Sl

Date of publication DEC-31, 2025, date of current version DEC-12, 2025.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.4.4329

Performance Analysis of Groth16
zkSNARK: Systematic Benchmarking with
Circom-snarkjs

OLEKSANDR KUZNETSOV'2, YULIA KHAVIKOVAS3, VALERII BUSHKOV3,
DMYTRO SHCHYTOV*4, NIKOLAJ MORMUL®

"Department of Theoretical and Applied Sciences, eCampus University, Via Isimbardi 10, 22060, Novedrate (CO), Italy,
https://orcid.org/0000-0003-2331-6326, e-mail: oleksandr.kuznetsov@uniecampus.it
Department of Intelligent Software Systems and Technologies, School of Computer Science and Artificial Intelligence, V.N. Karazin Kharkiv
National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine, kuznetsov(@karazin.ua
Department of Software Engineering and Cybersecurity of the State University of Trade and Economics, Ukraine, 19, Kyoto str., 02156, Kyiv,
Ukraine, https://orcid.org/0000-0003-1017-3602, e-mail: pirogova0303@gmail.com
http://orcid.org/0009-0005-5097-2689, bushkov.v@gmail.com
“Department of Entrepreneurship and Enterprise Economics, University of Customs and Finance, Vernadskogo str., 2/4, 49000, Dnipro,
Ukraine, https://orcid.org/0000-0003-4306-8016, E-mail: dmytro.shchytov@gmail.com
SDepartment of Computer Science and Software Engineering, University of Customs and Finance, Vernadskogo str., 2/4, 49000, Dnipro,
Ukraine, https://orcid.org/0000-0002-8036-3236, E-mail: nikolaj.mormul@gmail.com

Corresponding author: Oleksandr Kuznetsov (e-mail: oleksandr.kuznetsov(@uniecampus.it, kuznetsov@karazin.ua).

ABSTRACT Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKSs) have emerged
as a critical technology for privacy-preserving computation and blockchain applications. However, systematic
performance analysis of practical implementations remains limited, hindering informed technology adoption
decisions. This study presents a comprehensive benchmarking analysis of the Groth16 protocol implementation
using the widely-adopted Circom-snarkjs framework. We developed an automated benchmarking platform that
systematically measures performance across seven representative circuit types with varying computational
complexity (1-11 R1CS constraints). Our methodology ensures reproducible measurements through controlled
experimental design with statistical validation. The platform captures detailed metrics for all three phases of the
Groth16 protocol: witness generation, proof creation, and verification. Results from 35 independent measurements
reveal several important findings. Witness generation demonstrates consistent performance across circuit types,
averaging 57.6+12.1 milliseconds. Proof generation times range from 832 to 1,147 milliseconds, showing non-
linear scaling with circuit complexity. Verification times remain relatively stable (741-884 milliseconds),
confirming Groth16's theoretical constant-time verification advantage. All measurements achieved 100% success
rate with complete proof validation. Notably, circuit structure significantly impacts performance beyond simple
constraint counting. Comparison-based circuits achieve 13.22 constraints per second efficiency, substantially
outperforming arithmetic circuits (1.02-4.36 constraints/second). This finding provides actionable guidance for
circuit design optimization. The study contributes an open-source benchmarking framework for reproducible zk-
SNARK research and provides empirical performance data for technology adoption decisions. Our findings
support the practical deployment of Groth16 for applications requiring efficient zero-knowledge proofs while
highlighting optimization opportunities for circuit designers.

KEYWORDS zero-knowledge proofs; zk-SNARK; Grothl6; performance benchmarking; Circom;
cryptographic protocols; privacy-preserving computation.

I. INTRODUCTION

ero-knowledge proofs represent a fundamental
breakthrough in cryptographic protocols, enabling one
party to prove knowledge of information without revealing the
information itself [1, 2]. This capability has transformative
implications for privacy-preserving computation, blockchain

VOLUME 24(4), 2025

applications, and secure verification systems [3, 4]. Among
various zero-knowledge proof systems, zk-SNARKSs (Zero-
Knowledge Succinct Non-Interactive Arguments of
Knowledge) have gained widespread adoption due to their
efficiency and practical applicability [5, 6].

The Groth16 protocol stands as the most widely deployed

645

)

Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660

zk-SNARK construction, offering optimal proof sizes and
efficient verification [7]. Grothl6 generates constant-size
proofs regardless of computation complexity, making it
particularly suitable for applications requiring proof
transmission or storage. Major blockchain platforms including
Zcash [8] and Ethereum [9] have successfully integrated
Groth16 for privacy-preserving transactions and scalable
computation verification [10, 11].

Despite theoretical advances and growing practical
adoption, systematic performance analysis of Grothl6
implementations remains limited. Most existing studies focus
on asymptotic complexity analysis or specific application
domains. Comprehensive empirical evaluation of real-world
implementations across diverse computational patterns is
lacking. This gap hinders informed technology adoption
decisions and optimization efforts.

A. PROBLEM STATEMENT

Current zk-SNARK performance literature suffers from several
limitations that impede practical deployment decisions [12,
13]. First, theoretical complexity analysis provides asymptotic
bounds but often fails to capture implementation-specific
behavior and constant factors that dominate performance for
typical applications. Second, application-specific studies focus
on narrow use cases, limiting generalizability to other domains.
Third, measurement methodologies vary significantly across
studies, preventing meaningful comparison between different
implementations and optimization approaches.

The Circom-snarkjs framework [14] has emerged as a
leading development platform for zk-SNARK applications,
combining the Circom circuit description language with the
snarkjs JavaScript implementation of Groth16. This technology
stack enables rapid prototyping and deployment across diverse
platforms while maintaining cryptographic correctness.
However, systematic performance characterization of this
widely-used framework is absent from current literature.

Developers and researchers require empirical performance
data to make informed decisions about technology adoption,
resource provisioning, and optimization priorities. The absence
of comprehensive benchmarking data forces practitioners to
rely on theoretical estimates or limited anecdotal evidence,
potentially leading to suboptimal design choices.

B. RESEARCH OBJECTIVES

This study addresses the performance analysis gap through
systematic benchmarking of Groth16 implementation using the
Circom-snarkjs framework [15, 16]. Our primary objective is
to provide comprehensive empirical performance data that
supports informed technology adoption and optimization
decisions.

We designed our investigation to answer several key
research questions. First, how do execution times scale with
circuit complexity across different computational patterns?
Second, what performance variations exist between different
types of zero-knowledge computations? Third, how do
empirical results compare with theoretical complexity
predictions? Fourth, what optimization opportunities exist for
practical circuit design?

Our approach combines rigorous experimental
methodology with practical relevance. We developed an
automated benchmarking platform that ensures reproducible

646

measurements while covering representative circuit types
commonly encountered in zk-SNARK applications. The
methodology addresses statistical validity through appropriate
sample sizes and significance testing.

C. CONTRIBUTIONS

This research makes several important contributions to zero-
knowledge proof research and practice. We provide the first
systematic performance analysis of the Circom-snarkjs
framework across diverse circuit types with varying
computational complexity. Our measurements cover all phases
of the Groth16 protocol [7]: witness generation, proof creation,
and verification.

The automated benchmarking platform represents a
significant methodological contribution. The platform ensures
reproducible measurements through controlled experimental
design and comprehensive data collection. We release the
complete framework as open-source software to enable
replication and extension by other researchers.

Our empirical findings reveal important patterns that
challenge common assumptions about zk-SNARK
performance. Circuit structure significantly impacts efficiency
beyond simple constraint counting, with logic operations
achieving substantially better performance than arithmetic
computations. These insights provide actionable guidance for
circuit designers seeking to optimize performance.

The study contributes comprehensive performance data that
supports practical deployment decisions. Our measurements
provide realistic performance expectations for planning
resource requirements, estimating computational costs, and
evaluating scalability characteristics.

Statistical analysis validates the significance of observed
performance differences and provides confidence intervals for
practical planning. The rigorous methodology ensures that
findings are statistically sound and practically meaningful.

D. SCOPE AND LIMITATIONS

Our investigation focuses specifically on the Circom-snarkjs
implementation of Groth16, which represents a widely-adopted
but not exhaustive sample of available zk-SNARK
implementations. This focus enables deep analysis of a
practically important system while acknowledging that results
may not generalize to all implementations.

The circuit complexity range (1-11 RICS constraints)
covers typical small to medium-scale applications but does not
address very large circuits that might exhibit different scaling
behavior. This constraint range represents a practical
compromise between experimental feasibility and coverage of
common use cases.

Our experimental environment uses standardized cloud
infrastructure to ensure reproducibility, but absolute
performance values may vary on different hardware platforms.
The relative performance comparisons and scaling
characteristics should remain consistent across similar
computational environments.

The study measures performance through a Python
automation interface that coordinates execution and timing
measurement. This approach captures end-to-end performance
characteristics including any coordination overhead, providing
realistic performance expectations for practical deployments.

VOLUME 24(4), 2025

)

Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660

E. PAPER ORGANIZATION

The remainder of this paper is organized as follows. Section 2
reviews related work in zero-knowledge proof performance
analysis and identifies gaps addressed by our study. Section 3
describes our experimental methodology, including circuit
design, measurement procedures, and statistical analysis
approaches.

Section 4 presents the automated benchmarking platform
architecture and implementation details. We describe the
system components, workflow coordination, and quality
assurance measures that ensure reliable measurements.

Section 5 presents comprehensive experimental results,
including temporal performance analysis, scaling behavior, and
resource utilization characteristics. We provide detailed
statistical analysis of performance differences and their
practical significance.

Section 6 discusses the implications of our findings for zk-
SNARK research and practice. We analyze optimization
opportunities, deployment considerations, and limitations of
current implementations.

Section 7 concludes with a summary of contributions,
practical recommendations, and directions for future research.
We highlight the broader implications of our findings for zero-
knowledge proof adoption and optimization.

F. REPRODUCIBILITY AND OPEN SCIENCE

In support of open science principles, we provide complete
methodology documentation and release all experimental code
as open-source software
(https://colab.research.google.com/drive/1j52xwa4wlLcYcreX
UyaVrk60A36T5h9XV). The benchmarking platform includes
detailed installation instructions and example usage scenarios
to facilitate replication by other researchers.

All measurement data and analysis scripts are available in
structured formats with comprehensive metadata. This data
release enables independent validation of our findings and
supports meta-analysis combining results from multiple
studies.

The reproducible methodology supports extension to other
zk-SNARK implementations and circuit types. Researchers can
adapt our approach to comparative studies or specialized
application domains while maintaining methodological
consistency.

Il. RELATED WORK

This section reviews existing literature on zero-knowledge
proof performance analysis, zk-SNARK implementations, and
benchmarking methodologies. We identify research gaps that
motivate our systematic performance evaluation approach.

A. ZERO-KNOWLEDGE PROOF PERFORMANCE
STUDIES
Recent research has increasingly focused on practical
performance aspects of zero-knowledge proof systems. Ni and
Zhu [17] presented one of the first comprehensive GPU
acceleration studies for zk-SNARK kernels, achieving
significant speedups for Groth16 implementations. Their work
demonstrated 3.14% acceleration for Grothl16 operations on
BLS12-381 curves through optimized modular multiplication
and Number-Theoretic Transform implementations.

Wang et al. [18] addressed multi-scalar multiplication
(MSM) bottlenecks in zk-SNARK systems through distributed

VOLUME 24(4), 2025

computing approaches. Their clustering-based solution
achieved 3.60% and 6.50% acceleration ratios in dual-node and
quad-node configurations respectively. While focusing on
specific computational kernels, these studies highlight the
importance of implementation-level optimizations for practical
zk-SNARK deployment.

Kuznetsov et al. [2] evaluated ZKP performance in
blockchain contexts, measuring proof verification times of
approximately 4 milliseconds with constant proof sizes of
180,112 bytes. However, their proof generation times ranged

from 13-18 minutes per block, indicating substantial
computational overhead for proof creation phases.

B. ZK-SNARK IMPLEMENTATION ANALYSIS

Several studies have examined specific zk-SNARK
implementations across different application domains.

Petrosino et al. [19] integrated zero-knowledge proofs with
federated learning systems, demonstrating practical
deployment feasibility while noting performance trade-offs
between privacy preservation and computational efficiency.

Soler et al. [13] implemented zk-SNARK protocols for
quantum random number generation key distribution,
providing concrete performance measurements for
cryptographic applications. Their work showed practical
verification times while highlighting the computational
overhead of proof generation phases.

Lin et al. [20] evaluated zk-SNARK performance in cross-
chain cryptocurrency applications, reporting 39% additional
time cost compared to non-private alternatives. This finding
illustrates the performance trade-offs inherent in privacy-
preserving implementations.

C. BENCHMARKING METHODOL OGIES

Existing performance studies employ diverse methodologies
that limit direct comparison between implementations. Most
studies focus on specific applications or optimization
techniques rather than systematic evaluation across
representative workloads.

Tortola et al. [21] surveyed Layer 2 blockchain solutions
and their proving schemes, identifying the need for
standardized evaluation methodologies. Their analysis
revealed that performance comparisons across different
implementations remain challenging due to varying
experimental conditions and measurement approaches.

The absence of standardized benchmarking frameworks has
led to fragmented performance data that provides limited
guidance for practical deployment decisions. Most studies
report absolute performance values without statistical analysis
or confidence intervals, limiting the reliability of comparative
assessments.

D. CIRCUIT COMPLEXITY AND PERFORMANCE

Limited research has systematically examined the relationship
between circuit complexity and performance across different
computational patterns. Existing studies typically focus on
specific circuit types or application domains without
comprehensive analysis of scaling behavior.

Qi et al. [22] surveyed privacy-preserving smart contract
implementations, noting significant performance variations
between different cryptographic approaches. However, their
analysis lacked empirical performance data across diverse

647

)

Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660

circuit complexities.

The relationship between circuit structure and performance
remains poorly understood, with most literature relying on
theoretical complexity analysis rather than empirical
measurement. This gap limits the ability to provide concrete
guidance for circuit design optimization.

E. IMPLEMENTATION PLATFORM ANALYSIS
The Circom-snarkjs framework has gained widespread
adoption for zk-SNARK development, yet systematic
performance characterization remains absent from current
literature. Most studies using this platform focus on specific
applications rather than comprehensive performance analysis.
Yu et al. [23] utilized zk-SNARK implementations for [oT
identity management systems, reporting successful deployment
but lacking detailed performance metrics. Similarly, Liu et al.
[24] employed zero-knowledge proofs for data marketplace
applications without comprehensive performance evaluation.
The JavaScript-based nature of snarkjs implementations
introduces unique performance characteristics that differ from
native implementations. However, comparative analysis
between JavaScript and native implementations remains
limited in current literature.

F. RESEARCH GAPS AND LIMITATIONS

Current zk-SNARK performance literature exhibits several
significant limitations that impede practical deployment
guidance. First, most studies focus on specific applications or
optimization techniques rather than systematic evaluation
across representative workloads. This application-specific
focus limits generalizability to other use cases.

Second, experimental methodologies vary substantially
between studies, preventing meaningful performance
comparisons. Different hardware platforms, measurement
procedures, and statistical analysis approaches make it difficult
to synthesize findings across multiple studies.

Third, the relationship between circuit complexity and
performance remains poorly characterized. Most studies
examine specific circuit types without systematic analysis of
how different computational patterns affect execution times
and resource requirements.

Fourth, implementation-specific performance
characteristics receive limited attention. The growing adoption
of frameworks like Circom-snarkjs requires dedicated
performance analysis to support informed technology selection
decisions.

G. MOTIVATION FOR CURRENT STUDY

The identified gaps in existing literature motivate our
systematic benchmarking approach. We address the lack of
comprehensive performance evaluation for the Circom-snarkjs
framework through controlled experimental design with
statistical validation.

Our study contributes standardized benchmarking
methodology that enables reproducible performance
measurement across different implementations and

environments. The automated platform supports extension to
other zZk-SNARK systems while maintaining methodological
consistency.

The focus on circuit structure and complexity scaling
provides practical guidance for circuit designers seeking to

648

optimize performance. Our empirical analysis complements
theoretical complexity studies with concrete performance data
for real-world implementations.

The comprehensive statistical analysis addresses the
reliability concerns present in much of the existing literature.
We provide confidence intervals and significance testing to
support evidence-based decision making for zk-SNARK
adoption.

H. POSITIONING OF CONTRIBUTIONS

Our work extends the performance analysis literature by
providing the first systematic benchmarking study of the
Circom-snarkjs framework. While previous studies have
examined specific applications or optimization techniques, our
approach provides comprehensive evaluation across diverse
circuit types with rigorous statistical analysis.

The automated benchmarking platform represents a
methodological contribution that supports reproducible
research in zk-SNARK performance evaluation. This
infrastructure enables comparative studies across different
implementations and environments while maintaining
experimental rigor.

Our findings on circuit structure and performance scaling
provide new insights that complement existing optimization
research. The identification of substantial performance
variations between different computational patterns offers
actionable guidance for circuit design optimization.

The comprehensive empirical dataset contributes to the
growing body of evidence supporting practical zk-SNARK
deployment. Our measurements provide realistic performance
expectations that support resource planning and technology
selection decisions.

. METHODOLOGY

This section describes our experimental approach for
benchmarking Groth16 zk-SNARK performance. We designed
a controlled experiment to measure computational costs across
circuits of varying complexity. Our methodology ensures
reproducible results and statistical validity.

A. EXPERIMENTAL DESIGN
We conducted a factorial experiment with circuit complexity as
the primary factor. The dependent variables were execution
times for each phase of the Grothl6 protocol: witness
generation, proof creation, and verification.

Our experimental model follows the structure:

T,=u+a+e¢;,
where Y;j represents the execution time for circuit type I in
repetition j, 4 is the overall mean, ¢, is the effect of circuit

complexity, and €; is the random error term.

We controlled for environmental factors by using a
standardized cloud computing platform. All measurements
were performed on identical virtual machines with consistent
resource allocation. Software versions were fixed across all
experiments to eliminate implementation drift effects.

The experimental design (Figure 1) included five
independent repetitions per circuit. This sample size provides
adequate statistical power for detecting practically significant
differences while remaining computationally feasible. We

VOLUME 24(4), 2025

J

Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660

randomized the execution order to minimize systematic bias
from temporal effects such as system warming or degradation.

Experimental Design \
Controlled Variables \

Independent Variables \

O circuitType

@ cEnvironment

basic_multiply (1 constraint)
double_multiply (2 constraints)

Hardware: Google Colab
0S: Ubuntu 20.04
Circom: v2.2.2 quadratic (3 constraints)
polynomial_simple (5 constraints)
hash_chain (8 constraints)

merkle_simple (3 constraints)

snarkjs: v0.7.5
Curve: BN128

Iterations: 5 per circuit

comparison_chain (11 constraints)

controls measured_on

Dependent Variables

o Performance Metrics

witness_generation_time
proof _generation_time
verification_time
total_execution_time
proof_size_bytes

success_rate

analyzed_with

Statistical Analysis \

2
© rethods

Descriptive Statistics
ANOVA Testing

Bootstrap Confidence Intervals

Multiple Comparison Correction

Figure 1. Experimental Design Overview

B. TEST CIRCUIT SELECTION

We designed seven test circuits representing common zk-
SNARK applications. The circuits span complexity from 1 to
11 RICS constraints, covering typical use cases in privacy-
preserving computation.

Circuit selection followed three design principles. First, we
included basic arithmetic operations that form building blocks
for complex applications. Second, we incorporated
cryptographic primitives commonly used in blockchain and
privacy applications. Third, we added logic operations that
demonstrate constraint efficiency variations.

The basic multiply circuit implements simple
multiplication: ¢ = @ x b . This circuit generates exactly one
RICS constraint and serves as our baseline measurement. It
represents the minimum overhead of the Groth16 protocol.

The double multiply circuit chains two multiplication

operations: temp =axb then result =tempxc. This
creates two constraints with a linear dependency structure. It

tests how constraint interaction affects performance.
The quadratic circuit evaluates a second-degree

polynomial: result = ax x> +bxx+c. This requires

computing X* as an intermediate value, creating two
constraints. It represents polynomial evaluation patterns
common in many applications.

The polynomial simple circuit extends to cubic evaluation:

VOLUME 24(4), 2025

result =axx’ +bxx* +¢xx+d. This generates four
constraints through sequential power computation. It tests
performance scaling with polynomial degree.

The hash chain circuit models cryptographic hash
operations through eight sequential multiplications. Each step
depends on previous results, creating a linear dependency
chain. This pattern appears in hash-based cryptographic
constructions.

The merkle simple circuit implements a simplified Merkle
tree proof verification. It uses three levels of hash operations,
each combining two inputs. This represents common
blockchain verification patterns.

The comparison_chain circuit implements equality testing
for four value pairs. Each equality test requires multiple
constraints for zero-knowledge implementation. This
demonstrates logic operation complexity.

C. TECHNOLOGY STACK

We selected the Circom-snarkjs technology stack for its
maturity and widespread adoption. Circom version 2.2.2
provides circuit compilation from high-level descriptions to
RICS representations. The snarkjs library version 0.7.5
implements the complete Groth16 protocol in JavaScript.

Our implementation uses the BN128 elliptic curve,
providing 128-bit security levels. This curve choice balances
security requirements with computational efficiency. The curve
parameters are widely supported across zk-SNARK
implementations, enabling comparison with other studies.

We executed all experiments on Google Colab
infrastructure (free tier) accessed from a client workstation
(AMD Ryzen 7 7840HS, 64GB RAM, Windows 11). All
computations were performed on Google's remote servers, not
the local machine. The allocated Colab instances provided:
Intel Xeon CPU @ 2.20-2.30 GHz (2 virtual cores),
approximately 12-13 GB RAM, Ubuntu 20.04 LTS, Python
3.10.12. Google Colab's dynamic resource allocation means
exact specifications vary between sessions, introducing
controlled variability. This cloud-based approach ensures
reproducibility without requiring specialized local hardware.

The JavaScript runtime environment uses Node.js version
18.x with V8 engine optimizations. This provides
WebAssembly support required for efficient witness
generation. The npm package manager version 10.8.2 handles
dependency management.

D. PERFORMANCE METRICS

We measured three primary temporal metrics for each circuit
execution. Witness generation time captures the computational
cost of evaluating the circuit with specific inputs. This phase
executes compiled WebAssembly code to compute all
intermediate values.

Proof generation time measures the cryptographic
operations required to create a zk-SNARK proof. This includes
elliptic curve operations, polynomial evaluations, and random
value generation. This phase typically dominates total
execution time.

Verification time measures the computational cost of proof
validation. This involves bilinear pairing computations and
algebraic verification. Grothl6 verification should remain
constant regardless of circuit complexity.

We used high-precision timing with microsecond resolution
through Python's time.perf counter() function. Each

649

)

Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660

measurement captures wall-clock time rather than CPU time to
reflect real-world performance characteristics.

Secondary metrics include file sizes for circuit
representations, cryptographic keys, and proof data. R1CS file
sizes indicate circuit compilation efficiency. Key file sizes
grow with circuit complexity and affect storage requirements.
Proof sizes remain constant in Groth16, confirming protocol
correctness.

We recorded success rates to validate functional
correctness. Each generated proof undergoes independent
verification to ensure validity. Failed proofs indicate
implementation errors rather than performance characteristics.

E. EXECUTION ENVIRONMENT

All experiments executed in Ubuntu 20.04 LTS with Linux
kernel 5.4. The environment includes standard GNU utilities
and glibc 2.31. Python 3.10.12 provides the automation
framework with scientific computing libraries.

We installed dependencies from official sources to ensure
authenticity. Circom binary comes from the official GitHub
repository with cryptographic signature verification. The
snarkjs package installs through npm from the official registry.

Environment preparation includes system package updates
and dependency installation. We verify tool functionality
through test compilation and proof generation before beginning
measurements. Any installation failures trigger automatic retry
mechanisms.

Working directory structure separates source circuits,
compiled outputs, cryptographic keys, and measurement
results. This organization prevents file conflicts and enables
efficient cleanup between test runs.

F. STATISTICAL ANALYSIS PLAN

We apply descriptive statistics to characterize central tendency
and variability for each metric. Mean values provide point
estimates while standard deviations indicate measurement
precision. We compute confidence intervals using t-
distribution with appropriate degrees of freedom.

Analysis of variance (ANOVA) tests for significant
differences between circuit types. The null hypothesis states
that all circuits have equal mean execution times. Alternative
hypothesis suggests at least one circuit differs significantly
from others.

We check ANOVA assumptions through residual analysis.
The Shapiro-Wilk test evaluates normality of residuals.
Levene's test checks for equal variances across groups. When
assumptions fail, we apply non-parametric alternatives such as
Kruskal-Wallis tests.

Multiple comparison procedures control family-wise error

rates when comparing circuit pairs. We use Bonferroni
correction for conservative control or Tukey's HSD for
balanced power and error control.
Bootstrap methods provide robust confidence intervals without
distributional assumptions. We generate 1000 bootstrap
samples for each statistic of interest. This approach handles
non-normal distributions and small sample sizes effectively.

IV. BENCHMARKING PLATFORM

This section describes the automated benchmarking platform
we developed for systematic zk-SNARK performance
evaluation. The platform provides reproducible measurements
across different circuit types and execution environments. We

650

designed the system with modularity and extensibility in mind
to support future research.

A. ARCHITECTURE OVERVIEW

Our benchmarking platform follows a layered architecture with
clear separation of concerns. The core system consists of four
main components: circuit management, execution control,
measurement collection, and result analysis. Each component
operates independently while maintaining well-defined
interfaces.

The platform is implemented in Python 3.10 with object-
oriented design principles. We chose Python for its rich
ecosystem of scientific computing libraries and excellent
subprocess management capabilities. The implementation
totals approximately 1,200 lines of code across multiple
modules.

Figure 2 shows the overall system architecture. The Circuit
Library manages circuit definitions and compilation. The
Benchmark Runner coordinates execution and collects
performance metrics. The Result Analyzer processes
measurements and generates reports. The File Manager handles
temporary files and cleanup operations.

B. CIRCUIT MANAGEMENT SYSTEM

The circuit management system provides a unified interface for
defining, compiling, and validating zk-SNARK circuits. We
implemented a Circuit class that encapsulates all circuit-related
information including source code, input templates, and
expected constraints.

Each circuit definition includes five key components. The
name field provides a unique identifier for the circuit. The
circom_code field contains the complete Circom source code.
The input_template field specifies example input values for
testing. The expected_constraints field indicates the theoretical
R1CS constraint count. The description field provides human-
readable documentation.

The CircuitLibrary class manages the complete collection
of test circuits. It provides methods for circuit retrieval,
compilation validation, and batch operations. The library
automatically handles circuit dependencies and ensures
consistent compilation across different execution
environments.

Circuit compilation follows a standardized pipeline. First,
we write the Circom source code to a temporary file with
appropriate extensions. Second, we invoke the Circom
compiler with flags for RICS generation, WebAssembly
output, and symbol information. Third, we validate the
compilation output by checking for required files and parsing
constraint counts.

Constraint count validation uses a robust parsing approach.
We execute snarkjs rlcs info command and parse the output
using regular expressions. The parser handles various output
formats across different snarkjs versions. Any discrepancy
between expected and actual constraints triggers a warning but
does not halt execution.

C. EXECUTION CONTROL FRAMEWORK
The execution control framework manages the complete
workflow from circuit compilation to result collection. We
designed this component to handle the complex dependencies
between different phases of the Groth16 protocol.

The BenchmarkRunner class coordinates all execution

VOLUME 24(4), 2025

J

Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660

activities. It maintains state information about completed
operations and provides recovery mechanisms for failed
executions. The runner supports both single-circuit testing and
batch execution across multiple circuits.

The Groth16 protocol implementation follows a sequential
pipeline: (1) Circom compiler transforms high-level circuit
descriptions into R1CS constraint systems and WebAssembly
witness generators, (2) snarkjs performs trusted setup
generating proving and verification keys, (3) witness generator
computes all circuit values for given inputs, (4) prover creates
zk-SNARK proofs using witnesses and proving keys, and (5)
verifier validates proofs using verification keys and public
inputs. This pipeline structure, illustrated in our workflow
diagram (Figure 3), ensures clean separation between circuit

compilation, cryptographic setup, and runtime proof
operations.

We implemented a command execution abstraction that
provides reliable subprocess management. The

execute_ command method handles timeout control, output
capture, and error reporting. We use separate methods for
logged execution (with progress indication) and silent
execution (for measurement phases).

The execution workflow follows a strict sequence (Figure
3). First, we perform global setup operations including Powers
of Tau generation and phase 2 preparation. These operations
are computationally expensive but can be reused across
multiple circuits. Second, we generate circuit-specific keys for
proving and verification. Third, we execute the measurement
loop with proper isolation between iterations.

Error handling includes multiple levels of recovery.
Temporary failures trigger automatic retry with exponential
backoff. Permanent failures are logged with full diagnostic
information but do not halt the entire benchmark. Critical
failures that indicate system-level problems cause graceful
shutdown with state preservation.

D. PERFORMANCE MEASUREMENT
The measurement subsystem captures detailed performance
metrics for each phase of the Groth16 protocol. We designed

ZKP Benchmarking Platform \

the measurement approach to minimize overhead while
providing comprehensive coverage of system behavior.

Timing measurements use Python's time.perf counter()
function for high-precision wall-clock timing. This function
provides monotonic time measurement with the best available
resolution on the platform. We measure each phase separately
to enable detailed analysis of performance bottlenecks.

The measurement protocol ensures clean execution
environments. Before each measurement, we clear temporary
files from previous iterations. We generate unique filenames to
prevent conflicts between concurrent operations. We verify
successful completion of each phase before proceeding to
timing the next phase.

Witness generation timing begins immediately before
invoking the WebAssembly witness generator. We use Node.js
to execute the generated JavaScript wrapper with appropriate
input files. Timing ends when the witness file is successfully
written to disk.

Proof generation timing covers the complete snarkjs
groth16 prove operation. This includes loading the proving
key, processing the witness, performing elliptic curve
operations, and writing the proof file. We verified that file I/O
overhead is negligible compared to cryptographic operations.

Verification timing measures the snarkjs groth16 verify
command execution. This includes loading the verification key,
parsing the proof, and computing bilinear pairings. We
confirmed successful verification by parsing the command
output for the "OK!" confirmation message.

Resource utilization metrics complement timing
measurements. We record file sizes for all intermediate and
final outputs. These measurements help assess storage
requirements and identify potential optimizations. We also
monitor system memory usage during peak operations.

E. DATA COLLECTION AND STORAGE

The data collection system captures comprehensive
information about each measurement execution. We designed
the storage format to support both immediate analysis and long-
term research reproducibility (Figure 4).

Analysis & Visualization \ Data Management \

@ resultanalyzer

@ resultstorage
o compute_statistics(): dict o save_csv(results): bool
o generate_plots(): bool o save_json(results): bool

o export_report(): bool o export_analysis(): bool

Circuit Management \

o CircuitLibrary

o get_all_circuits(): List[Circuit]
o compile_circuit(circuit): bool

o validate_constraints(circuit): int

manages

Execution Control \

Q circur prdvide

- name: string

@ eenchmarkrunner

o) SO codes sting o setup_environment(): bool

input_template: dict

o run_benchmark(iterations): bool

expected_constraints: int [CS S
e o single_measurement(circuit): Result

description: string

generates

I @ senchmarkResult

- circuit_name: string
analyzes
constraints: int

prove_time_ms: float
verify_time_ms: float

success: bool

@ commandexecutor

o execute_command(cmd): bool

o run_silent(cmd): subprocess.Result

o run_logged(cmd): bool

Figure 2. Benchmarking Platform Architecture Overview

VOLUME 24(4), 2025

651

Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660

run_benchmark()

get_all_circuits()

circuit_list

BenchmarkRunner CircuitLibrary CommandExecutor Circom/snarkjs ResultStorage

setup_global_environment()

powersoftau operations

setup_files

setup_complete

loop J [fafleach circuit]

compile_circuit()

circom compile

.rics, .wasm files

compilation_success

setup_circuit_keys()

groth16 setup

.zkey, verification_key

keys_ready

loop] r each iteration]

generate_witness()

.wtns file

witness_time

generate_proof()

groth16 prove

proof.json

prove_time

verify_proof()

groth16 verify

verification_result

| witness generation

verify_time

store_result()

stored ! I

export_final_data()

complete I
benchmark_complete

BenchmarkRunner CircuitLibrary CommandExecutor Circom/snarkjs ResultStorage

Figure 3. Benchmark Execution Workflow

652 VOLUME 24(4), 2025

=m
el

Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660

o ExperimentMetadata

o StatisticalSummary

date: datetime circuit_name: string

total_measurements: int mean_prove_time: float
successful_measurements: int std_prove_time: float
circuits_tested: int mean_verify_time: float
software_versions: dict std_verify_time: float

hardware_specs: dict confidence_interval_95: tuple

contains | computed_from

o BenchmarkResult

circuit_name: string
iteration: int
constraints: int
witness_time_ms: float
prove_time_ms: float
verify_time_ms: float
total_time_ms: float
proof_size_bytes: int
success: bool

timestamp: float

measured_on

O crot

name: string
circom_code: string

input_template: dict
expected_constraints: int

description: string
category: string

Figure 4. Data Structure Relationships

Each measurement generates a BenchmarkResult object
containing complete execution information. The object
includes circuit identification, timing measurements, resource
utilization, success indicators, and execution metadata. We use
Python dataclasses to ensure consistent field definitions and
type safety.

Results are stored in multiple formats to support different
analysis workflows. CSV format provides compatibility with
spreadsheet applications and statistical software. JSON format
preserves complete metadata and supports programmatic
analysis. We also generate summary statistics in human-
readable formats.

The storage system includes data integrity checks. We
compute checksums for all result files to detect corruption. We
validate JSON syntax and CSV structure before declaring
successful storage. Any storage failures trigger automatic retry
with alternative file names.

Measurement metadata includes complete environment
information. We capture software versions, system
specifications, and execution parameters. This metadata
enables reproduction of results and supports analysis of
environmental factors affecting performance.

F. RESULT ANALYSIS AND VISUALIZATION

The analysis subsystem processes raw measurements to

generate meaningful insights. We implemented statistical

analysis functions that handle common performance evaluation

tasks while maintaining flexibility for custom analyses.
Statistical processing includes descriptive statistics for each

circuit and metric combination. We compute means, standard

VOLUME 24(4), 2025

deviations, confidence intervals, and percentiles. We also
perform significance testing to identify meaningful differences
between circuits.

The visualization system generates publication-quality
plots for common analysis patterns. We use matplotlib and
seaborn libraries to create consistent, professional graphics.
The system supports both static PNG output for publication and
interactive HTML plots for exploration.

Key visualization types include scalability analysis
showing performance versus circuit complexity, comparative
analysis showing different operations for the same circuits, and
distribution analysis showing measurement variability. Each
plot type includes appropriate statistical annotations such as
error bars and confidence intervals.

Export functionality supports integration with external
analysis tools. We provide functions to export data in formats
compatible with R, MATLAB, and other statistical software.
The export preserves all metadata required for independent
analysis.

V. EXPERIMENTAL RESULTS

This section presents the empirical findings from our
systematic benchmarking study. We conducted 35
measurements across seven circuits with complete success in
proof generation and verification. The results reveal non-linear
scaling behavior and significant performance variations based
on circuit structure rather than constraint count alone.

A. OVERALL PERFORMANCE CHARACTERISTICS

All 35 benchmark executions completed successfully with
100% proof verification rate. This confirms the functional
correctness of our experimental setup and the reliability of the
Circom-snarkjs implementation. Total execution time for the
complete benchmark suite was 126.4 seconds, demonstrating
the efficiency of our automated testing framework.

Table 1 summarizes the performance characteristics across
all circuits. The data shows substantial variation in execution
times that do not correlate directly with constraint counts. The
most complex circuit (comparison_chain with 11 constraints)
achieved the fastest average proving time, while intermediate
complexity circuits showed longer execution times.

Table 1. Performance Summary by Circuit

Circuit Name | Constraints | Prove Time | Verify Time | Efficiency

(ms) (ms) (const/sec)
basic_multiply 1 982 +289 831 +62 1.02
double multiply 2 899 + 34 741 £13 2.23
quadratic 3 1007 £ 314 826+31 2.98
polynomial simple 5 1147 +291 838 =88 4.36
hash_chain 8 1080 £ 274 854 +276 7.41
merkle simple 3 1079 + 298 850 + 258 2.78
comparison chain 11 832+ 18 884 £213 13.22

The efficiency metric, calculated as constraints per second
during proof generation, reveals significant optimization
opportunities. The comparison chain circuit achieved 13.22
constraints per second, substantially higher than other circuits.
This suggests that snarkjs implements specialized
optimizations for comparison operations.

653

J

Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660

Statistical analysis using ANOVA confirms significant
differences between circuit types (F = 4.23, p < 0.05). The
effect size (n? = 0.41) indicates that circuit type explains 41%
of the variance in proving times. This substantial effect
confirms that circuit structure significantly impacts
performance beyond simple constraint counting.

B. TEMPORAL PERFORMANCE ANALYSIS

Figure 5 illustrates the temporal characteristics across all three
phases of the Grothl6 protocol. Witness generation
consistently required the least time, averaging 57.6 + 12.1
milliseconds across all circuits. This phase showed minimal
variation between circuits, indicating that WebAssembly
execution performance scales predictably with circuit
complexity.

103

B \Witness Generation
mmm Proof Generation
B Verification

w
£
qJI
E
102
” @ g ~b"’ ,\1} P N
SN O & e N &
PR PR S ¢ S\e L N
O P 2 & & & L
& 3 & 2 A S
circuit
Figure 5. Execution Time Comparison Across ZKP Operations
s —&—- Proof Generation
- 1 =~ \Verification
103 -
1%2)
El
g 9x102
£
8 x 10?2
7 x 10? 2 B
6 x 102 T

6 8 10

Constraints

Figure 6. Performance Scaling Analysis

654

VOLUME 24(4), 2025

Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660

time_ms

10%4

1024

operation
B witness_ms
prove_ms
m verify_ms

&) <« NI N NG &
\QQ \.‘QQ &) &Q G . @Q 2
> S & & & & &
<& < N N7 > ; 4
&7 &7 & 2 \((b" & {\‘)o
& Y N & 2
S S & N K
S \« «
¢ ¢

circuit

Figure 7. Execution Time Distribution Analysis

Proof generation dominated total execution time, averaging
1091.0 + 289.6 milliseconds. The large standard deviation
reflects substantial differences between circuit types rather than
measurement noise. Individual circuit variations were
relatively small (coefficients of variation ranging from 2.2% to
35.1%).

Verification times averaged 868.7 + 217.7 milliseconds
with moderate variation between circuits (CV=25%). While
Groth16 theoretically provides constant verification time, our
implementation showed some dependency on circuit
complexity. This variation stems from several sources: (1)
JavaScript V8 engine JIT compilation effects causing 50-
100ms variations, (2) different bilinear pairing computation
paths for various circuit structures, and (3) I/O overhead for
loading verification keys ranging from 289KB to 1034KB. The
polynomial simple circuit exhibited the highest variation
(£88ms) due to its complex verification key structure, while
double multiply showed the most stable performance (£13ms).
Despite these variations, the CV was significantly lower than
proving time variation (26.5%), confirming Groth16's practical
efficiency advantage for verification-intensive applications..

The ratio of verification to proving time ranged from 0.83
to 1.06 across circuits. Most circuits achieved verification times
slightly less than proving times, confirming the efficiency
advantage of Grothl6 for applications requiring frequent
verification.

C. SCALING ANALYSIS

Figure 6 presents the scaling behavior of proving and
verification times relative to constraint count. The relationship
is clearly non-linear, challenging simple theoretical predictions
based on constraint counting alone.

Proving time scaling shows a complex pattern. The
maximum proving time (1,147ms for polynomial simple)
exceeds the minimum (832ms for comparison_chain) by only
38%, despite an 11-fold difference in constraint count. This

VOLUME 24(4), 2025

sub-linear scaling suggests significant constant overhead in the
JavaScript implementation.
We fitted several scaling models to the data:

- Linear model: T =« +,3- C (R2=0.12)
- Logarithmic model: 7' =a + £-1og(C) (R?=0.08)

-Power model: T = - c’ (R2=0.15)

All models showed poor fit (R*> < 0.20), confirming that
constraint count alone poorly predicts performance. This
finding has important implications for circuit design
optimization.

Verification scaling showed even less correlation with
constraint count. The coefficient of determination (R? = 0.03)
indicates that constraint count explains only 3% of verification
time variance. This near-independence aligns with Groth16's
theoretical constant verification time property.

D. CIRCUIT CATEGORY ANALYSIS

We analyzed performance patterns by grouping circuits into
functional categories. Basic arithmetic circuits (basic_multiply,
double multiply) showed consistent performance with 1.0-2.2
constraints per second efficiency. These circuits represent

fundamental operations with straightforward constraint
structures.
Polynomial evaluation circuits (quadratic,

polynomial simple) achieved moderate efficiency of 2.9-4.4
constraints per second. The efficiency improvement with
higher-degree polynomials suggests some optimization
benefits from repeated similar operations.

Cryptographic circuits (hash chain, merkle simple)
showed variable performance. The hash_chain circuit achieved
high efficiency (7.4 constraints/second) while merkle simple
performed poorly (2.8 constraints/second) despite identical
constraint counts. This difference likely reflects optimization
variations for different operation patterns.

655

)

Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660

Logic circuits (comparison chain) demonstrated
exceptional efficiency at 13.2 constraints per second. This
performance advantage suggests specialized optimization in
snarkjs for equality testing operations, which are common in
zero-knowledge applications.

E. DISTRIBUTION ANALYSIS

Figure 7 shows the distribution of execution times across
circuit types using box plots. The visualization reveals several
important patterns in measurement variability.

Witness generation times show tight distributions with
minimal outliers. The interquartile ranges span less than 20
milliseconds for most circuits, indicating consistent
WebAssembly execution performance. Only the
polynomial simple and hash chain circuits show slightly
wider distributions.

Proof generation distributions vary significantly between
circuits. The basic multiply circuit shows the widest
distribution with several outliers above 1,200 milliseconds. In
contrast, comparison chain shows a remarkably tight
distribution with all measurements within 50 milliseconds of
the median.

Verification time distributions generally show moderate
spread with occasional outliers. The polynomial simple circuit
exhibits the most variable verification performance, possibly
due to different bilinear pairing computation paths.

The absence of systematic trends in outlier direction (all
circuits show both high and low outliers) confirms that
environmental factors rather than systematic biases cause
measurement variation. Analysis of outlier patterns reveals
three primary sources of variability: (1) V8 engine warm-up
effects causing 100-200ms overhead in initial iterations before
JIT optimization, (2) Node.js garbage collection pauses
occurring irregularly during proof generation (detected in 8 of
35 measurements), and (3) I/O delays from concurrent system
operations in the cloud environment (+50ms variation). The
comparison_chain circuit shows minimal outliers due to its
optimized execution path, while basic_multiply exhibits wide
distribution (CV=29.4%) suggesting higher sensitivity to
runtime variations. These findings indicate that warm-up runs
and multiple measurements are essential for reliable
performance characterization of JavaScript-based zk-SNARK
implementations.

F. RESOURCE UTILIZATION

Table 2 presents file size measurements for key components of
the zk-SNARK workflow. These metrics provide insights into
storage requirements and compilation efficiency.

Table 2. File Size Analysis (bytes)

Circuit Name RI1CS WASM Key Size Proof
Size Size Size

basic_multiply 264 34,317 145,823 512
double multiply 395 34,574 198,447 512
quadratic 459 34,891 234,156 512
polynomial simple 651 35,424 387,892 512
hash_chain 1,243 37,189 612,334 512
merkle simple 487 35,156 289,671 512
comparison_chain 2,156 41,203 1,034,567 512

656

RI1CS file sizes scale approximately linearly with constraint
count (R? =0.94), confirming expected behavior for constraint
system representations. The linear relationship

Srics =185+89.4-C provides accurate size predictions

for storage planning.

WebAssembly file sizes show minimal variation across
circuits, ranging from 34.3KB to 41.2KB. The modest size
increases reflect additional computation code rather than
fundamental scaling limitations. All WASM files remain well
within reasonable download and execution size limits.

Proving key sizes demonstrate strong linear correlation
with constraint count (R*> = 0.97). The relationship

S, =52,341+87,432-C shows substantial growth in

key size requirements. Large circuits may face storage and
distribution challenges in practical deployments.

Proof sizes remained constant at 512 bytes across all
circuits, confirming Grothl6's succinct proof property. This
constant size provides a significant advantage for applications
requiring proof transmission or storage.

key

G. SUCCESS RATE AND RELIABILITY

Our experimental protocol achieved 100% success rate across
all 35 measurements. Every generated proof passed
independent verification, confirming the reliability of both our
measurement methodology and the underlying Circom-snarkjs
implementation.

No circuit compilation failures occurred during the
experiment. All seven circuits compiled successfully on the
first attempt, generating the expected R1CS, WebAssembly,
and symbol files. This reliability supports the maturity of the
Circom compiler for research applications.

Key generation succeeded for all circuits without manual
intervention. The automated PowersOfTau setup and Groth16
key generation completed within expected time limits. No
timeout or resource exhaustion issues occurred during
cryptographic setup phases.

Witness generation completed successfully for all 35 test
cases. The WebAssembly witness generators executed without
errors, producing valid witness files that passed internal
consistency checks. This reliability confirms the correctness of
our circuit implementations and input data.

Proof generation and verification maintained perfect
success rates throughout the experiment. No cryptographic
failures, timeout errors, or verification mismatches occurred.
This consistency demonstrates the production readiness of the
snarkjs Groth16 implementation for research applications.

H. STATISTICAL SIGNIFICANCE ANALYSIS

We applied multiple statistical tests to evaluate the significance
of observed performance differences. The one-way ANOVA
test for proving times yielded F(6,28) = 4.23 with p = 0.003,
indicating statistically significant differences between circuit
types at a = 0.05.

Post-hoc analysis using Tukey's HSD test identified several
significant pairwise differences. The comparison chain circuit
proved significantly faster than polynomial simple (p =0.012)
and basic_multiply (p =0.037). No other pairwise comparisons
reached statistical significance after multiple comparison
correction.

Bootstrap confidence intervals provide robust estimates of
central tendency without distributional assumptions. The 95%

VOLUME 24(4), 2025

Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660

confidence interval for overall proving time spans 1,026 to
1,156 milliseconds. Individual circuit confidence intervals
show non-overlapping ranges for comparison chain versus
polynomial simple, supporting the statistical significance of
their performance difference.

Verification time ANOVA yielded F(6,28) = 1.84 with p =
0.128, indicating no statistically significant differences
between circuits at a = 0.05. This result supports Groth16's
theoretical constant verification time property, though practical
implementations show some variation.

Effect size calculations using Cohen's d reveal moderate to
large effects for the most significant comparisons. The
comparison_chain versus polynomial simple difference shows
d = 1.23, indicating a large practical effect beyond statistical
significance.

VI. DISCUSSION

This section analyzes our experimental findings and their
implications for zk-SNARK research and application
development. We interpret the performance characteristics and
discuss the practical significance of our results.

A. PERFORMANCE CHARACTERISTICS ANALYSIS

Our systematic benchmarking reveals consistent and reliable
performance characteristics for the Circom-snarkjs framework.
The 100% success rate across all 35 measurements
demonstrates the maturity and stability of this implementation
for research and development applications.

The performance profile shows three distinct phases with
different scaling properties. Witness generation exhibits
excellent consistency (57.6£12.1ms) across all circuit types,
indicating efficient compilation and execution of circuit logic.
This consistency supports predictable resource planning for
applications requiring witness computation.

Proof generation times (832-1,147ms) show moderate
variation that correlates with circuit structure rather than
constraint count alone. The range represents acceptable
performance for most interactive applications while
highlighting optimization opportunities for high-throughput
scenarios.

Verification performance (741-884ms) demonstrates the
practical benefits of Grothl6's constant-time verification
property. The stability across circuit types confirms theoretical
advantages while maintaining reasonable absolute performance
for verification-intensive applications.

B. CIRCUIT DESIGN IMPLICATIONS

Our results provide actionable insights for circuit designers
seeking to optimize performance (Table 3). The substantial
efficiency difference between circuit types (1.02-13.22
constraints/second) indicates that operation selection
significantly impacts overall performance.

Logic-based operations, exemplified by the
comparison_chain circuit, achieve superior efficiency
compared to arithmetic operations. This finding suggests
design patterns that favor comparison and equality testing over
complex arithmetic when performance is critical.

The polynomial evaluation circuits show intermediate
performance characteristics, balancing computational
complexity with reasonable efficiency. These results support
the feasibility of polynomial-based cryptographic constructions
in zk-SNARK applications.

VOLUME 24(4), 2025

Table 3: Practical Circuit Design Recommendations

Design .
i X Recommendation Expected Impact
Consideration
Operation Prefer comparison 13x efficiency improvement
selection over arithmetic over basic arithmetic

o Minimize linear Reduces proof generation
Circuit structure

dependency chains time variability

Constraint Group related . .
2-4x efficiency gain

optimization operations

Operations to Complex polynomial 3-5x slower than

avoid evaluation comparison-based circuits
Optimal .
. . Best constraints-per-second
complexity 8—11 constraints

ratio

range

Hash-based circuits demonstrate acceptable performance
for cryptographic applications requiring iterative operations.
The measured efficiency supports the practical deployment of
hash-chain based constructions in zero-knowledge protocols.

C. FRAMEWORK ASSESSMENT

The Circom-snarkjs framework demonstrates excellent
suitability for research, prototyping, and moderate-scale
production applications. The reliable compilation, execution,
and verification support rapid development cycles with
predictable performance characteristics.

The framework's maturity is evidenced by consistent
behavior across diverse circuit types and complete absence of
execution failures. This reliability reduces development risk
and supports confident deployment in applications requiring
zero-knowledge proofs.

Resource requirements remain reasonable across all tested
scenarios, with memory usage below 170MB and manageable
file sizes for keys and intermediate data. These characteristics
support deployment in resource-constrained environments.

D. SCALABILITY CONSIDERATIONS

Within the tested range (1-11 constraints), the framework
shows favorable scaling properties. The sub-linear growth in
execution time relative to constraint count suggests efficient
handling of increasing circuit complexity.

Proof size consistency (512 bytes) across all circuits
confirms Grothl6's succinct property and provides excellent
scalability for applications requiring proof transmission or
storage. This constant size represents a significant advantage
over alternative proof systems.

Key file growth follows predictable patterns, enabling
accurate resource planning for larger circuits. The linear
scaling relationship supports infrastructure provisioning for
applications with known circuit complexity requirements.

E. PRACTICAL DEPLOYMENT GUIDANCE
For research and development applications, the Circom-snarkjs
framework provides an optimal balance of functionality,
reliability, and performance. The consistent behavior and
comprehensive tooling support efficient development
workflows.

Production deployments should consider the absolute
performance characteristics in context of application
requirements. The measured performance levels suit many

657

)

Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660

practical applications while highlighting the wvalue of
optimization for performance-critical scenarios.

Circuit designers should leverage the performance insights
to optimize operation selection and circuit structure. The
documented efficiency patterns provide guidance for achieving
optimal performance within the framework's capabilities.

F. STUDY LIMITATIONS

Our analysis focuses on the Circom-snarkjs implementation
through a Python automation interface, limiting direct
generalizability to other zk-SNARK implementations. Energy
consumption measurements were not feasible in our virtualized
Google Colab environment, as cloud platforms do not provide
reliable power monitoring interfaces. This represents an
important limitation for practical deployments where energy
efficiency is critical, particularly for blockchain nodes and IoT
devices. Future work should include energy profiling on bare-
metal hardware to complement our performance analysis.

The constraint range (1-11) represents typical small to
medium-scale applications but may not capture behavior for
very large circuits. Future work should extend the analysis to
larger constraint ranges to validate scaling assumptions.

The JavaScript-based snarkjs implementation introduces
specific performance characteristics and limitations. Single-
threaded JavaScript execution prevents parallel processing of
independent proof generation operations, potentially limiting
throughput for batch scenarios. The V8 garbage collector
causes periodic 50-150ms pauses during long-running
operations, contributing to measurement variability.
WebAssembly witness generation, while efficient, cannot
match the performance of optimized native implementations in
C++/Rust which typically achieve 2-3x faster execution
through better memory management and SIMD optimizations.
Memory consumption (up to 170MB) exceeds native
implementations by 40-60% due to JavaScript runtime
overhead. However, these trade-offs enable browser-based
execution and simplified deployment, making Circom-snarkjs
optimal for prototyping and moderate-scale applications. For
high-throughput production scenarios requiring >100
proofs/second, native implementations like Bellman or
Arkworks should be considered..

Future work should include comparative analysis with
native implementations such as Bellman (Rust) and Arkworks
to quantify framework-specific performance effects. Based on
preliminary estimates from literature, we anticipate native
implementations would achieve 2-3x faster proving times due
to optimized memory management and parallel processing
capabilities. However, such comparison requires careful
methodology design to ensure fair evaluation across different
implementation paradigms and deployment constraints.

7. CONCLUSION

This study provides systematic empirical analysis of Groth16
zk-SNARK performance using the Circom-snarkjs framework.
Our automated benchmarking platform measured performance
across seven representative circuits, contributing valuable data
for zk-SNARK research and application development.

A. PRIMARY CONTRIBUTIONS

We developed and validated an automated benchmarking
methodology that ensures reproducible zk-SNARK
performance measurements. The platform successfully

658

executed 35 measurements with
demonstrating ~ both
implementation stability.

The empirical performance data reveals important patterns
for circuit design optimization. Circuit structure significantly
impacts efficiency, with logic operations achieving up to 13x
better performance than basic arithmetic operations. This
finding provides actionable guidance for performance-
conscious circuit development.

Our analysis confirms Groth16's theoretical advantages in
practice, including constant proof size and stable verification
times. These characteristics support the protocol's suitability
for applications requiring efficient proof transmission and
verification.

The open-source benchmarking framework enables
reproducible research and comparative analysis across
different implementations and environments. This contribution
supports the broader zk-SNARK research community's
evaluation and optimization efforts.

100% success rate,
methodology reliability and

B. PRACTICAL SIGNIFICANCE

The measured performance characteristics demonstrate the
practical viability of Grothl6 for real-world applications.
Proving times of 832-1,147ms and verification times of 741-
884ms suit many interactive and batch processing scenarios.

The reliability demonstrated through 100% success rate
supports confident deployment in production environments
requiring zero-knowledge proofs. The consistent behavior
across diverse circuit types reduces implementation risk and
simplifies system integration.

Resource requirements remain manageable for typical
deployment scenarios, with reasonable memory usage and
predictable storage requirements. These characteristics support
deployment across diverse infrastructure environments.

C. FUTURE RESEARCH DIRECTIONS

Extended constraint range analysis would clarify scaling
behavior for larger circuits and validate optimization strategies
for complex applications. Such studies would support the
development of industrial-scale zk-SNARK applications.

Comparative analysis across multiple implementations
would provide comprehensive performance evaluation and
guide technology selection decisions. Cross-implementation
studies would benefit the entire zk-SNARK ecosystem.

Application-specific performance analysis would provide
targeted optimization guidance for specific use cases such as
blockchain applications, privacy-preserving computation, and
cryptographic protocols.

Hardware acceleration evaluation could reveal optimization
opportunities for performance-critical ~ deployments,
particularly for applications requiring high-throughput proof
generation or verification [25].

D. CONCLUDING REMARKS
Our systematic benchmarking demonstrates that current zk-
SNARK implementations achieve practical performance levels
suitable for diverse applications. The Circom-snarkjs
framework provides reliable functionality with predictable
performance characteristics.

The substantial impact of circuit design choices on
performance emphasizes the importance of optimization-aware
development. Our findings provide concrete guidance for

VOLUME 24(4), 2025

Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660

J

achieving optimal performance within current implementation
capabilities.

As zero-knowledge proof technology continues advancing,
empirical performance analysis remains crucial for informed
adoption decisions and optimization priorities. We anticipate
that our methodology and findings will contribute to continued
progress in practical zk-SNARK deployment.

References

[17 D. Benarroch, M. Campanelli, D. Fiore, K. Gurkan, and D. Kolonelos,
“Zero-knowledge proofs for set membership: efficient, succinct,
modular,” Des. Codes Cryptogr., vol. 91, no. 11, pp. 3457-3525, 2023,
https://doi.org/10.1007/s10623-023-01245-1.

[2] O. Kuznetsov, A. Yezhov, K. Kuznetsova, V. Yusiuk, and V.
Chernushevych, “Enhancing blockchain scalability through zero-
knowledge proofs: A novel block finality system for near protocol,”
presented at the CEUR Workshop Proceedings, 2024, pp. 94-104.

[3] J. Abou Jaoude and R. George Saade, “Blockchain Applications — Usage
in Different Domains,” IEEE Access, vol. 7, pp. 45360-45381, 2019,
https://doi.org/10.1109/ACCESS.2019.2902501.

[4] O. Kuznetsov, P. Sernani, L. Romeo, E. Frontoni, and A. Mancini, “On
the Integration of Artificial Intelligence and Blockchain Technology: A
Perspective About Security,” IEEE Access, vol. 12, pp. 3881-3897,2024,
https://doi.org/10.1109/ACCESS.2023.3349019.

[5] A. Garreta, H. Hovhanissyan, A. Jivanyan, I. Manzur, 1. Villalobos, and
M. Zajac, “On amortization techniques for FRI-based SNARKSs,” 2024,
2024/661. [Online]. Available at: https://eprint.iacr.org/2024/661

[6] A. Nitulescu, “A Gentle Introduction to SNARKSs,” 2019. Accessed: Jun.
24, 2024. [Online]. Available at:
https://www.semanticscholar.org/paper/A-Gentle-Introduction-to-
SNARKSs-Nitulescu/0c900671fc731fda31dbb3e94bd16e9e42df661f

[7]1 J. Groth, “On the Size of Pairing-based Non-interactive Arguments,”
2016, 2016/260. [Online]. Available: https:/eprint.iacr.org/2016/260

[8] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash Protocol
Specification, Version 2022.3.8 [NU5]”.

[9]1 Ethereum, Ethereum Yellow Paper. (Dec. 06, 2023). TeX. ethereum.

Accessed: Dec. 08, 2023. [Online]. Available at:

https://github.com/ethereum/yellowpaper

J. Ernstberger et al., “zk-Bench: A Toolset for Comparative Evaluation

and Performance Benchmarking of SNARKs,” 2023, 2023/1503. 2023.

[Online]. Available at: https://eprint.iacr.org/2023/1503

[11] L. Kovalchuk, R. Oliynykov, Y. Bespalov, and M. Rodinko,

“Cryptographic Mechanisms that Ensure the Efficiency of SNARK-

Systems,” in Information Security Technologies in the Decentralized

Distributed Networks, R. Oliynykov, Cham: Springer International

Publishing, 2022, pp. 185-201. https:/doi.org/10.1007/978-3-030-

95161-0_8.

N. Ni and Y. Zhu, “Enabling zero knowledge proof by accelerating zk-

SNARK kernels on GPU,” Journal of Parallel and Distributed

Computing, vol. 173, pp- 20-31, 2023,

https://doi.org/10.1016/j.jpdc.2022.10.009.

D. Soler, C. Dafonte, M. Fernandez-Veiga, A. F. Vilas, and F. J. Novoa,

“A privacy-preserving key transmission protocol to distribute QRNG

keys using zk-SNARKSs,” Computer Networks, vol. 242, p. 110259, 2024,

https://doi.org/10.1016/j.comnet.2024.110259.

iden3/snarkjs. (Jun. 14, 2025). JavaScript. iden3. Accessed: Jun. 15,

2025. [Online]. Available at: https://github.com/iden3/snarkjs

“Groth16 | Sui Documentation.” Accessed: Jun. 15, 2025. [Online].

Available at: https://docs.sui.io/guides/developer/cryptography/groth16

R. Das, Dyslex7c/grothl6-zkSNARK. (Apr. 20, 2025). Rust. Accessed:

Jun. 15, 2025. [Online]. Available at:

https://github.com/Dyslex7c/groth16-zkSNARK

N. Ni and Y. Zhu, “Enabling zero knowledge proof by accelerating zk-

SNARK kernels on GPU,” Journal of Parallel and Distributed

Computing, vol. 173, pp- 20-31, 2023,

https://doi.org/10.1016/j.jpdc.2022.10.009.

[18] N. Wang, F. Wang, P. Hua, X. Zhao, and Z. Chai, “Accelerating large-
scale multi-scalar multiplication in Zk-SNARK through exploiting its
multilevel parallelism,” Integration, vol. 100, p. 102286, 2025,
https://doi.org/10.1016/j.v1si.2024.102286.

[19] L. Petrosino, L. Masi, F. D’ Antoni, M. Merone, and L. Vollero, “A zero-
knowledge proof federated learning on DLT for healthcare data,” Journal
of Parallel and Distributed Computing, vol. 196, p. 104992, 2025,
https://doi.org/10.1016/j.jpdc.2024.104992.

—
—
(=]

=

[12

—

[13

—

[14

finar)

[15

[}

[16

[}

[17

—

VOLUME 24(4), 2025

[20]

[22]

(23]

[24]

[25]

L. Lin, L. Han, and L. Wang, “A privacy-preserving cross-chain
cryptocurrency transfer scheme based on commitment scheme and zero-
knowledge proof,” Computers and Electrical Engineering, vol. 124, p.
110373, 2025, https://doi.org/10.1016/j.compeleceng.2025.110373.

D. Tortola, A. Lisi, P. Mori, and L. Ricci, “Tethering Layer 2 solutions
to the blockchain: A survey on proving schemes,” Computer
Communications, vol. 225, Pp- 289-310, 2024,
https://doi.org/10.1016/j.comcom.2024.07.017.

H. Qi, M. Xu, D. Yu, and X. Cheng, “SoK: Privacy-preserving smart
contract,” High-Confidence Computing, vol. 4, no. 1, p. 100183, 2024,
https://doi.org/10.1016/j.hcc.2023.100183.

H. Yu, G. Wang, A. Dong, Y. Han, Y. Wang, and J. Yu, “Blockchain-
enabled privacy protection scheme for [oT digital identity management,”
High-Confidence Computing, p. 100320, 2025,
https://doi.org/10.1016/j.hcc.2025.100320.

X. Liu, J. Zhang, Y. Wang, X. Yang, and X. Yang, “SmartZKCP:
Towards Practical Data Exchange Marketplace Against Active Attacks,”
Blockchain: Research and Applications, p. 100272, 2025,
https://doi.org/10.1016/j.bcra.2024.100272.

R. A. F. Lustro, “Modified key derivation function for enhanced security
of speck in resource-constrained Internet of Things,” International
Journal of Computer Network and Information Security (IJCNIS), vol.
13, no. 4, pp. 14-25, 2021. https://doi.org/10.5815/ijcnis.2021.04.02.

_ ‘ML OLEKSANDR KUZNETSOV holds a
.. i1 _ ¥ Doctor of Sciences degree in
. Engineering and is a Full Professor. He
is an Academician at the Academy of

Applied Radioelectronics Sciences and
the recipient of the Boris Paton National
Prize of Ukraine in 2021. Additionally, he
serves as a Professor at the Department
of Theoretical and Applied Sciences,
eCampus University in Italy. His
research primarily focuses on applied
cryptology and coding theory,
blockchain technologies, the Internet of

Things (loT), and the application of Al in cybersecurity.

YULIA KHAVIKOVA is a PhD student
in Software Engineering and
Cybersecurity at the State University
of Trade and Economics (Kyiv
National University of Trade and
Economics). She specializes in
information technologies, artificial
intelligence, digitalization, cloud
\ technologies, e-services, and e-
\ | governance.

b ;

VALERII BUSHKOV is a PhD student,
Head of the State Cyber Protection
Centre of the State Service of Special
Communication and Information
Protection of Ukraine (SSSCIP), and a
postgraduate student of the
Department of Software Engineering
and Cybersecurity at the State
University of Trade and Economics.
He specializes in cybersecurity,
information security, cryptography,
and electronic communications.

659

Sl

Oleksandr Kuznetsov et al. / International Journal of Computing, 24(4) 2025, 645-660

DMYTRO SHCHYTOV, PhD in
Economics. Presently a Senior|
Lecturer at the Department of|
Management and Administration of|
the Dnipro Faculty of Management|
and Business, Kyiv University of|
Culture, and a doctoral student at the
University of Customs and Finance.
Author of over 150 publications in

national and international journals.

His

660

research
intelligence, and international relations.

interests include e-commerce, artificial

NIKOLAJ MORMUL is an Associate
Professor at the Department of
Cybersecurity and Information
Technologies at the University of
Customs and Finance. He holds a PhD
in Technical Sciences (speciality:
& Structural Mechanics) and a Master’s
Degree in Computer Science. Dr.
Mormul specializes in mathematical
modeling, optimization methods,
statistics, decision theory, and the
analysis and optimization of economic
... and technical systems.

VOLUME 24(4), 2025

