Sl

Date of publication DEC-31, 2025, date of current version DEC-11, 2025.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.4.4328

Advanced Technique for Imbalance
Mitigation in Predictive Monitoring and
Anomaly Detection System

ANDRIY LUTSIUK', OREST LAVRIV', MYKOLA BESHLEY?2, MYKOLA BRYCH?

"Department of Electronics and Information Technology, Lviv Polytechnic National University, Bandera Str. 12, Lviv 79013, Ukraine
*Department of Information and Communication Technologies, Lviv Polytechnic National University, Bandera Str. 12, Lviv 79013, Ukraine

Corresponding author: Mykola Beshley (e-mail: mykola.i.beshlei@lpnu.ua)

ABSTRACT This paper presents an advanced approach to improving network traffic monitoring systems using
machine learning algorithms. The main attention is paid to the problems of data imbalance and insufficient labeling in
real communication systems. These problems often lead to inaccurate anomaly detection and unreliable system
performance. To solve these problems, the paper proposes a dynamic class weighting technique that improves anomaly
detection, especially when dealing with uncertain or unevenly represented data. The technique ensures that minority
classes, such as malicious or anomalous traffic, are properly accounted for during model training, which improves
overall detection accuracy. This approach provides the ability to dynamically change class weights based on new input
data, and the simplicity of the model, because it is linear and does not have many layers, allows for relatively quick
retraining. In addition, the paper describes an optimized data preparation process that facilitates efficient training of
neural networks. These networks are integrated into proactive monitoring modules, which allows for real-time detection
of network anomalies and potential threats. Although the proposed multiclass approach yields slightly lower global
metrics (Precision 0.88, Recall 0.88) than the binary baseline, it significantly improves malicious traffic detection by
introducing an additional class for uncertain samples, thus offering a more realistic and robust representation of network
behavior. This proactive approach is particularly useful in today's communications environments, which are
characterized by increasing traffic volumes and greater data diversity. By providing rapid detection and response to
network breaches, the proposed solution increases the reliability and stability of networks, providing more robust
protection against new cyber threats. The approach is particularly well suited for dynamic and complex networks, where
traditional static monitoring methods often prove insufficient. The techniques presented in this article thus contribute
to the development of more intelligent and responsive network monitoring systems that can cope with the complexities
of modern communication infrastructures, where the demand for real-time analysis and anomaly detection continues to
grow.

KEYWORDS network monitoring; proactive monitoring; communication systems; machine learning; neural
network; anomaly detection; malicious.

. INTRODUCTION

With the development of the Internet and the increasing
number of connected devices, network infrastructure
management and monitoring have become key areas of
research and investment [1].

The constant growth of network traffic and the increasing
number of devices, particularly within the Internet of Things
(IoT), poses a significant challenge to researchers in terms of
efficient monitoring, data management, and anomaly detection
[2-5]. Although individual IoT devices are relatively simple,
their large-scale interaction generates large amounts of
heterogeneous data, which poses significant challenges for
monitoring and ensuring network reliability [6].

VOLUME 24(4), 2025

In addition, the rapid development of mobile and wireless
communications has led to the transformation of industries
such as transportation and healthcare, which in turn has given
rise to new cybersecurity threats [7]. Growing volumes of data
and connected devices increase the vulnerability of systems to
attacks. Traditional security methods can no longer effectively
counteract sophisticated cyberattacks, such as hacking wireless
sensor networks and data leaks [8].

In pursuit of goals, such as a high level of Quality of Service
(QoS), all stakeholders are trying to somehow control and
understand what is happening in the flow of data moving in
communication networks [9]. Monitoring systems have
become the tools that help to exercise this type of control.

633

)

Mykola Beshley et al. / International Journal of Computing, 24(4) 2025, 633-644

Having a modular system, monitoring and control systems have
become excellent assistants in understanding the state of the
network, responding to events within the network, alerting and
logging. However, as mentioned earlier, the amount of traffic
is growing and monitoring systems are facing new challenges
in the form of high traffic intensity and its diversity.

Today, researchers can solve this problem by improving
proactive monitoring systems that allow to predict and prevent
the occurrence of an atypical situation in the network in
advance. The method of improvement is the use of machine
learning algorithms in the modules of these systems [10].

There are already studies where the use of machine learning
algorithms of various types shows an accuracy of classification
of incoming traffic of more than 90% [11], which is a strong
evidence in favor of the feasibility of this approach. However,
such systems are often run on preprepared data, which in their
structure contain quite a few examples of both normal and
malicious traffic, which somewhat simplifies the learning
process and ultimately shows very good results. However, in
real systems, there are problems of imbalance, poor labeling,
and heterogeneity, which introduces new complexities and
challenges to the process of training and testing models in
communication network monitoring systems [12].

To mitigate these problems, optimal training sample
selection and hybridization of neural networks with fuzzy logic
are considered promising directions to improve anomaly
detection accuracy in imbalanced network environments.

The paper presents a method to overcome the problems of
imbalance and limited data, which are critical for the
functioning of proactive monitoring systems based on machine
learning algorithms. An improved approach to data preparation
and its further use for training neural networks in the context of
proactive monitoring systems is proposed. The process of
developing a neural network that is integrated into the module
for predicting and detecting anomalies in network traffic,
including malicious actions, is described.

The paper is structured as follows. Section 2 provides a
comprehensive review of existing research in this field,
identifying key challenges and issues. Section 3 describes the
architecture and functional components of network monitoring
systems. Section 4 provides a detailed description of the
proposed imbalance mitigation technique for predictive
monitoring systems. Section 5 presents the results and analysis,
followed by a discussion in Section 6. Finally, Section 7
contains concluding remarks and outlines future challenges.

Il. RELATED WORKS

The idea of using machine learning in monitoring systems to
predict the future state of a communication network is not new.
There are many studies that have proven the effectiveness of
machine learning algorithms in prediction in one way or
another. In particular, study [13] shows that some solutions
based on machine learning algorithms are close to 90% and
sometimes 97% accurate. The study [14] shows accuracy rates
of 93% and higher, which is a good result.

However, despite numerous developments, researchers
continue to face a number of challenges and problems related
to the specifics of telecommunications systems.

The first problem is data sets that do not correspond to the
actual situation in real systems. Due to the peculiarities of data
collection in telecommunication systems, researchers are
severely limited in the available data sets, especially when it
comes to labeling a malicious flow in sufficient quantity.

634

Therefore, in their works [15-18], the authors use publicly
available datasets where there are clearly defined two classes
describing abnormal and normal traffic. The number of records
in such datasets is balanced to ensure equal representation of
both states. Also, analyzing the datasets presented in studies
[19-21], it is clear that these can even be synthetically created
data, where malicious traffic is modeled rather than natural,
which does not quite reflect the true picture of heterogeneous
flows in real systems.

Although features of this type are less common, researchers
use the accuracy metric as an indicator of the final result [22].
In fact, for idealized datasets where there is class parity, this
can work and really reflect the true state of affairs. However,
when classes are unbalanced, the problem arises that the
accuracy rate of 90% is only an indicator of the ideal
classification of the class that prevails in this set. In addition to
accuracy, MAE metrics can be used [23]. In the context of
binary or multiclass classification, MAE does not take into
account the probability of predictions, but only the absolute
differences between predicted and actual values. Nevertheless,
the use of these metrics is still a consequence of the datasets
that allow this and show good results in the end. But, as noted
earlier, in real telecommunication systems, there is
heterogeneity, insufficient or poor labeling of real data, and
insufficient number of records of certain classes, which
together does not allow using accuracy as an indicator.

The issue of data imbalance, where the volume of regular
instances significantly exceeds that of anomalies, poses
substantial challenges, especially for traditional classification
models. This imbalance, commonly referred to as the class
imbalance problem, can severely hinder the model’s ability to
accurately detect rare but critical anomalies. Authors [24]
applied reinforcement learning along with SMOTE to enhance
the performance of one classifier on NSL-KDD dataset
whereby data is imbalanced. There are numerous other
experiments comparing performance metrics of SMOTE, ROS,
Near-Miss1, and Near-Miss2 methods and managed to get up
to 82% peak accuracy together with an F1 score of 82.4%.
Authors [25] employed preprocessing via one-side selection
and SMOTE sampling in order to solve data imbalance issue.
While performing their work, the authors obtained 83.58% and
77.16% accuracy using the hybrid convolutional neural
network and bidirectional long short-term memory model on
the NSLKDD and UNSW-NBI15 datasets respectively. In the
same manner, authors [26] presented a unified model
employing LSTM cornered by chaotic butterfly optimizer
along with particle swarm optimization for bettering intrusion
detection performance. They managed to achieve 93.09% and
86.89% respective accuracy on KDDTest+ binary dataset and
KDDTest-21 dataset. Authors [27] dealt with the problem of
network anomalies detection and proposed deep learning
model with attention, CNN and elements of integration
providing a solution. While Jony and Arnob [28] provided a
useful comparative evaluation of machine learning algorithms
on the CIC-10T2023 dataset, their study did not address the
issue of data imbalance.

According to the literature review, the main problem of
existing monitoring systems is the insufficient amount and
labeling of data, which makes it difficult to use binary models
to accurately detect anomalies. To solve this problem, it is
necessary to develop a new proactive monitoring technique
capable of working with incompletely labeled data. The key
elements of this technique should include: active learning to

VOLUME 24(4), 2025

Mykola Beshley et al. / International Journal of Computing, 24(4) 2025, 633-644

)

automate labeling, hybrid models for more accurate traffic
analysis, dynamic adjustment of class weights to balance data,
and early warning modules for timely response to threats.

lll. ARCHITECTURE AND FUNCTIONAL COMPONENTS
OF NETWORK MONITORING SYSTEM

A monitoring system is a complex of software and hardware
tools designed to detect network attacks, diagnose
malfunctions and other problems that arise in the system in
order to increase its fault tolerance and ensure a high level of
user service.

Monitoring systems cannot be considered as simple,
monolithic solutions. As a rule, such systems consist of several
functional modules, the number and composition of which
varies depending on the specific tasks assigned to the system
and the type of traffic to be analyzed. Considering a simple
example of a monitoring system, the following components are
primarily distinguished:

e Monitoring agent refers to a unit responsible for
collecting traffic data from various systems for further
processing;

Main monitoring server is a server where, if necessary,
preliminary data processing takes place, previous
metrics are stored, information is analyzed, and
decisions regarding alerts are made;

Alerts system is a notification system that informs the
relevant individuals or other network nodes about
potential changes in the state of the telecommunications
network (it can be implemented as part of the main
monitoring server).

Monitoring systems, in turn, are generally divided into
active and passive types based on their operation mode [28].

Active monitoring methods are often referred to as
“synthetic” because this approach does not use actual user data.

Monitoring agent

request
processing

Request

Request
does't
exists, Is

this aconnection

request?

Check the agent
status in DB

Is this agent
blocked?

|Adding a new agent.

Data overwriting in

the case of an agent
ID in the DB

—

Forming a response
for an agent*

Receiving a
P from
server

* - preparation and dispatch
of status codes

No

Yes

Instead, the tools employed in this monitoring aim to predict
the potential performance of the network by simulating its
current behavior. Active monitoring seeks to provide a
comprehensive view of network performance in real time.
Additionally, it allows for measuring network performance
through various metrics and key indicators, including latency,
response time, jitter, packet loss, etc.

Passive monitoring is based on analyzing actual user data
within the network. Active monitoring generates small, regular
data packets while operating, whereas passive monitoring uses
real, holistic, and significantly larger data sets, providing a
more accurate snapshot of the network's current state.

Each of these approaches has its advantages
disadvantages, which can be summarized as follows:
Active monitoring enables the identification of potential
problems before they occur, but it requires more
resources, and its accuracy is based on predictions;
Conversely, passive monitoring provides a
comprehensive understanding of overall network
performance at the current moment, as it uses actual
network data. However, any issue identified by this
method is an existing problem that requires immediate
resolution.

In essence, one method generates additional data and uses
the network while trying to predict future changes in the
system's state, whereas the other method uses real user data to
describe the current system state.

Traditionally, passive monitoring systems have gained
wider adoption and were primarily focused on addressing
issues after they had been detected. This approach to
monitoring is referred to as reactive monitoring. A generalized
example of the operation of a reactive system is shown in
Fig. 1.

and

Monitoring main server

Notification system

Check the agent
status in DB

Is this agent
blocked?

Adding a new

!

Comparison of the
obtained data with

critical values

‘Are these values
greater than the
critical values?

Displaying a notification
about exceeding critical
for the node
where the monitoring agent
is located

Forming a report on
ing critical
parameters

i
'
1
1
'
'
1
1
'
'
1
1
i
'
1
1
'
'
1
1
'
'
1
1
'
'
1
1
1
'
1
1

record to DB :
1
1
i
'
1
1
1
'
1
1
Ll
'
1
1
1
'
1
1
1
'
1
1
1
1
1
1
'
1
1
1
'

Figure 1. Block diagram of a reactive monitoring system using an agent.

VOLUME 24(4), 2025

635

1S

Mykola Beshley et al. / International Journal of Computing, 24(4) 2025, 633-644

In this figure, three components of the system are presented
an agent that provides information from network nodes about
the observed parameters, a monitoring server that processes the
received information and makes decisions based on it, and a
notification module responsible for delivering status messages
about the system in real-time, if necessary.

In monitoring systems of this type, predefined response and
behavior scenarios are available for possible failures. However,
when it comes to applying these predefined scenarios, by the
time the system status change is detected, the critical response

time may have already passed, potentially leading to a
negative impact on user experience and service quality, while
the system continues to experience failures. To better
understand this concept, consider a situation where an incident
involving critical server load occurs. When the critical
threshold is reached, the system sends a notification to another
module, which, in turn, triggers the activation of an additional
server to balance the load. Here arises a dilemma between
activating the server too early, thus incurring unnecessary

Monitoring agent Monitoring main server

Incoming request
processing

Request
does't

financial costs, and activating it too late, where a certain
number of users may have already experienced slow response
times or even errors.

However, such a situation could have been anticipated at
the traffic growth stage by analyzing the number of connections
and other metrics, allowing for the timely activation of the
additional server. This is where predictive monitoring comes
into play, which aims to foresee system state changes.
Predictive monitoring is an evolutionary step beyond reactive
monitoring. This type of monitoring is focused on alerting
about the existence of a potential problem before it escalates to
the point where reactive monitoring would respond. An
example of such a system is depicted in Fig. 2.

The first key feature distinguishing predictive systems from
the previously discussed systems is the presence of an
additional module, known as the prediction module. The
primary goal of this module is to analyze incoming traffic and
predict system state changes in advance.

Prediction module Notification system

exists

Is
this a connection
request?

Check the agent
status in

DB

Check the agent
status in DB

Is this agent
blocked?

Insert or update an
agent.

X

Preparing a
foran |«
agent*

Receiving a
T from
server

Is this agent
blocked?

Does the report
should be sent to a
notif. system?

Data pre-processing

Data classification
and data analysis

l

Forming a report*

Yes

Output of a notification
about a possible change

* - preparation and dispatch
of status codes

of the state of the
system

* - the report shows whether there is
a tendency for non-standard events
to oceur

Figure 2. Block diagram of a predictive monitoring system using an agent.

A real-time predictive monitoring system collects,
processes, and analyzes data from sensors, hardware and
software solutions, and specific application or operating system
logs, and provides an estimate of the probability of a change in
the system's state. In general, this can be described as a trend
assessment. A trend means a change in the monitoring data
indicators in the future and how this may affect the system as a
whole.

Predictive monitoring aims to avoid the time delay that
occurs between an event and the reaction to the event. In the
previously discussed, reactive approach to monitoring, there is

636

a certain time delay between the moment an event occurs Tevent
and the moment the event is reacted to Treaer. This time delay
exists because of alerting, because first there is a notification
Thoir, and only after that comes the reaction. In general, this
time delay can be described by the following formula:

AT = Tnotif — Tevent- ¢Y)
In a reactive monitoring system, the time difference
between the occurrence of an event and the system's response

to the event will always be a positive number. This is due to the

VOLUME 24(4), 2025

Mykola Beshley et al. / International Journal of Computing, 24(4) 2025, 633-644

]|
S=dle

peculiarity of the system's operation, since it is triggered only
when an event occurs, and does not anticipate it.

In fact, the new component of the system highlighted in
Fig. 2 allows us to overcome the time delay. This module
analyzes the input data and tries to predict the change in the
system's state right then and there. This component introduces
anew prediction Tpreq. The prediction occurs earlier, before the
event itself Tevent. Thus, the reaction time to an event in a
proactive system can be described by formula:

AT = Tpred — Tevent- 2

In this formula, AT is the time that shows us the time delay
from predicting an event to its occurrence. Since the predictive
monitoring system works proactively, we have a situation
where, in the case of a correct prediction, the time delay will be
negative, which means gaining time to react to the event before
it occurs. In fact, as for the event itself, the time of its
occurrence is a value predicted with a certain accuracy that
must be anticipated in order to avoid it, since the event may
already be followed by a change in the state of the entire
system.

The "system state" refers to the set of current parameters
and metrics that reflect the functional condition of a specific
system at a given point in time. Such parameters may include
network load, signal quality, data transmission speed, and other
key indicators that directly impact the overall performance of
the system. Assessing the system state not only enables analysis
of its efficiency but also helps in detecting anomalies and
predicting potential failures or malfunctions. Mathematically,
the system state can be described as a set of parameter values
and their corresponding coefficients, as shown in formula 3:

Ssystem =ky Vi+ky Vot ot ky V. 3)

In formula 3, the symbol V is the percentage value of the
utilization of one of the system components at a given time. In
turn, the symbol k is the coefficient of such a system
component, i.e. its importance relative to other components in
determining the system state per unit of time. Individually, the
sum of the coefficients k must always be equal to 1. As a result,
the value of Sgysem ranges from 0 to 100. Thus, the sum of
system resource utilization and their coefficients is an indicator
of the system state.

Taking into account Formula 3, only systemically important
parameters can and should be selected from the list of system
parameters available for tracking. In turn, parameters that have
a low impact on the system state can be ignored to simplify
calculations.

The simplest example of system states, in the context of
communication systems and networks, are:

e normal state is a mode of operation in which the system
is in its own or a certain normal (regular) mode and has
no tendency to change it;

e critical state is a mode of operation when the system
experiences inefficiency, malfunction, and even
complete failure.

Usually, during the initial analysis of indicators, it is not
possible to obtain all the indicators that can become indicators
of the system's state, and often they are obtained already in the
process of testing algorithms on the data obtained.
Nevertheless, the analysis should take place in advance and the
parameters should be at least partially determined. Observing
the defined parameters allows us to understand the state of the

VOLUME 19(3), 2020

system in this case.

Summarizing the concept of state, it is understood that only
systemically important parameters are considered to describe
the state in telecommunication systems, the simplest example
of which is CPU, RAM, network usage, ROM. Also, such
concepts as “normal system state” or “critical system state”
should be defined in advance, because for each individual
system the concept of, for example, normal state may differ.

IV. IMBALANCE MITIGATION FOR PREDICTIVE
MONITORING SYSTEM

Therefore, we have described the concepts of system state,
prediction, and the domain in which the study is conducted.
Now, directly in the context of the article, the object of study is
the prediction module, so the focus is on this part of the overall
prediction system. The prediction module is a part of the
monitoring system that receives data from the network flow,
analyzes each record or action made in this flow, and predicts
the further state of the system. In fact, the prediction module
deals with classical classification tasks, but with the difference
that it is primarily interested in identifying a specific class as
accurately as possible. In the context of this article, a class is
nothing more than the defined nature of a user request to the
system under study.

Based on the previously discussed points, the issue of class
imbalance arises. Class imbalance is a situation in machine
learning where the number of examples in one class
significantly exceeds the number of examples in other classes
within a dataset, which can lead to a decline in the model's
classification performance. The situation is further complicated
by the fact that, under normal operating conditions, the
monitoring system predominantly processes normal user
traffic, making class parity for model training almost
impossible. Malicious traffic occurs much less frequently.
Additionally, there is another class of traffic often referred to
as outliers or undefined traffic. Although it may sound unusual,
there is a significant amount of traffic that cannot be clearly
labeled as either allowed or forbidden, and this type of traffic
also needs to be addressed.

Understanding the nature of the problem and why it arises,
Fig. 3 illustrates the proposed changes to the data processing
and model training workflow.

Raw data
Offered improvement

________________________________ Data
Prediction : preprocessing
y module , ' +

Data E i Class
weights calculation

¥

Build a model with
understanding
of imbalance

preprocessing

-

Network flow binary
classification and

prediction :
H . Network flow
el l___ multiclass
classification and
prediction
Decision

|

Notification system

Figure 3. Simplified view of the predictive module with
proposed modifications.

637

)

Mykola Beshley et al. / International Journal of Computing, 24(4) 2025, 633-644

The first proposal is to adjust the approach to data analysis
and preparation. At this stage, it is crucial to assess the severity
of the class imbalance and calculate the imbalance ratios to
determine appropriate class weights.

The second proposal is to train the model with the
understanding that the dataset is imbalanced, meaning that the
traditional accuracy metric is not suitable in this case. More
appropriate metrics exist that do not ignore less frequent classes
and focus on better identifying the desired class.

To address the issue of traffic classification in
communications systems, we employed an approach based on
using high-quality data for model training. One of the datasets
we used is the LUFlow Network Intrusion Detection Data Set
[29]. This is a flowing dataset specifically collected and labeled

INTERNET

| |
A request from ;
f external network

FIREWALL

classification
of the request

for training models to detect network intrusions. The data was
gathered using honeypots, which are systems designed to act as
decoys for malicious traffic (Fig. 4). This allowed us to collect
valuable information for further analysis and threat detection.
Honeypots are essentially resources or devices used to attract
malicious traffic [30]. The primary purpose of honeypots in the
system is to intentionally expose the network to attacks or
unauthorized probing, enabling the collection of information
that can later be analyzed. To capture telemetry, the Cisco Joy
tool was used within such a node of the communications
system. Joy is a BSD-licensed software package based on
libpcap for extracting data features from live network traffic or
packet capture files (pcap).

Response to |
1< p

external network
Arequest from
external network

classification
of the request

|
|
|
|
I Redirect the requests
|
|
|
|
|

analyse and
| processing
| the requests
[Pa— Resonse fromthe 1
honeypot

Response to
external network

to honeypot

HONEYPOT INTERNAL NETWORK
! 1
I |
I |
l |
l |
Allow the request to -l
the internal network s
| processing
| the request
Resonse from the
_______ internal_network T

— >

Figure 4. Simplified example of the honeypot algorithm.

It is important to note that the dataset includes traffic flows
that could not be classified as malicious but are also not part of
the typical telemetry profile. These data points are labeled as
outliers, included to encourage further analysis to uncover the
true intent behind their actions.

Given the system in which the research is being conducted,
it is advisable to consider in detail the dataset itself that will be
used (Table 1) and analyze examples of records that
characterize the defined classes (Table 2).

Referring to the specific examples shown in Table 1, we can
immediately notice that the so-called malicious traffic
example, which will further interest us in the study, has a sharp
difference in the absence of source port and destination port
(explanation of each parameter is described in the following
paragraphs).

638

Table 1. Dataset values

Field name Definition

src_ip anonymized source ip address
src_port source port number

dest ip anonymized destination ip address
dest port destination port number
protocol protocol number under which the flow works
bytes in number of bytes transmitted from the source
bytes_out number of bytes transmitted from the

destination
number of data packets from source to

num_pkts in

destination
Entropy entropy in bits per byte of data fields in the
flow
total_entropy total entropy in bytes for all bytes in the data
fields of the flow
duration time of the flow duration to the nearest
microsecond
label definition of the flow. markup.

VOLUME 24(4), 2025

Mykola Beshley et al. / International Journal of Computing, 24(4) 2025, 633-644

J

Table 2. Used traffic examples

Field name / Labels benign malicious outlier
src_ip 786 786 786

src_port 68 47613
dest ip 786 786 786

dest port 67 31306
protocol 17 1 6
bytes in 0 8 0
bytes out 600 8 0
num_pkts in 0 1 0
entropy 2 1 1
total entropy 1.615865 2.75 0.0
duration 969.5192 43.99 0.0
label 7.17 8.4e-5 0.0

However, this is just one example and it is not a general
indicator. In any case, for a better understanding of the data set,
it is worth referring to the pairwise correlation using the
Pearson method and analyzing the dependence of the
parameters (Fig. 5).

avg_ipt

bytes_out [SRRIREE]S:

0.0044-0.021 -0.065

LESWTRY0 0091 0.062 -0.12 | 026

CUGw 0042 014 0019 001 015

rum_pkts_out (UIVEE} 0.68 0.61 SellckIEVIV:RNEER]
mum_pkis_in (el 0.8 049 EKEESTREINATE 0.78

[EECR0 0024 001 0031 014 0038 0036 0018 0014

PEN°R-0.0083-0.038 0.16 -0.055 -0.24 0.0036-0.025 0.027 0036
ECRSUl 0014 0046 043 027 077 012 0077 0088 -0.075 022
total_entropy UISREY {l 031 0042 024 mﬂ(ﬂd -0.068 0057
ELER-0025 0089 033 016 -032 0063 0073 0026 0056 - 028 015

duration (SRR

0.22 0.0051-0.028 0.044 NOBS

€ 3 =
| 3

,000270.0026 0,024 | 0148 -0.0079

avg_ipt
dest_port
entropy
num_pkts_out
num_pkis_in
pr
scip
sre_port
fotal_entropy
label
duration

Figure 5. Pairwise correlation by Pearson

Based on the obtained pairwise correlation values, the label
value is strongly correlated with such parameters as: bytes out,
destination port, destination ip, source port, source IP, total
entropy. However, other parameters should not be excluded
from the analysis because they provide a combination that, in
general, describes the state of the system at a particular time.

Another important factor to be determined is the imbalance
indicator, which was mentioned earlier. To do this, it is needed
to determine the number of available records for each of the
known classes.

Table 3. Number of records for each class

Class name Count Percent
All 3826947 -
Benign 2162576 56.51%
Malicious 910391 23.78%
Outlier 753980 19.71%

If we look at Table 3, which counts the number of all classes
and each class individually, we can see that the malicious class
that will need to be identified is only about a quarter of the total
dataset. According to the imbalance classification provided by
Google in their training programs [31], the imbalance of the
class is moderately light, as it is in the range of 20 to 40%.
However, the gap of 20-40% is still quite large, and taking into

VOLUME 19(3), 2020

account the number of records, we can say that the figure of
23.78% for this class is an indicator of moderate imbalance.

To ensure a representative and unbiased dataset for training
and evaluation, the data were sampled from a large continuous
data stream collected over several days. The selected subset
covers typical operating conditions and includes both common
and less frequent events, ensuring variability in the input
features and stability of model training.

After data cleaning and preprocessing, the dataset was
divided into training and testing subsets using a standard
randomized partitioning approach. Specifically, the
train_test split function from the scikit-learn library. This
function randomly assigns 80% of the samples to the training
set and 20% to the testing set, while fixing the random seed
(random_state=30) to ensure reproducibility of the results.

V. RESULTS AND ANALYSIS

According to Table 2, the label field is a text field and,
accordingly, the name of each class is also written in text form.
Such a format for presenting markups is not suitable for further
research and should be converted to a numerical format. From
this point on, a situation arises when the further execution of
the task differs in approach due to the peculiarities of the task
interpretation. In the case of the data set under study, there are
clearly 3 classes, which is nothing more than a multi-class
classification task.

However, there is another approach when the goal is to
identify malicious traffic and consider everything else as
normal traffic. In this case, the type of problem changes from
multi-class to binary. To better understand the problems of each
of the tasks, we need to consider their final results.

A. BINARY CLASSIFICATION IN UNBALANCED DATA
SETS

Binary classification is a type of machine learning problem
where the model is trained to distinguish between two different
classes, i.e., to determine which of the two possible options
each input example belongs to. In the case of the dataset under
study, if we follow the commonly used path and ignore the
outlier class, as it represents outliers of unlabeled data, we will
be left with only two classes that are subject to binary
classification.

Since there are fewer classes, the outlier data is ignored, and
the imbalance of the classes has changed slightly. From
Table 4, we can conclude that benign has increased its
dominance, and malicious, in turn, has begun to occupy a third
of the dataset. To fit the data for this case, it is possible to use
the bincount function of the numpy library, as shown in the
examples for classifying unbalanced classes from Keras [32].
The results of weight selection are shown in Table 5.

Table 4. Number of records for each class

Class name Count Percent
All 3072967 -

Benign 2162576 70.37%

Malicious 910391 29.63%

Table 5. Defined class weights

Class name Weight
Benign 2.3118e-06
Malicious 5.6707¢-06

639

)

Mykola Beshley et al. / International Journal of Computing, 24(4) 2025, 633-644

Knowing the type of problem, features of the data set, and
weighting factors, we can proceed to developing the model.
Developing a model is an iterative process that requires
constant experimentation and tuning. The layers of the model,
the number of neurons, are usually selected in practice through
trial and error, and are not determined on the first try. After a
certain number of retraining sessions, the network structure
looked like the one shown in Fig. 6. The Keras tool, in
particular its Sequential class, is used to build the model.

Dense 4
1 sigmoid

Dense 3
16 relu

Dense 2
32relu

Dense 1
32relu

Figure 6. A neural network model for the binary classification
task.

In Fig. 7, we show the number of parameters for each layer
and mention dropout layers. The dropout layer is a
regularization technique in neural networks that randomly
disables some neurons during training to prevent overfitting
and improve the generalization ability of the model.

Layer (type) Output Shape Param #
dense_4 (Dense) (None, 32) 448
dense_5 (Dense) (None, 32) 1,056
dropout_2 (Dropout) (None, 32) 2]
dense_6 (Dense) (None, 16) 528
dropout_3 (Dropout) (None, 16) 0
dense_7 (Dense) (None, 1) 17

Figure 7. Number of parameters in the layers of the neural
network.

For the loss function, binary crossentropy is used, which is
a classic approach in such tasks. As for the metrics, in the task
of detecting malicious traffic in a telecommunications network,
as a rule, more importance is given to the recall indicator. This
is due to the fact that malicious traffic can cause significant
damage to the network and its users, and therefore it is very
important to detect as many malicious packets as possible.
However, a high recall metric can lead to an increase in the
number of false positives (i.e., the number of packets that are
incorrectly classified as malicious).

This can lead to unnecessary actions on the part of the
security system, such as blocking legitimate users or slow
connections. In turn, if we focus on the accuracy metric, we can
find that high accuracy is achieved due to the imbalance of
classes and the constant, correct prediction of non-malicious
traffic that is not the ultimate goal. Based on the results
presented in Table 6, the model performed almost perfectly
during training.

640

Table 6. Results of the last epoch of model training

Class name Count
False negative 430
False positive 547
True negative 1729478
True positive 705109

Precision 0.9992
Recall 0.9994

Based on this data alone, the model was wrong only 977
times out of more than 2 million for the task at hand. On the
test dataset, which contains 432547 records for Benign and
176344 for Malicious, the results are expected to be perfect
prediction of malicious and normal traffic (Fig. 8).

Distribution of Label and Prediction Values

Malicious
Benign
400000

300000

Frequency

200000

100000

0.0 0.2 0.4 0.6 0.8 1.0
Value

Figure 8. Traffic forecasting.

This could be the end of the experiment, but there is a
problem that these are only the results for perfectly labeled
data. In real systems, unfortunately, there is no such well-
labeled data and no perfect separation into two classes.
Therefore, working with outliers is a necessity.

B. MULTI-CLASS CLASSIFICATION IN IMBALANCED
DATASETS

Multi-class classification in machine learning is a type of task
where a model is trained to distinguish between more than two
classes by determining which of several possible options each
input example belongs to [33-37]. In the case of the dataset
under study, in the previous step, one of the classes was ignored
and binary classification was performed, and in this step, the
outlier class is also investigated.

As with the binary classification, it is necessary to calculate
the weights of the classes for further use in model training. In
this case, we used a slightly different approach to calculating
class weights and used the compute class weight function of
the scikit-learn library. The results of calculating the weights
are presented in Table 7.

Table 7. Defined class weights

Class name Weight
Benign 0.5832
Malicious 1.4298
Outlier 1.7066

Knowing the type of task, features of the dataset, and
weighting factors, we can proceed to building the model. The
model development did not lead to any major changes in the
architecture. Only the output layer that requires multi-class
classification has changed.

VOLUME 24(4), 2025

Mykola Beshley et al. / International Journal of Computing, 24(4) 2025, 633-644

In this layer, as shown in Fig. 9, the output neuron is no
longer sigmoid, but softmax. The sigmoid activation function
is used for binary classification and returns a value between 0
and 1, while the softmax activation function is used for
multiclass classification and returns the probabilities for each
class summed to 1.

Since the overall architecture of the neural network remains
unchanged, including the number of layers and the size of
hidden units, the training time of the model also remains
virtually unchanged. After all, the main modifications only
concern the weighting of classes and the activation function in
the output neuron.

Dense 4
3 softmax

Dense 3
16 relu

Dense 2
32relu

Dense 1
32relu

Figure 9. A neural network for the task of multi-class
classification.

Fig. 10 shows the number of parameters for each layer and
the dropout layer. Compared to the parameters in Fig. 7, the
changes are almost invisible.

Layer (type) Output Shape Param #
dense_56 (Dense) (> 32) 448
dense_57 (Dense) (5 32) 1,056
dropout_28 (Dropout) (5. :32) 0
dense_58 (Dense) (, 16) 528
dropout_29 (Dropout) (, 16) 2]
dense_59 (Dense) (5 3) 51

Figure 10. A neural network for the task of multi-class
classification.

Also, in this task, the loss function is changed from
binary crossentropy to categorical crossentropy. For
categorical_crossentropy, there is a certain peculiarity in its
operation, namely that the function expects class labels to be
passed in the one_hot format. The one hot format is a way of
representing class labels where each class is encoded by a
vector that has a value of 1 at the position corresponding to that
class and a value of 0 at all other positions. This allows the loss
function to correctly calculate the difference between model
predictions and true labels [32].

To obtain this format, the to_categorical function, which is
part of the Keras package, was used on a dataset that described
the label for each record in the dataset. So, in the process of
training the model, the last epoch of training showed the results
presented in Table 8.

VOLUME 19(3), 2020

Table 8. Results of the last epoch of model training

Class name Count
False negative 361755
False positive 360617
True negative 5692039
True positive 2664573

Precision 0.8808
Recall 0.8805

At first glance, the results for misclassification of positive
and negative records are enormous compared to the results in
Table 6. However, it is worth remembering that out-liers are
also used here, which account for almost 20% of the entire
dataset. Therefore, it is worth reviewing the results of the
predict function for the test dataset. The test dataset has 756582
records, which are described in detail in Table 9.

Table 9. Defined class weights

Class name Count
Benign 432850
Malicious 176371
Outlier 147361

Considering the prediction of benign traffic, Fig. 11 shows
how the prediction fully understands what a normal data flow
is and classifies it accordingly. In fact, the number of correctly
classified benign traffic and its number in the dataset are the
same.

Distribution of benign label and prediction values

Predicted benign label
True benign label
400000

300000
z
2
3
3
g
i

200000

100000

Value

Figure 11. Benign flow prediction.

With the outlier data flow, the situation is already radically
different (Fig.12). The model missed a lot of traffic of this type
and did not classify it as any kind of outlier. The most sensitive
interval is 0.8-0.85. This is where most of the errors were made.

Distribution of outlier label and prediction values

True outlier label

Predicted outlier label
35000

30000

25000

20000

Frequency

15000

10000

5000

Value

Figure 12. Outlier flow prediction.

641

)

Mykola Beshley et al. / International Journal of Computing, 24(4) 2025, 633-644

As for the malicious flow, the situation is very similar to
Figure 11, but in this case, the model has made more malicious
traffic labels in the same range of 0.8-0.85 than there actually
is.

In fact, if we compare Figures 11, 12, and 13, we wonder
whether the outliers are the same overlap that the model shows
for malicious traffic. To check this, we need to combine the
graphs from Figures 12 and 13.

Distribution of malicious label and prediction values

Predicted malicious label

True malicious label
100000

80000

60000

Frequency

40000

20000

05 08 07 08 09 1.0
Value

Figure 13. Distribution of malicious label and prediction
values.

Distribution of Label and Prediction Values

Predicted malicious label
True malicious label
True outlier labe!
Predicted outlier label

100000

80000

60000

Frequency

40000

o L

05 06 07 08 09 1.0
Value

Figure 14. Distribution of label and prediction values.

These indicators should be considered in absolute terms. To
do this, we need to supplement Table 9 into Table 10.

Table 10. Number of records for each class

Class name Count Predict Difference
Benign 432850 432803 -0.01 %
Malicious 176371 244790 38%
Outlier 147361 78989 - 53.6%

Based on the data in Table 10, the result of the model has
several aspects. First of all, the QoS for a normal user should
not suffer, since under normal operation and normal traffic, the
misclassification of normal traffic is close to 0. As for
emissions and malicious traffic, the situation is a bit more
complicated. In fact, it has been possible to build a pessimistic
system that can label most of the traffic that does not look like
normal traffic as malicious. In general, this can be a problem in
terms of using additional resources. On the other hand, the
theoretical losses due to the passage of malicious traffic are not
proportional and can cause much more damage. Comparison of
existing labels and their coincidence with the prediction for the
binary classification scenario is depicted in Fig. 15 and with the

642

multi-class classification scenario in Fig. 16.

The results of the experiment show that due to the
heterogeneity of data in communication systems and the
disproportionate sets of labeled data representing each of the
studied classes, the behavior of the trained model may differ
from its settings. In a task where it is necessary to identify
malicious traffic, outlier or unlabeled traffic, which exists in
abundance in real systems, will also be captured and labeled as
malicious.

Comparing true labels and predicted labels in the test dataset

Benign

Predicted
benign

Malicious

True
Predicted

Predicted
malicious

0 100000 200000 300000 400000

Figure 15. Comparison of existing labels and their
coincidence with the prediction for the binary classification

scenario.
Comparing true labels and predicted labels in the test dataset

Benign q
Predicted |

benign
Malicious
Predicted |
malicious

Qutlier 4

True

Predicted | i

outlier Predicted

0 100000 200000 300000 400000

Figure 16. Comparison of existing labels and their
coincidence with the prediction for the multi-class
classification scenario.

Working with real data will always carry a certain
percentage of errors. However, depending on the model
settings and thresholds that will satisfy the conditions of the
task, the percentage of false classifications will migrate from
one class to another. Thus, the experiments once again
confirmed the problem of unlabeled datasets.

VI. DISCUSSION

Finally, addressing the implementation of neural networks,
there are many controversial issues and challenges that both
businesses and researchers are working on. As research has
shown once again, the most effective way to train neural
networks is still training based on well-labeled data. However,
since real telecommunications systems generate petabytes of
unlabeled or poorly labeled data, only a comprehensive
approach can resolve this issue.

Difficulties in using neural networks for structured data.
Structured data refers to a standardized format that organizes
data into tables with rows and columns, such as network traffic
data. However, the earliest and most successful applications of
machine learning report challenges with unstructured data,
such as video, images, text, and audio. Some machine learning
experts oppose the use of neural networks for structured data,
as they believe that labeled structured datasets are not large
enough to train machine learning algorithms. Furthermore, they
argue that classical machine learning algorithms, such as KNN
and SVM, are much simpler and more understandable, making

VOLUME 24(4), 2025

Mykola Beshley et al. / International Journal of Computing, 24(4) 2025, 633-644

)

them the only suitable options for use. This issue requires
deeper investigation, as there is substantial evidence to the
contrary.

Most machine learning algorithms are designed to be
trained and utilized on devices with sufficient resources.
Training neural networks with a large number of samples and
parameters requires devices with substantial computational
power, memory, and energy. This directly conflicts with the
growing interest in deploying resource-constrained devices
(e.g., IoT devices) equipped with Al technologies and Al-based
applications.

Unlike other ML applications, network technologies suffer
from high dynamism, thus requiring model retraining to adapt
to new network situations.

Network heterogeneity issue stems from the fact that
networks lack a unified theory that can be applied across all
networks. This means that network behavior is heterogeneous,
depending on factors such as different topologies, equipment,
scale, and applications. This leads to an important point:
machine learning models, for further use in prediction modules,
must be trained for each network separately. This issue is also
a crucial research direction, as the more flexible the system, the
more potential telecommunications networks it can cover.

Despite the promising results, the proposed approach has
certain limitations in both time and accuracy. The training
process of deep neural networks remains computationally
expensive, especially when the model must be frequently
retrained to adapt to dynamic network conditions. In addition,
the overall accuracy strongly depends on the quality and
balance of labeled data. Since the “malicious” class typically
represents a small fraction of real traffic, the model may still
struggle to maintain high detection accuracy for this class.

Future research should focus on optimizing training time
and improving detection accuracy for minority classes through
advanced class-weighting, semi-supervised, or transfer
learning techniques.

Vil. CONCLUSION

In this article, we developed a comprehensive approach to
enhancing network monitoring systems through the integration
of predictive techniques and machine learning models. The
architecture of monitoring systems was thoroughly examined,
emphasizing their modular design, which includes monitoring
agents, central servers, and alert systems. We compared active
and passive monitoring methods, highlighting their advantages
and limitations. Additionally, we introduced a novel predictive
monitoring framework that anticipates potential network issues
before they occur, offering a proactive solution in contrast to
traditional reactive methods. Furthermore, the study tackled the
issue of data imbalance in machine learning models, which is a
significant challenge in accurately detecting anomalies,
particularly in underrepresented traffic classes such as
malicious activities. To address this, we proposed dynamic
class weighting to enhance the accuracy of anomaly detection.
The paper also utilized the LUFlow dataset for model training,
employing honeypots to gather valuable data for network
intrusion detection and demonstrating the practical application
of the proposed monitoring framework. The results
demonstrate that the proposed transition from binary to
multiclass classification provides a more accurate
representation of real network traffic conditions. While the
numerical metrics appear lower (Precision 0.88, Recall 0.88
compared to 0.999 in binary form), this configuration

VOLUME 19(3), 2020

significantly improves the model’s ability to identify the
minority malicious class and to differentiate it from uncertain
traffic. Thus, the approach enhances the interpretability and
operational relevance of intrusion detection models for
complex telecommunication environments. In the future, the
proposed technique with dynamic adjustment of class weights
may become an important step in improving communication
network monitoring systems. This method allows for efficient
adaptation of the model to new input data, reducing errors in
anomaly recognition, which is especially important in complex
and changing conditions of real networks. The simplicity of the
linear model, which does not require a large number of layers,
will not only speed up the process of retraining the system, but
also ensure its stability in the event of new types of traffic or
threats. This approach opens up prospects for more flexible and
reliable predictive monitoring, allowing for increased
efficiency and security of modern communications systems.

References

[1] C. L. Aldea, R. Bocu, and R. N. Solca, “Real-time monitoring and
management of hardware and software resources in heterogeneous
computer networks through an integrated system architecture,”
Symmetry, vol. 15, p. 1134, 2023, https://doi.org/10.3390/sym15061134.

[2] W. Song, M. Beshley, K. Przystupa, H. Beshley, O. Kochan, A.
Pryslupskyi, D. Pieniak, and J. Su, “A software deep packet inspection
system for network traffic analysis and anomaly detection,” Sensors, vol.
20, p. 1637, 2020, https://doi.org/10.3390/s20061637.

[3] J. Tang, T. Qin, D. Kong, Z. Zhou, X. Li, Y. Wu, and J. Gu, “Anomaly
detection in social-aware IoT networks,” IEEE Trans. Netw. Serv.
Manag., early access, 2023,
https://doi.org/10.1109/TNSM.2023.3242320.

[4] H. Bilakanti, S. Pasam, V. Palakollu, and S. Utukuru, “Anomaly
detection in IoT environment using machine learning,” Security Privacy,
2024, https://doi.org/10.1002/spy2.366.

[5] K. Albulayhi and Q. A. Al-Haija, “Adversarial deep learning in anomaly
based intrusion detection systems for IoT environments,” Int. J. Wireless
Microw. Technol. (IJWMT), vol. 13, no. 4, pp. 1-10, 2023,
https://doi.org/10.5815/ijwmt.2023.04.01.

[6] N. Lutsiv, T. Maksymyuk, M. Beshley, O. Lavriv, V. Andrushchak, A.
Sachenko, L. Vokorokos, and J. Gazda, “Deep semisupervised learning-
based network anomaly detection in heterogeneous information
systems,” CMC-Comput. Mater. Continua, vol. 70, pp. 413-431, 2022,
https://doi.org/10.32604/cmc.2022.018773.

[7]1 O. Aslanli, “Cloud and on-premises based security solution for industrial
10T,” Int. J. Inf. Eng. Electron. Bus. (IJIEEB), vol. 16, no. 5, pp. 55-62,
2024, https://doi.org/10.5815/ijieeb.2024.05.02.

[8] S. Lehominova, Y. Shchavinsky, T. Muzhanova, D. Rabchun, and M.
Zaporozhchenko, “Application of sentiment analysis to prevent
cyberattacks on objects of critical information infrastructure,” Int. J.
Comput., vol. 22, no. 4, Pp- 534-540, 2023,
https://doi.org/10.47839/ijc.22.4.3362.

[91 M. Beshley, N. Kryvinska, and H. Beshley, “Quality of service
management method in a heterogeneous wireless network using big data
technology and mobile QoE application,” Simul. Model. Pract. Theory,
vol. 127, p. 102771, 2023, https://doi.org/10.1016/j.simpat.2023.102771.

[10] G. Nguyen, S. Dlugolinsky, V. Tran, and A. Lépez Garcia, “Deep
learning for proactive network monitoring and security protection,” JEEE
Access, vol. 8, . 19696-19716, 2020,
https://doi.org/10.1109/ACCESS.2020.2968718.

[11] Y. Chen, H. Peng, L. Huang, J. Zhang, and W. Jiang, “A novel MAE-
based self-supervised anomaly detection and localization method,” IEEE
Access, vol. 11, . 127526-127538, 2023,
https://doi.org/10.1109/ACCESS.2023.3332475.

[12] A. Abdelkhalek and M. Mashaly, “Addressing the class imbalance
problem in network intrusion detection systems using data resampling
and deep learning,” J. Supercomput., vol. 79, no. 10, pp. 10611-10644,
2023, https://doi.org/10.1007/s11227-023-05073-x.

[13] D. Mahesh and T. S. Kumar, “Machine learning algorithms for detecting
DDoS attacks in intrusion detection systems,” /nt. J. Wireless Microw.
Technol. (IJWMT), vol. 14, mno. 5, pp. 59-71, 2024,
https://doi.org/10.5815/ijwmt.2024.05.05.

643

J

Mykola Beshley et al. / International Journal of Computing, 24(4) 2025, 633-644

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

644

X. Li, G. Shi, and Y. Wu, “Utilizing machine learning techniques for
network traffic anomaly detection,” Appl. Comput. Eng., vol. 36, no. 1,
pp. 242247, 2024, https://doi.org/10.54254/2755-2721/36/20230454.

S. Dong, H. Su, and Y. Liu, “A-CAVE: Network abnormal traffic
detection algorithm based on variational autoencoder,” ICT Express, vol.
9, no. 5, pp. 896-902, 2023, https://doi.org/10.1016/j.icte.2022.11.006.
Z. Hu, R. Odarchenko, S. Gnatyuk, M. Zaliskyi, A. Chaplits, S. Bondar,
and V. Borovik, “Statistical techniques for detecting cyberattacks on
computer networks based on an analysis of abnormal traffic behavior,”
Int. J. Comput. Netw. Inf. Secur. (IJCNIS), vol. 12, no. 6, pp. 1-13, 2020,
https://doi.org/10.5815/ijcnis.2020.06.01.

1. Zavushchak, “The impact of artificial intelligence on cybersecurity and
data protection,” Int. J. Wireless Microw. Technol. (IJWMT), vol. 15, no.
4, pp. 65-72, 2025, https://doi.org/10.5815/ijwmt.2025.04.05.

Y.S. Ndichu, S. McOyowo, H. Okoyo, and C. Wekesa, “Detecting remote
access network attacks using supervised machine learning methods,” Int.
J. Comput. Netw. Inf. Secur. (IJCNIS), vol. 15, no. 2, pp. 48-61, 2023,
https://doi.org/10.5815/ijcnis.2023.02.04.

M. Goyal and Q. H. Mahmoud, “A systematic review of synthetic data
generation techniques using generative AL,” Electronics, vol. 13, p. 3509,
2024, https://doi.org/10.3390/electronics13173509.

A. Khandare and A. S. Alvi, “Performance analysis of improved
clustering algorithm on real and synthetic data,” Int. J. Comput. Netw. Inf.
Secur. (IJCNIS), vol. 9, mno. 10, pp. 57-65, 2017,
https://doi.org/10.5815/ijenis.2017.10.07.

V. Kumar and D. Sinha, “Synthetic attack data generation model applying
generative adversarial network for intrusion detection,” Comput. Secur.,
vol. 125, p. 103054, 2023, https://doi.org/10.1016/j.cose.2022.103054.
S. Sanshi, R. Vatambeti, R. V., and S. Z. Rahman, “An efficient
optimized neural network system for intrusion detection in wireless
sensor networks,” Int. J. Comput. Netw. Inf. Secur. (IJCNIS), vol. 16, no.
6, pp. 83-94, 2024, https://doi.org/10.5815/ijcnis.2024.06.07.

B. Rusyn, O. Lutsyk, R. Kosarevych, T. Maksymyuk, and J. Gazda,
“Features extraction from multi-spectral remote sensing images based on
multi-threshold binarization,” Sci. Rep., vol. 13, no. 1, p. 19655, 2023,
https://doi.org/10.1038/s41598-023-46785-7.

X.Maand W. Shi, “AESMOTE: Adversarial reinforcement learning with
SMOTE for anomaly detection,” /EEE Trans. Netw. Sci. Eng., vol. 8, no.
2, pp. 943-956, 2021, https://doi.org/10.1109/TNSE.2020.3004312.

K. Jiang, W. Wang, A. Wang, and H. Wu, “Network intrusion detection
combined hybrid sampling with deep hierarchical network,” IEEE
Access, vol. 8, . 32464-32476, 2020,
https://doi.org/10.1109/ACCESS.2020.2973730.
A. A. Awad, A. F. Alj, and T. Gaber, “An improved long short term
memory network for intrusion detection,” PLoS One, vol. 18, no. 8, p.
€0284795, 2023, https://doi.org/10.1371/journal.pone.0284795.

K. Mounika, P. V. Rao, and A. Anbalagan, “Modified CNN model for
network intrusion detection and classification system using local outlier
factor-based recursive feature elimination,” Int. J. Comput. Netw. Inf.
Secur. (IJCNIS), vol. 17, mno. 1, pp. 8291, 2025,
https://doi.org/10.5815/ijcnis.2025.01.07.

A. L Jony and A. K. B. Arnob, “Securing the Internet of Things:
Evaluating machine learning algorithms for detecting IoT cyberattacks
using CIC-10T2023 dataset,” Int. J. Inf. Technol. Comput. Sci. (IJITCS),
vol. 16, no. 4, pp. 5665, 2024, https://doi.org/10.5815/ijitcs.2024.04.04.
A. Sharma and H. Babbar, “LUFlow: Attack detection in the Internet of
Things using machine learning approaches,” Proceedings of the 2023
International Conference on Distributed Computing and Electrical
Circuits and Electronics (ICDCECE), Ballar, India, 2023, pp. 1-5,
https://doi.org/10.1109/ICDCECE57866.2023.10150813.

V. Kosheliuk and Y. Tulashvili, “Implementing honeypots for detecting
cyber threats with AWS using the ELK,” Int. J. Comput., vol. 23, no. 4,
pp. 618-624, 2024, https://doi.org/10.47839/ijc.23.4.3761.

Google, “Datasets: Imbalanced datasets,” Google for Developers.
[Online]. Available at: https://developers.google.com/machine-
learning/data-prep/construct/sampling-splitting/imbalanced-data.

Keras, “Imbalanced classification: credit card fraud detection,” Keras.io.
[Online]. Available at:
https://keras.io/examples/structured data/imbalanced classification/.

[33]

[34]

[35]

[36]

[37]

S. A. Wahab, S. Sultana, N. Tariq, M. Mujahid, J. A. Khan, and A.
Mylonas, “A multi-class intrusion detection system for DDoS attacks in
IoT networks using deep learning and transformers,” Sensors, vol. 25, no.
15, p. 4845, 2025, https:/doi.org/10.3390/s25154845.

H. Kamal and M. Mashaly, “Robust intrusion detection system using an
improved hybrid deep learning model for binary and multi-class
classification in IoT networks,” Technologies, vol. 13, no. 3, p. 102, 2025,
https://doi.org/10.3390/technologies13030102.

A. K. Sharma, R. Gupta, and P. Singh, “Multiclass classification by
various machine learning techniques,” Math. Probl. Eng., vol. 2023, pp.
1-11, 2023, https://doi.org/10.1155/2023/1956865.

F. Ahmad Khan, A. Ali Shah, N. Alshammry, S. Saif, Wasim Khan, M.
0. Malik, Z. Ullah, “Balanced multi-class network intrusion detection
using machine learning,” IEEE Access, vol. 12, pp. 178222-178236,
2024, https://doi.org/10.1109/ACCESS.2024.3503497.

S.-M. Tseng, Y.-Q. Wang, and Y.-C. Wang, “Multi-class intrusion
detection based on transformer for IoT networks using CIC-IoT-2023
dataset,” Future Internet, vol. 16, mno. 8, p. 284, 2024,

https://doi.org/10.3390/f116080284.

ANDRIY LUTSIUK Postgraduate
student of the Department of
Electronics and Information
Technology at Lviv Polytechnic
National University. His research
interests: artificial intelligence,
machine learning, network
monitoring.

OREST LAVRIV Doctor of science,
Lecturer of the Department of
Electronics and Information
Technology at Lviv Polytechnic
National University. His research
interests: systems architecture, 5G,
SDN, IoT routing cloudification, cloud.

MYKOLA BESHLEY is currently a
Professor in the Information and
Communication Technologies Depart-
ment at Lviv Polytechnic National
University. His current research
interests include next-generation IoT,
cloud computing, big data, software-
defined networks, intent-based
networks, network security, artificial

artificial intelligence, heterogeneous networks, and 5G and 6G
technologies.

=
;/x\ S
v AN

MYKOLA BRYCH is a Ph.D. in
Technical Sciences, Associate
Professor of the Information and
Communication Technologies
Department at Lviv Polytechnic
National University. Research
interests: 5G mobile networks, data
transmission in heterogeneous
networks, UAV, networking.

VOLUME 24(4), 2025

