIRONMENT 
All experiments executed in Ubuntu 20.04 LTS with Linux 
kernel 5.4. The environment includes standard GNU utilities 
and glibc 2.31. Python 3.10.12 provides the automation 
framework with scientific computing libraries. 

We installed dependencies from official sources to ensure 
authenticity. Circom binary comes from the official GitHub 
repository with cryptographic signature verification. The 
snarkjs package installs through npm from the official registry. 

Environment preparation includes system package updates 
and dependency installation. We verify tool functionality 
through test compilation and proof generation before beginning 
measurements. Any installation failures trigger automatic retry 
mechanisms. 

Working directory structure separates source circuits, 
compiled outputs, cryptographic keys, and measurement 
results. This organization prevents file conflicts and enables 
efficient cleanup between test runs. 

F.  STATISTICAL ANALYSIS PLAN 
We apply descriptive statistics to characterize central tendency 
and variability for each metric. Mean values provide point 
estimates while standard deviations indicate measurement 
precision. We compute confidence intervals using t-
distribution with appropriate degrees of freedom. 

Analysis of variance (ANOVA) tests for significant 
differences between circuit types. The null hypothesis states 
that all circuits have equal mean execution times. Alternative 
hypothesis suggests at least one circuit differs significantly 
from others. 

We check ANOVA assumptions through residual analysis. 
The Shapiro-Wilk test evaluates normality of residuals. 
Levene's test checks for equal variances across groups. When 
assumptions fail, we apply non-parametric alternatives such as 
Kruskal-Wallis tests. 

Multiple comparison procedures control family-wise error 
rates when comparing circuit pairs. We use Bonferroni 
correction for conservative control or Tukey's HSD for 
balanced power and error control. 
Bootstrap methods provide robust confidence intervals without 
distributional assumptions. We generate 1000 bootstrap 
samples for each statistic of interest. This approach handles 
non-normal distributions and small sample sizes effectively. 

IV. BENCHMARKING PLATFORM 
This section describes the automated benchmarking platform 
we developed for systematic zk-SNARK performance 
evaluation. The platform provides reproducible measurements 
across different circuit types and execution environments. We 

designed the system with modularity and extensibility in mind 
to support future research. 

A.  ARCHITECTURE OVERVIEW 
Our benchmarking platform follows a layered architecture with 
clear separation of concerns. The core system consists of four 
main components: circuit management, execution control, 
measurement collection, and result analysis. Each component 
operates independently while maintaining well-defined 
interfaces. 

The platform is implemented in Python 3.10 with object-
oriented design principles. We chose Python for its rich 
ecosystem of scientific computing libraries and excellent 
subprocess management capabilities. The implementation 
totals approximately 1,200 lines of code across multiple 
modules. 

Figure 2 shows the overall system architecture. The Circuit 
Library manages circuit definitions and compilation. The 
Benchmark Runner coordinates execution and collects 
performance metrics. The Result Analyzer processes 
measurements and generates reports. The File Manager handles 
temporary files and cleanup operations. 

B.  CIRCUIT MANAGEMENT SYSTEM 
The circuit management system provides a unified interface for 
defining, compiling, and validating zk-SNARK circuits. We 
implemented a Circuit class that encapsulates all circuit-related 
information including source code, input templates, and 
expected constraints. 

Each circuit definition includes five key components. The 
name field provides a unique identifier for the circuit. The 
circom_code field contains the complete Circom source code. 
The input_template field specifies example input values for 
testing. The expected_constraints field indicates the theoretical 
R1CS constraint count. The description field provides human-
readable documentation. 

The CircuitLibrary class manages the complete collection 
of test circuits. It provides methods for circuit retrieval, 
compilation validation, and batch operations. The library 
automatically handles circuit dependencies and ensures 
consistent compilation across different execution 
environments. 

Circuit compilation follows a standardized pipeline. First, 
we write the Circom source code to a temporary file with 
appropriate extensions. Second, we invoke the Circom 
compiler with flags for R1CS generation, WebAssembly 
output, and symbol information. Third, we validate the 
compilation output by checking for required files and parsing 
constraint counts. 

Constraint count validation uses a robust parsing approach. 
We execute snarkjs r1cs info command and parse the output 
using regular expressions. The parser handles various output 
formats across different snarkjs versions. Any discrepancy 
between expected and actual constraints triggers a warning but 
does not halt execution. 

C.  EXECUTION CONTROL FRAMEWORK 
The execution control framework manages the complete 
workflow from circuit compilation to result collection. We 
designed this component to handle the complex dependencies 
between different phases of the Groth16 protocol. 

The BenchmarkRunner class coordinates all execution 
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activities. It maintains state information about completed 
operations and provides recovery mechanisms for failed 
executions. The runner supports both single-circuit testing and 
batch execution across multiple circuits. 

The Groth16 protocol implementation follows a sequential 
pipeline: (1) Circom compiler transforms high-level circuit 
descriptions into R1CS constraint systems and WebAssembly 
witness generators, (2) snarkjs performs trusted setup 
generating proving and verification keys, (3) witness generator 
computes all circuit values for given inputs, (4) prover creates 
zk-SNARK proofs using witnesses and proving keys, and (5) 
verifier validates proofs using verification keys and public 
inputs. This pipeline structure, illustrated in our workflow 
diagram (Figure 3), ensures clean separation between circuit 
compilation, cryptographic setup, and runtime proof 
operations. 

We implemented a command execution abstraction that 
provides reliable subprocess management. The 
execute_command method handles timeout control, output 
capture, and error reporting. We use separate methods for 
logged execution (with progress indication) and silent 
execution (for measurement phases). 

The execution workflow follows a strict sequence (Figure 
3). First, we perform global setup operations including Powers 
of Tau generation and phase 2 preparation. These operations 
are computationally expensive but can be reused across 
multiple circuits. Second, we generate circuit-specific keys for 
proving and verification. Third, we execute the measurement 
loop with proper isolation between iterations. 

Error handling includes multiple levels of recovery. 
Temporary failures trigger automatic retry with exponential 
backoff. Permanent failures are logged with full diagnostic 
information but do not halt the entire benchmark. Critical 
failures that indicate system-level problems cause graceful 
shutdown with state preservation. 

D.  PERFORMANCE MEASUREMENT 
The measurement subsystem captures detailed performance 
metrics for each phase of the Groth16 protocol. We designed 

the measurement approach to minimize overhead while 
providing comprehensive coverage of system behavior. 

Timing measurements use Python's time.perf_counter() 
function for high-precision wall-clock timing. This function 
provides monotonic time measurement with the best available 
resolution on the platform. We measure each phase separately 
to enable detailed analysis of performance bottlenecks. 

The measurement protocol ensures clean execution 
environments. Before each measurement, we clear temporary 
files from previous iterations. We generate unique filenames to 
prevent conflicts between concurrent operations. We verify 
successful completion of each phase before proceeding to 
timing the next phase. 

Witness generation timing begins immediately before 
invoking the WebAssembly witness generator. We use Node.js 
to execute the generated JavaScript wrapper with appropriate 
input files. Timing ends when the witness file is successfully 
written to disk. 

Proof generation timing covers the complete snarkjs 
groth16 prove operation. This includes loading the proving 
key, processing the witness, performing elliptic curve 
operations, and writing the proof file. We verified that file I/O 
overhead is negligible compared to cryptographic operations. 

Verification timing measures the snarkjs groth16 verify 
command execution. This includes loading the verification key, 
parsing the proof, and computing bilinear pairings. We 
confirmed successful verification by parsing the command 
output for the "OK!" confirmation message. 

Resource utilization metrics complement timing 
measurements. We record file sizes for all intermediate and 
final outputs. These measurements help assess storage 
requirements and identify potential optimizations. We also 
monitor system memory usage during peak operations. 

E.  DATA COLLECTION AND STORAGE 
The data collection system captures comprehensive 
information about each measurement execution. We designed 
the storage format to support both immediate analysis and long-
term research reproducibility (Figure 4). 

 

Figure 2. Benchmarking Platform Architecture Overview 
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Figure 3. Benchmark Execution Workflow 

 



Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660  

VOLUME 24(4), 2025 653 

 

 

Figure 4. Data Structure Relationships 

Each measurement generates a BenchmarkResult object 
containing complete execution information. The object 
includes circuit identification, timing measurements, resource 
utilization, success indicators, and execution metadata. We use 
Python dataclasses to ensure consistent field definitions and 
type safety. 

Results are stored in multiple formats to support different 
analysis workflows. CSV format provides compatibility with 
spreadsheet applications and statistical software. JSON format 
preserves complete metadata and supports programmatic 
analysis. We also generate summary statistics in human-
readable formats. 

The storage system includes data integrity checks. We 
compute checksums for all result files to detect corruption. We 
validate JSON syntax and CSV structure before declaring 
successful storage. Any storage failures trigger automatic retry 
with alternative file names. 

Measurement metadata includes complete environment 
information. We capture software versions, system 
specifications, and execution parameters. This metadata 
enables reproduction of results and supports analysis of 
environmental factors affecting performance. 

F.  RESULT ANALYSIS AND VISUALIZATION 
The analysis subsystem processes raw measurements to 
generate meaningful insights. We implemented statistical 
analysis functions that handle common performance evaluation 
tasks while maintaining flexibility for custom analyses. 

Statistical processing includes descriptive statistics for each 
circuit and metric combination. We compute means, standard 

deviations, confidence intervals, and percentiles. We also 
perform significance testing to identify meaningful differences 
between circuits. 

The visualization system generates publication-quality 
plots for common analysis patterns. We use matplotlib and 
seaborn libraries to create consistent, professional graphics. 
The system supports both static PNG output for publication and 
interactive HTML plots for exploration. 

Key visualization types include scalability analysis 
showing performance versus circuit complexity, comparative 
analysis showing different operations for the same circuits, and 
distribution analysis showing measurement variability. Each 
plot type includes appropriate statistical annotations such as 
error bars and confidence intervals. 

Export functionality supports integration with external 
analysis tools. We provide functions to export data in formats 
compatible with R, MATLAB, and other statistical software. 
The export preserves all metadata required for independent 
analysis. 

V. EXPERIMENTAL RESULTS 
This section presents the empirical findings from our 
systematic benchmarking study. We conducted 35 
measurements across seven circuits with complete success in 
proof generation and verification. The results reveal non-linear 
scaling behavior and significant performance variations based 
on circuit structure rather than constraint count alone. 

A.  OVERALL PERFORMANCE CHARACTERISTICS 
All 35 benchmark executions completed successfully with 
100% proof verification rate. This confirms the functional 
correctness of our experimental setup and the reliability of the 
Circom-snarkjs implementation. Total execution time for the 
complete benchmark suite was 126.4 seconds, demonstrating 
the efficiency of our automated testing framework. 

Table 1 summarizes the performance characteristics across 
all circuits. The data shows substantial variation in execution 
times that do not correlate directly with constraint counts. The 
most complex circuit (comparison_chain with 11 constraints) 
achieved the fastest average proving time, while intermediate 
complexity circuits showed longer execution times. 

Table 1. Performance Summary by Circuit 

Circuit Name Constraints Prove Time 

(ms) 

Verify Time 

(ms) 

Efficiency 

(const/sec) 

basic_multiply 1 982 ± 289 831 ± 62 1.02 

double_multiply 2 899 ± 34 741 ± 13 2.23 

quadratic 3 1007 ± 314 826 ± 31 2.98 

polynomial_simple 5 1147 ± 291 838 ± 88 4.36 

hash_chain 8 1080 ± 274 854 ± 276 7.41 

merkle_simple 3 1079 ± 298 850 ± 258 2.78 

comparison_chain 11 832 ± 18 884 ± 213 13.22 

 
The efficiency metric, calculated as constraints per second 

during proof generation, reveals significant optimization 
opportunities. The comparison_chain circuit achieved 13.22 
constraints per second, substantially higher than other circuits. 
This suggests that snarkjs implements specialized 
optimizations for comparison operations. 
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Statistical analysis using ANOVA confirms significant 
differences between circuit types (F = 4.23, p < 0.05). The 
effect size (η² = 0.41) indicates that circuit type explains 41% 
of the variance in proving times. This substantial effect 
confirms that circuit structure significantly impacts 
performance beyond simple constraint counting. 

B.  TEMPORAL PERFORMANCE ANALYSIS 
Figure 5 illustrates the temporal characteristics across all three 
phases of the Groth16 protocol. Witness generation 
consistently required the least time, averaging 57.6 ± 12.1 
milliseconds across all circuits. This phase showed minimal 
variation between circuits, indicating that WebAssembly 
execution performance scales predictably with circuit 
complexity. 

 

 

Figure 5. Execution Time Comparison Across ZKP Operations 

 

 

Figure 6. Performance Scaling Analysis 
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Figure 7. Execution Time Distribution Analysis 

Proof generation dominated total execution time, averaging 
1091.0 ± 289.6 milliseconds. The large standard deviation 
reflects substantial differences between circuit types rather than 
measurement noise. Individual circuit variations were 
relatively small (coefficients of variation ranging from 2.2% to 
35.1%). 

Verification times averaged 868.7 ± 217.7 milliseconds 
with moderate variation between circuits (CV=25%). While 
Groth16 theoretically provides constant verification time, our 
implementation showed some dependency on circuit 
complexity. This variation stems from several sources: (1) 
JavaScript V8 engine JIT compilation effects causing 50-
100ms variations, (2) different bilinear pairing computation 
paths for various circuit structures, and (3) I/O overhead for 
loading verification keys ranging from 289KB to 1034KB. The 
polynomial_simple circuit exhibited the highest variation 
(±88ms) due to its complex verification key structure, while 
double_multiply showed the most stable performance (±13ms). 
Despite these variations, the CV was significantly lower than 
proving time variation (26.5%), confirming Groth16's practical 
efficiency advantage for verification-intensive applications.. 

The ratio of verification to proving time ranged from 0.83 
to 1.06 across circuits. Most circuits achieved verification times 
slightly less than proving times, confirming the efficiency 
advantage of Groth16 for applications requiring frequent 
verification. 

C.  SCALING ANALYSIS 
Figure 6 presents the scaling behavior of proving and 
verification times relative to constraint count. The relationship 
is clearly non-linear, challenging simple theoretical predictions 
based on constraint counting alone. 

Proving time scaling shows a complex pattern. The 
maximum proving time (1,147ms for polynomial_simple) 
exceeds the minimum (832ms for comparison_chain) by only 
38%, despite an 11-fold difference in constraint count. This 

sub-linear scaling suggests significant constant overhead in the 
JavaScript implementation. 

We fitted several scaling models to the data: 

- Linear model: T C     (R² = 0.12) 

- Logarithmic model: log( )T C     (R² = 0.08)   

- Power model: T C   (R² = 0.15) 
All models showed poor fit (R² < 0.20), confirming that 

constraint count alone poorly predicts performance. This 
finding has important implications for circuit design 
optimization. 

Verification scaling showed even less correlation with 
constraint count. The coefficient of determination (R² = 0.03) 
indicates that constraint count explains only 3% of verification 
time variance. This near-independence aligns with Groth16's 
theoretical constant verification time property. 

D.  CIRCUIT CATEGORY ANALYSIS 
We analyzed performance patterns by grouping circuits into 
functional categories. Basic arithmetic circuits (basic_multiply, 
double_multiply) showed consistent performance with 1.0-2.2 
constraints per second efficiency. These circuits represent 
fundamental operations with straightforward constraint 
structures. 

Polynomial evaluation circuits (quadratic, 
polynomial_simple) achieved moderate efficiency of 2.9-4.4 
constraints per second. The efficiency improvement with 
higher-degree polynomials suggests some optimization 
benefits from repeated similar operations. 

Cryptographic circuits (hash_chain, merkle_simple) 
showed variable performance. The hash_chain circuit achieved 
high efficiency (7.4 constraints/second) while merkle_simple 
performed poorly (2.8 constraints/second) despite identical 
constraint counts. This difference likely reflects optimization 
variations for different operation patterns. 
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Logic circuits (comparison_chain) demonstrated 
exceptional efficiency at 13.2 constraints per second. This 
performance advantage suggests specialized optimization in 
snarkjs for equality testing operations, which are common in 
zero-knowledge applications. 

E.  DISTRIBUTION ANALYSIS 
Figure 7 shows the distribution of execution times across 
circuit types using box plots. The visualization reveals several 
important patterns in measurement variability. 

Witness generation times show tight distributions with 
minimal outliers. The interquartile ranges span less than 20 
milliseconds for most circuits, indicating consistent 
WebAssembly execution performance. Only the 
polynomial_simple and hash_chain circuits show slightly 
wider distributions. 

Proof generation distributions vary significantly between 
circuits. The basic_multiply circuit shows the widest 
distribution with several outliers above 1,200 milliseconds. In 
contrast, comparison_chain shows a remarkably tight 
distribution with all measurements within 50 milliseconds of 
the median. 

Verification time distributions generally show moderate 
spread with occasional outliers. The polynomial_simple circuit 
exhibits the most variable verification performance, possibly 
due to different bilinear pairing computation paths. 

The absence of systematic trends in outlier direction (all 
circuits show both high and low outliers) confirms that 
environmental factors rather than systematic biases cause 
measurement variation. Analysis of outlier patterns reveals 
three primary sources of variability: (1) V8 engine warm-up 
effects causing 100-200ms overhead in initial iterations before 
JIT optimization, (2) Node.js garbage collection pauses 
occurring irregularly during proof generation (detected in 8 of 
35 measurements), and (3) I/O delays from concurrent system 
operations in the cloud environment (±50ms variation). The 
comparison_chain circuit shows minimal outliers due to its 
optimized execution path, while basic_multiply exhibits wide 
distribution (CV=29.4%) suggesting higher sensitivity to 
runtime variations. These findings indicate that warm-up runs 
and multiple measurements are essential for reliable 
performance characterization of JavaScript-based zk-SNARK 
implementations. 

F.  RESOURCE UTILIZATION 
Table 2 presents file size measurements for key components of 
the zk-SNARK workflow. These metrics provide insights into 
storage requirements and compilation efficiency. 
 

Table 2. File Size Analysis (bytes) 

Circuit Name R1CS 

Size 

WASM 

Size 

Key Size Proof 

Size 

basic_multiply 264 34,317 145,823 512 

double_multiply 395 34,574 198,447 512 

quadratic 459 34,891 234,156 512 

polynomial_simple 651 35,424 387,892 512 

hash_chain 1,243 37,189 612,334 512 

merkle_simple 487 35,156 289,671 512 

comparison_chain 2,156 41,203 1,034,567 512 

 

R1CS file sizes scale approximately linearly with constraint 
count (R² = 0.94), confirming expected behavior for constraint 
system representations. The linear relationship 

1 185 89.4R CSS C    provides accurate size predictions 

for storage planning. 
WebAssembly file sizes show minimal variation across 

circuits, ranging from 34.3KB to 41.2KB. The modest size 
increases reflect additional computation code rather than 
fundamental scaling limitations. All WASM files remain well 
within reasonable download and execution size limits. 

Proving key sizes demonstrate strong linear correlation 
with constraint count (R² = 0.97). The relationship 

52,341 87, 432keyS C    shows substantial growth in 

key size requirements. Large circuits may face storage and 
distribution challenges in practical deployments. 

Proof sizes remained constant at 512 bytes across all 
circuits, confirming Groth16's succinct proof property. This 
constant size provides a significant advantage for applications 
requiring proof transmission or storage. 

G.  SUCCESS RATE AND RELIABILITY 
Our experimental protocol achieved 100% success rate across 
all 35 measurements. Every generated proof passed 
independent verification, confirming the reliability of both our 
measurement methodology and the underlying Circom-snarkjs 
implementation. 

No circuit compilation failures occurred during the 
experiment. All seven circuits compiled successfully on the 
first attempt, generating the expected R1CS, WebAssembly, 
and symbol files. This reliability supports the maturity of the 
Circom compiler for research applications. 

Key generation succeeded for all circuits without manual 
intervention. The automated PowersOfTau setup and Groth16 
key generation completed within expected time limits. No 
timeout or resource exhaustion issues occurred during 
cryptographic setup phases. 

Witness generation completed successfully for all 35 test 
cases. The WebAssembly witness generators executed without 
errors, producing valid witness files that passed internal 
consistency checks. This reliability confirms the correctness of 
our circuit implementations and input data. 

Proof generation and verification maintained perfect 
success rates throughout the experiment. No cryptographic 
failures, timeout errors, or verification mismatches occurred. 
This consistency demonstrates the production readiness of the 
snarkjs Groth16 implementation for research applications. 

H.  STATISTICAL SIGNIFICANCE ANALYSIS 
We applied multiple statistical tests to evaluate the significance 
of observed performance differences. The one-way ANOVA 
test for proving times yielded F(6,28) = 4.23 with p = 0.003, 
indicating statistically significant differences between circuit 
types at α = 0.05. 

Post-hoc analysis using Tukey's HSD test identified several 
significant pairwise differences. The comparison_chain circuit 
proved significantly faster than polynomial_simple (p = 0.012) 
and basic_multiply (p = 0.037). No other pairwise comparisons 
reached statistical significance after multiple comparison 
correction. 

Bootstrap confidence intervals provide robust estimates of 
central tendency without distributional assumptions. The 95% 
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confidence interval for overall proving time spans 1,026 to 
1,156 milliseconds. Individual circuit confidence intervals 
show non-overlapping ranges for comparison_chain versus 
polynomial_simple, supporting the statistical significance of 
their performance difference. 

Verification time ANOVA yielded F(6,28) = 1.84 with p = 
0.128, indicating no statistically significant differences 
between circuits at α = 0.05. This result supports Groth16's 
theoretical constant verification time property, though practical 
implementations show some variation. 

Effect size calculations using Cohen's d reveal moderate to 
large effects for the most significant comparisons. The 
comparison_chain versus polynomial_simple difference shows 
d = 1.23, indicating a large practical effect beyond statistical 
significance. 

VI. DISCUSSION 
This section analyzes our experimental findings and their 
implications for zk-SNARK research and application 
development. We interpret the performance characteristics and 
discuss the practical significance of our results. 

A.  PERFORMANCE CHARACTERISTICS ANALYSIS 
Our systematic benchmarking reveals consistent and reliable 
performance characteristics for the Circom-snarkjs framework. 
The 100% success rate across all 35 measurements 
demonstrates the maturity and stability of this implementation 
for research and development applications. 

The performance profile shows three distinct phases with 
different scaling properties. Witness generation exhibits 
excellent consistency (57.6±12.1ms) across all circuit types, 
indicating efficient compilation and execution of circuit logic. 
This consistency supports predictable resource planning for 
applications requiring witness computation. 

Proof generation times (832-1,147ms) show moderate 
variation that correlates with circuit structure rather than 
constraint count alone. The range represents acceptable 
performance for most interactive applications while 
highlighting optimization opportunities for high-throughput 
scenarios. 

Verification performance (741-884ms) demonstrates the 
practical benefits of Groth16's constant-time verification 
property. The stability across circuit types confirms theoretical 
advantages while maintaining reasonable absolute performance 
for verification-intensive applications. 

B.  CIRCUIT DESIGN IMPLICATIONS 
Our results provide actionable insights for circuit designers 
seeking to optimize performance (Table 3). The substantial 
efficiency difference between circuit types (1.02-13.22 
constraints/second) indicates that operation selection 
significantly impacts overall performance. 

Logic-based operations, exemplified by the 
comparison_chain circuit, achieve superior efficiency 
compared to arithmetic operations. This finding suggests 
design patterns that favor comparison and equality testing over 
complex arithmetic when performance is critical. 

The polynomial evaluation circuits show intermediate 
performance characteristics, balancing computational 
complexity with reasonable efficiency. These results support 
the feasibility of polynomial-based cryptographic constructions 
in zk-SNARK applications. 

Table 3: Practical Circuit Design Recommendations 

Design 

Consideration 
Recommendation Expected Impact 

Operation 

selection 

Prefer comparison 

over arithmetic 

13× efficiency improvement 

over basic arithmetic 

Circuit structure 
Minimize linear 

dependency chains 

Reduces proof generation 

time variability 

Constraint 

optimization 

Group related 

operations 
2–4× efficiency gain 

Operations to 

avoid 

Complex polynomial 

evaluation 

3–5× slower than 

comparison-based circuits 

Optimal 

complexity 

range 

8–11 constraints 
Best constraints-per-second 

ratio 

 
Hash-based circuits demonstrate acceptable performance 

for cryptographic applications requiring iterative operations. 
The measured efficiency supports the practical deployment of 
hash-chain based constructions in zero-knowledge protocols. 

C.  FRAMEWORK ASSESSMENT 
The Circom-snarkjs framework demonstrates excellent 
suitability for research, prototyping, and moderate-scale 
production applications. The reliable compilation, execution, 
and verification support rapid development cycles with 
predictable performance characteristics. 

The framework's maturity is evidenced by consistent 
behavior across diverse circuit types and complete absence of 
execution failures. This reliability reduces development risk 
and supports confident deployment in applications requiring 
zero-knowledge proofs. 

Resource requirements remain reasonable across all tested 
scenarios, with memory usage below 170MB and manageable 
file sizes for keys and intermediate data. These characteristics 
support deployment in resource-constrained environments. 

D.  SCALABILITY CONSIDERATIONS 
Within the tested range (1-11 constraints), the framework 
shows favorable scaling properties. The sub-linear growth in 
execution time relative to constraint count suggests efficient 
handling of increasing circuit complexity. 

Proof size consistency (512 bytes) across all circuits 
confirms Groth16's succinct property and provides excellent 
scalability for applications requiring proof transmission or 
storage. This constant size represents a significant advantage 
over alternative proof systems. 

Key file growth follows predictable patterns, enabling 
accurate resource planning for larger circuits. The linear 
scaling relationship supports infrastructure provisioning for 
applications with known circuit complexity requirements. 

E.  PRACTICAL DEPLOYMENT GUIDANCE 
For research and development applications, the Circom-snarkjs 
framework provides an optimal balance of functionality, 
reliability, and performance. The consistent behavior and 
comprehensive tooling support efficient development 
workflows. 

Production deployments should consider the absolute 
performance characteristics in context of application 
requirements. The measured performance levels suit many 
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practical applications while highlighting the value of 
optimization for performance-critical scenarios. 

Circuit designers should leverage the performance insights 
to optimize operation selection and circuit structure. The 
documented efficiency patterns provide guidance for achieving 
optimal performance within the framework's capabilities. 

F.  STUDY LIMITATIONS 
Our analysis focuses on the Circom-snarkjs implementation 
through a Python automation interface, limiting direct 
generalizability to other zk-SNARK implementations. Energy 
consumption measurements were not feasible in our virtualized 
Google Colab environment, as cloud platforms do not provide 
reliable power monitoring interfaces. This represents an 
important limitation for practical deployments where energy 
efficiency is critical, particularly for blockchain nodes and IoT 
devices. Future work should include energy profiling on bare-
metal hardware to complement our performance analysis. 

The constraint range (1-11) represents typical small to 
medium-scale applications but may not capture behavior for 
very large circuits. Future work should extend the analysis to 
larger constraint ranges to validate scaling assumptions. 

The JavaScript-based snarkjs implementation introduces 
specific performance characteristics and limitations. Single-
threaded JavaScript execution prevents parallel processing of 
independent proof generation operations, potentially limiting 
throughput for batch scenarios. The V8 garbage collector 
causes periodic 50-150ms pauses during long-running 
operations, contributing to measurement variability. 
WebAssembly witness generation, while efficient, cannot 
match the performance of optimized native implementations in 
C++/Rust which typically achieve 2-3× faster execution 
through better memory management and SIMD optimizations. 
Memory consumption (up to 170MB) exceeds native 
implementations by 40-60% due to JavaScript runtime 
overhead. However, these trade-offs enable browser-based 
execution and simplified deployment, making Circom-snarkjs 
optimal for prototyping and moderate-scale applications. For 
high-throughput production scenarios requiring >100 
proofs/second, native implementations like Bellman or 
Arkworks should be considered.. 

Future work should include comparative analysis with 
native implementations such as Bellman (Rust) and Arkworks 
to quantify framework-specific performance effects. Based on 
preliminary estimates from literature, we anticipate native 
implementations would achieve 2-3× faster proving times due 
to optimized memory management and parallel processing 
capabilities. However, such comparison requires careful 
methodology design to ensure fair evaluation across different 
implementation paradigms and deployment constraints. 

7. CONCLUSION 
This study provides systematic empirical analysis of Groth16 
zk-SNARK performance using the Circom-snarkjs framework. 
Our automated benchmarking platform measured performance 
across seven representative circuits, contributing valuable data 
for zk-SNARK research and application development. 

A.  PRIMARY CONTRIBUTIONS 
We developed and validated an automated benchmarking 
methodology that ensures reproducible zk-SNARK 
performance measurements. The platform successfully 

executed 35 measurements with 100% success rate, 
demonstrating both methodology reliability and 
implementation stability. 

The empirical performance data reveals important patterns 
for circuit design optimization. Circuit structure significantly 
impacts efficiency, with logic operations achieving up to 13x 
better performance than basic arithmetic operations. This 
finding provides actionable guidance for performance-
conscious circuit development. 

Our analysis confirms Groth16's theoretical advantages in 
practice, including constant proof size and stable verification 
times. These characteristics support the protocol's suitability 
for applications requiring efficient proof transmission and 
verification. 

The open-source benchmarking framework enables 
reproducible research and comparative analysis across 
different implementations and environments. This contribution 
supports the broader zk-SNARK research community's 
evaluation and optimization efforts. 

В.  PRACTICAL SIGNIFICANCE 
The measured performance characteristics demonstrate the 
practical viability of Groth16 for real-world applications. 
Proving times of 832-1,147ms and verification times of 741-
884ms suit many interactive and batch processing scenarios. 

The reliability demonstrated through 100% success rate 
supports confident deployment in production environments 
requiring zero-knowledge proofs. The consistent behavior 
across diverse circuit types reduces implementation risk and 
simplifies system integration. 

Resource requirements remain manageable for typical 
deployment scenarios, with reasonable memory usage and 
predictable storage requirements. These characteristics support 
deployment across diverse infrastructure environments. 

С.  FUTURE RESEARCH DIRECTIONS 
Extended constraint range analysis would clarify scaling 
behavior for larger circuits and validate optimization strategies 
for complex applications. Such studies would support the 
development of industrial-scale zk-SNARK applications. 

Comparative analysis across multiple implementations 
would provide comprehensive performance evaluation and 
guide technology selection decisions. Cross-implementation 
studies would benefit the entire zk-SNARK ecosystem. 

Application-specific performance analysis would provide 
targeted optimization guidance for specific use cases such as 
blockchain applications, privacy-preserving computation, and 
cryptographic protocols. 

Hardware acceleration evaluation could reveal optimization 
opportunities for performance-critical deployments, 
particularly for applications requiring high-throughput proof 
generation or verification [25]. 

D.  CONCLUDING REMARKS 
Our systematic benchmarking demonstrates that current zk-
SNARK implementations achieve practical performance levels 
suitable for diverse applications. The Circom-snarkjs 
framework provides reliable functionality with predictable 
performance characteristics. 

The substantial impact of circuit design choices on 
performance emphasizes the importance of optimization-aware 
development. Our findings provide concrete guidance for 
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achieving optimal performance within current implementation 
capabilities. 

As zero-knowledge proof technology continues advancing, 
empirical performance analysis remains crucial for informed 
adoption decisions and optimization priorities. We anticipate 
that our methodology and findings will contribute to continued 
progress in practical zk-SNARK deployment. 
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