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 ABSTRACT This paper presents an advanced approach to improving network traffic monitoring systems using 
machine learning algorithms. The main attention is paid to the problems of data imbalance and insufficient labeling in 
real communication systems. These problems often lead to inaccurate anomaly detection and unreliable system 
performance. To solve these problems, the paper proposes a dynamic class weighting technique that improves anomaly 
detection, especially when dealing with uncertain or unevenly represented data. The technique ensures that minority 
classes, such as malicious or anomalous traffic, are properly accounted for during model training, which improves 
overall detection accuracy. This approach provides the ability to dynamically change class weights based on new input 
data, and the simplicity of the model, because it is linear and does not have many layers, allows for relatively quick 
retraining. In addition, the paper describes an optimized data preparation process that facilitates efficient training of 
neural networks. These networks are integrated into proactive monitoring modules, which allows for real-time detection 
of network anomalies and potential threats. Although the proposed multiclass approach yields slightly lower global 
metrics (Precision 0.88, Recall 0.88) than the binary baseline, it significantly improves malicious traffic detection by 
introducing an additional class for uncertain samples, thus offering a more realistic and robust representation of network 
behavior. This proactive approach is particularly useful in today's communications environments, which are 
characterized by increasing traffic volumes and greater data diversity. By providing rapid detection and response to 
network breaches, the proposed solution increases the reliability and stability of networks, providing more robust 
protection against new cyber threats. The approach is particularly well suited for dynamic and complex networks, where 
traditional static monitoring methods often prove insufficient. The techniques presented in this article thus contribute 
to the development of more intelligent and responsive network monitoring systems that can cope with the complexities 
of modern communication infrastructures, where the demand for real-time analysis and anomaly detection continues to 
grow. 
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I.  INTRODUCTION 
ith the development of the Internet and the increasing 
number of connected devices, network infrastructure 

management and monitoring have become key areas of 
research and investment [1]. 

The constant growth of network traffic and the increasing 
number of devices, particularly within the Internet of Things 
(IoT), poses a significant challenge to researchers in terms of 
efficient monitoring, data management, and anomaly detection 
[2-5]. Although individual IoT devices are relatively simple, 
their large-scale interaction generates large amounts of 
heterogeneous data, which poses significant challenges for 
monitoring and ensuring network reliability [6]. 

In addition, the rapid development of mobile and wireless 
communications has led to the transformation of industries 
such as transportation and healthcare, which in turn has given 
rise to new cybersecurity threats [7]. Growing volumes of data 
and connected devices increase the vulnerability of systems to 
attacks. Traditional security methods can no longer effectively 
counteract sophisticated cyberattacks, such as hacking wireless 
sensor networks and data leaks [8]. 

In pursuit of goals, such as a high level of Quality of Service 
(QoS), all stakeholders are trying to somehow control and 
understand what is happening in the flow of data moving in 
communication networks [9]. Monitoring systems have 
become the tools that help to exercise this type of control. 

W
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Having a modular system, monitoring and control systems have 
become excellent assistants in understanding the state of the 
network, responding to events within the network, alerting and 
logging. However, as mentioned earlier, the amount of traffic 
is growing and monitoring systems are facing new challenges 
in the form of high traffic intensity and its diversity. 

Today, researchers can solve this problem by improving 
proactive monitoring systems that allow to predict and prevent 
the occurrence of an atypical situation in the network in 
advance. The method of improvement is the use of machine 
learning algorithms in the modules of these systems [10].  

There are already studies where the use of machine learning 
algorithms of various types shows an accuracy of classification 
of incoming traffic of more than 90% [11], which is a strong 
evidence in favor of the feasibility of this approach. However, 
such systems are often run on preprepared data, which in their 
structure contain quite a few examples of both normal and 
malicious traffic, which somewhat simplifies the learning 
process and ultimately shows very good results. However, in 
real systems, there are problems of imbalance, poor labeling, 
and heterogeneity, which introduces new complexities and 
challenges to the process of training and testing models in 
communication network monitoring systems [12]. 

To mitigate these problems, optimal training sample 
selection and hybridization of neural networks with fuzzy logic 
are considered promising directions to improve anomaly 
detection accuracy in imbalanced network environments. 

The paper presents a method to overcome the problems of 
imbalance and limited data, which are critical for the 
functioning of proactive monitoring systems based on machine 
learning algorithms. An improved approach to data preparation 
and its further use for training neural networks in the context of 
proactive monitoring systems is proposed. The process of 
developing a neural network that is integrated into the module 
for predicting and detecting anomalies in network traffic, 
including malicious actions, is described.  

The paper is structured as follows. Section 2 provides a 
comprehensive review of existing research in this field, 
identifying key challenges and issues. Section 3 describes the 
architecture and functional components of network monitoring 
systems. Section 4 provides a detailed description of the 
proposed imbalance mitigation technique for predictive 
monitoring systems. Section 5 presents the results and analysis, 
followed by a discussion in Section 6. Finally, Section 7 
contains concluding remarks and outlines future challenges. 

II.  RELATED WORKS 
The idea of using machine learning in monitoring systems to 
predict the future state of a communication network is not new. 
There are many studies that have proven the effectiveness of 
machine learning algorithms in prediction in one way or 
another. In particular, study [13] shows that some solutions 
based on machine learning algorithms are close to 90% and 
sometimes 97% accurate. The study [14] shows accuracy rates 
of 93% and higher, which is a good result. 

However, despite numerous developments, researchers 
continue to face a number of challenges and problems related 
to the specifics of telecommunications systems. 

The first problem is data sets that do not correspond to the 
actual situation in real systems. Due to the peculiarities of data 
collection in telecommunication systems, researchers are 
severely limited in the available data sets, especially when it 
comes to labeling a malicious flow in sufficient quantity. 

Therefore, in their works [15-18], the authors use publicly 
available datasets where there are clearly defined two classes 
describing abnormal and normal traffic. The number of records 
in such datasets is balanced to ensure equal representation of 
both states. Also, analyzing the datasets presented in studies 
[19-21], it is clear that these can even be synthetically created 
data, where malicious traffic is modeled rather than natural, 
which does not quite reflect the true picture of heterogeneous 
flows in real systems. 

Although features of this type are less common, researchers 
use the accuracy metric as an indicator of the final result [22]. 
In fact, for idealized datasets where there is class parity, this 
can work and really reflect the true state of affairs. However, 
when classes are unbalanced, the problem arises that the 
accuracy rate of 90% is only an indicator of the ideal 
classification of the class that prevails in this set. In addition to 
accuracy, MAE metrics can be used [23]. In the context of 
binary or multiclass classification, MAE does not take into 
account the probability of predictions, but only the absolute 
differences between predicted and actual values. Nevertheless, 
the use of these metrics is still a consequence of the datasets 
that allow this and show good results in the end. But, as noted 
earlier, in real telecommunication systems, there is 
heterogeneity, insufficient or poor labeling of real data, and 
insufficient number of records of certain classes, which 
together does not allow using accuracy as an indicator. 

The issue of data imbalance, where the volume of regular 
instances significantly exceeds that of anomalies, poses 
substantial challenges, especially for traditional classification 
models. This imbalance, commonly referred to as the class 
imbalance problem, can severely hinder the model’s ability to 
accurately detect rare but critical anomalies. Authors [24] 
applied reinforcement learning along with SMOTE to enhance 
the performance of one classifier on NSL-KDD dataset 
whereby data is imbalanced. There are numerous other 
experiments comparing performance metrics of SMOTE, ROS, 
Near-Miss1, and Near-Miss2 methods and managed to get up 
to 82% peak accuracy together with an F1 score of 82.4%. 
Authors [25] employed preprocessing via one-side selection 
and SMOTE sampling in order to solve data imbalance issue. 
While performing their work, the authors obtained 83.58% and 
77.16% accuracy using the hybrid convolutional neural 
network and bidirectional long short-term memory model on 
the NSLKDD and UNSW-NB15 datasets respectively. In the 
same manner, authors [26] presented a unified model 
employing LSTM cornered by chaotic butterfly optimizer 
along with particle swarm optimization for bettering intrusion 
detection performance. They managed to achieve 93.09% and 
86.89% respective accuracy on KDDTest+ binary dataset and 
KDDTest-21 dataset. Authors [27] dealt with the problem of 
network anomalies detection and proposed deep learning 
model with attention, CNN and elements of integration 
providing a solution. While Jony and Arnob [28] provided a 
useful comparative evaluation of machine learning algorithms 
on the CIC-IoT2023 dataset, their study did not address the 
issue of data imbalance.  

According to the literature review, the main problem of 
existing monitoring systems is the insufficient amount and 
labeling of data, which makes it difficult to use binary models 
to accurately detect anomalies. To solve this problem, it is 
necessary to develop a new proactive monitoring technique 
capable of working with incompletely labeled data. The key 
elements of this technique should include: active learning to 
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automate labeling, hybrid models for more accurate traffic 
analysis, dynamic adjustment of class weights to balance data, 
and early warning modules for timely response to threats. 

III.  ARCHITECTURE AND FUNCTIONAL COMPONENTS 
OF NETWORK MONITORING SYSTEM 
A monitoring system is a complex of software and hardware 
tools designed to detect network attacks, diagnose 
malfunctions and other problems that arise in the system in 
order to increase its fault tolerance and ensure a high level of 
user service.  

Monitoring systems cannot be considered as simple, 
monolithic solutions. As a rule, such systems consist of several 
functional modules, the number and composition of which 
varies depending on the specific tasks assigned to the system 
and the type of traffic to be analyzed. Considering a simple 
example of a monitoring system, the following components are 
primarily distinguished: 

 Monitoring agent refers to a unit responsible for 
collecting traffic data from various systems for further 
processing; 

 Main monitoring server is a server where, if necessary, 
preliminary data processing takes place, previous 
metrics are stored, information is analyzed, and 
decisions regarding alerts are made; 

 Alerts system is a notification system that informs the 
relevant individuals or other network nodes about 
potential changes in the state of the telecommunications 
network (it can be implemented as part of the main 
monitoring server). 

Monitoring systems, in turn, are generally divided into 
active and passive types based on their operation mode [28]. 

Active monitoring methods are often referred to as 
“synthetic” because this approach does not use actual user data. 

Instead, the tools employed in this monitoring aim to predict 
the potential performance of the network by simulating its 
current behavior. Active monitoring seeks to provide a 
comprehensive view of network performance in real time.  
Additionally, it allows for measuring network performance 
through various metrics and key indicators, including latency, 
response time, jitter, packet loss, etc. 

Passive monitoring is based on analyzing actual user data 
within the network. Active monitoring generates small, regular 
data packets while operating, whereas passive monitoring uses 
real, holistic, and significantly larger data sets, providing a 
more accurate snapshot of the network's current state. 

Each of these approaches has its advantages and 
disadvantages, which can be summarized as follows: 

 Active monitoring enables the identification of potential 
problems before they occur, but it requires more 
resources, and its accuracy is based on predictions; 

 Conversely, passive monitoring provides a 
comprehensive understanding of overall network 
performance at the current moment, as it uses actual 
network data. However, any issue identified by this 
method is an existing problem that requires immediate 
resolution. 

In essence, one method generates additional data and uses 
the network while trying to predict future changes in the 
system's state, whereas the other method uses real user data to 
describe the current system state. 

Traditionally, passive monitoring systems have gained 
wider adoption and were primarily focused on addressing 
issues after they had been detected. This approach to 
monitoring is referred to as reactive monitoring. A generalized 
example of the operation of a reactive system is shown in 
Fig. 1.  

 

 

Figure 1. Block diagram of a reactive monitoring system using an agent. 
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In this figure, three components of the system are presented 
an agent that provides information from network nodes about 
the observed parameters, a monitoring server that processes the 
received information and makes decisions based on it, and a 
notification module responsible for delivering status messages 
about the system in real-time, if necessary. 

In monitoring systems of this type, predefined response and 
behavior scenarios are available for possible failures. However, 
when it comes to applying these predefined scenarios, by the 
time the system status change is detected, the critical response  

time may have already passed, potentially leading to a 
negative impact on user experience and service quality, while 
the system continues to experience failures. To better 
understand this concept, consider a situation where an incident 
involving critical server load occurs. When the critical 
threshold is reached, the system sends a notification to another 
module, which, in turn, triggers the activation of an additional 
server to balance the load. Here arises a dilemma between 
activating the server too early, thus incurring unnecessary 

financial costs, and activating it too late, where a certain 
number of users may have already experienced slow response 
times or even errors. 

However, such a situation could have been anticipated at 
the traffic growth stage by analyzing the number of connections 
and other metrics, allowing for the timely activation of the 
additional server. This is where predictive monitoring comes 
into play, which aims to foresee system state changes. 
Predictive monitoring is an evolutionary step beyond reactive 
monitoring. This type of monitoring is focused on alerting 
about the existence of a potential problem before it escalates to 
the point where reactive monitoring would respond. An 
example of such a system is depicted in Fig. 2. 

The first key feature distinguishing predictive systems from 
the previously discussed systems is the presence of an 
additional module, known as the prediction module. The 
primary goal of this module is to analyze incoming traffic and 
predict system state changes in advance. 

 

 

Figure 2. Block diagram of a predictive monitoring system using an agent. 

A real-time predictive monitoring system collects, 
processes, and analyzes data from sensors, hardware and 
software solutions, and specific application or operating system 
logs, and provides an estimate of the probability of a change in 
the system's state. In general, this can be described as a trend 
assessment. A trend means a change in the monitoring data 
indicators in the future and how this may affect the system as a 
whole.  

Predictive monitoring aims to avoid the time delay that 
occurs between an event and the reaction to the event. In the 
previously discussed, reactive approach to monitoring, there is 

a certain time delay between the moment an event occurs Tevent 

and the moment the event is reacted to Treact. This time delay 
exists because of alerting, because first there is a notification 
Тnotif, and only after that comes the reaction. In general, this 
time delay can be described by the following formula: 

 
∆𝑇 = 𝑇௡௢௧௜௙ − 𝑇௘௩௘௡௧ . (1) 

 
In a reactive monitoring system, the time difference 

between the occurrence of an event and the system's response 
to the event will always be a positive number. This is due to the 
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peculiarity of the system's operation, since it is triggered only 
when an event occurs, and does not anticipate it.  

In fact, the new component of the system highlighted in 
Fig. 2 allows us to overcome the time delay. This module 
analyzes the input data and tries to predict the change in the 
system's state right then and there. This component introduces 
a new prediction Tpred. The prediction occurs earlier, before the 
event itself Tevent. Thus, the reaction time to an event in a 
proactive system can be described by formula: 

 

∆𝑇 = 𝑇௣௥௘ௗ − 𝑇௘௩௘௡௧ . (2) 
 

In this formula, ∆T is the time that shows us the time delay 
from predicting an event to its occurrence. Since the predictive 
monitoring system works proactively, we have a situation 
where, in the case of a correct prediction, the time delay will be 
negative, which means gaining time to react to the event before 
it occurs. In fact, as for the event itself, the time of its 
occurrence is a value predicted with a certain accuracy that 
must be anticipated in order to avoid it, since the event may 
already be followed by a change in the state of the entire 
system. 

The "system state" refers to the set of current parameters 
and metrics that reflect the functional condition of a specific 
system at a given point in time. Such parameters may include 
network load, signal quality, data transmission speed, and other 
key indicators that directly impact the overall performance of 
the system. Assessing the system state not only enables analysis 
of its efficiency but also helps in detecting anomalies and 
predicting potential failures or malfunctions. Mathematically, 
the system state can be described as a set of parameter values 
and their corresponding coefficients, as shown in formula 3: 

 

𝑆௦௬௦௧௘௠ = 𝑘ଵ ∙ 𝑉ଵ + 𝑘ଶ ∙ 𝑉ଶ + ⋯ +  𝑘௡ ∙ 𝑉௡. (3) 
 

In formula 3, the symbol V is the percentage value of the 
utilization of one of the system components at a given time. In 
turn, the symbol k is the coefficient of such a system 
component, i.e. its importance relative to other components in 
determining the system state per unit of time. Individually, the 
sum of the coefficients k must always be equal to 1. As a result, 
the value of Ssystem ranges from 0 to 100. Thus, the sum of 
system resource utilization and their coefficients is an indicator 
of the system state. 

Taking into account Formula 3, only systemically important 
parameters can and should be selected from the list of system 
parameters available for tracking. In turn, parameters that have 
a low impact on the system state can be ignored to simplify 
calculations. 

The simplest example of system states, in the context of 
communication systems and networks, are: 

 normal state is a mode of operation in which the system 
is in its own or a certain normal (regular) mode and has 
no tendency to change it; 

 critical state is a mode of operation when the system 
experiences inefficiency, malfunction, and even 
complete failure. 

Usually, during the initial analysis of indicators, it is not 
possible to obtain all the indicators that can become indicators 
of the system's state, and often they are obtained already in the 
process of testing algorithms on the data obtained. 
Nevertheless, the analysis should take place in advance and the 
parameters should be at least partially determined. Observing 
the defined parameters allows us to understand the state of the 

system in this case.  
Summarizing the concept of state, it is understood that only 

systemically important parameters are considered to describe 
the state in telecommunication systems, the simplest example 
of which is CPU, RAM, network usage, ROM. Also, such 
concepts as “normal system state” or “critical system state” 
should be defined in advance, because for each individual 
system the concept of, for example, normal state may differ. 

IV.  IMBALANCE MITIGATION FOR PREDICTIVE 
MONITORING SYSTEM 
Therefore, we have described the concepts of system state, 
prediction, and the domain in which the study is conducted. 
Now, directly in the context of the article, the object of study is 
the prediction module, so the focus is on this part of the overall 
prediction system. The prediction module is a part of the 
monitoring system that receives data from the network flow, 
analyzes each record or action made in this flow, and predicts 
the further state of the system. In fact, the prediction module 
deals with classical classification tasks, but with the difference 
that it is primarily interested in identifying a specific class as 
accurately as possible. In the context of this article, a class is 
nothing more than the defined nature of a user request to the 
system under study. 

Based on the previously discussed points, the issue of class 
imbalance arises. Class imbalance is a situation in machine 
learning where the number of examples in one class 
significantly exceeds the number of examples in other classes 
within a dataset, which can lead to a decline in the model's 
classification performance. The situation is further complicated 
by the fact that, under normal operating conditions, the 
monitoring system predominantly processes normal user 
traffic, making class parity for model training almost 
impossible. Malicious traffic occurs much less frequently. 
Additionally, there is another class of traffic often referred to 
as outliers or undefined traffic. Although it may sound unusual, 
there is a significant amount of traffic that cannot be clearly 
labeled as either allowed or forbidden, and this type of traffic 
also needs to be addressed. 

Understanding the nature of the problem and why it arises, 
Fig. 3 illustrates the proposed changes to the data processing 
and model training workflow.  

 

 

Figure 3. Simplified view of the predictive module with 
proposed modifications. 
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The first proposal is to adjust the approach to data analysis 
and preparation. At this stage, it is crucial to assess the severity 
of the class imbalance and calculate the imbalance ratios to 
determine appropriate class weights. 

The second proposal is to train the model with the 
understanding that the dataset is imbalanced, meaning that the 
traditional accuracy metric is not suitable in this case. More 
appropriate metrics exist that do not ignore less frequent classes 
and focus on better identifying the desired class. 

To address the issue of traffic classification in 
communications systems, we employed an approach based on 
using high-quality data for model training. One of the datasets 
we used is the LUFlow Network Intrusion Detection Data Set 
[29]. This is a flowing dataset specifically collected and labeled 

for training models to detect network intrusions. The data was 
gathered using honeypots, which are systems designed to act as 
decoys for malicious traffic (Fig. 4). This allowed us to collect 
valuable information for further analysis and threat detection. 
Honeypots are essentially resources or devices used to attract 
malicious traffic [30]. The primary purpose of honeypots in the 
system is to intentionally expose the network to attacks or 
unauthorized probing, enabling the collection of information 
that can later be analyzed. To capture telemetry, the Cisco Joy 
tool was used within such a node of the communications 
system. Joy is a BSD-licensed software package based on 
libpcap for extracting data features from live network traffic or 
packet capture files (pcap). 

 

 

Figure 4. Simplified example of the honeypot algorithm. 

It is important to note that the dataset includes traffic flows 
that could not be classified as malicious but are also not part of 
the typical telemetry profile. These data points are labeled as 
outliers, included to encourage further analysis to uncover the 
true intent behind their actions. 

Given the system in which the research is being conducted, 
it is advisable to consider in detail the dataset itself that will be 
used (Table 1) and analyze examples of records that 
characterize the defined classes (Table 2). 

Referring to the specific examples shown in Table 1, we can 
immediately notice that the so-called malicious traffic 
example, which will further interest us in the study, has a sharp 
difference in the absence of source port and destination port 
(explanation of each parameter is described in the following 
paragraphs). 

 

Table 1. Dataset values 

Field name Definition 
src_ip anonymized source ip address 

src_port source port number 
dest_ip anonymized destination ip address 

dest_port destination port number 
protocol protocol number under which the flow works 
bytes_in number of bytes transmitted from the source 
bytes_out number of bytes transmitted from the 

destination 
num_pkts_in number of data packets from source to 

destination 
Entropy entropy in bits per byte of data fields in the 

flow 
total_entropy total entropy in bytes for all bytes in the data 

fields of the flow 
duration time of the flow duration to the nearest 

microsecond 
label definition of the flow. markup. 
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Table 2. Used traffic examples 

Field name / Labels benign malicious outlier 
src_ip 786 786 786 

src_port 68  47613 
dest_ip 786 786 786 

dest_port 67  31306 
protocol 17 1 6 
bytes_in 0 8 0 

bytes_out 600 8 0 
num_pkts_in 0 1 0 

entropy 2 1 1 
total_entropy 1.615865 2.75 0.0 

duration 969.5192 43.99 0.0 
label 7.17 8.4e-5 0.0 

 
However, this is just one example and it is not a general 

indicator. In any case, for a better understanding of the data set, 
it is worth referring to the pairwise correlation using the 
Pearson method and analyzing the dependence of the 
parameters (Fig. 5). 

 

 

Figure 5. Pairwise correlation by Pearson 

Based on the obtained pairwise correlation values, the label 
value is strongly correlated with such parameters as: bytes out, 
destination port, destination ip, source port, source IP, total 
entropy. However, other parameters should not be excluded 
from the analysis because they provide a combination that, in 
general, describes the state of the system at a particular time.  

Another important factor to be determined is the imbalance 
indicator, which was mentioned earlier. To do this, it is needed 
to determine the number of available records for each of the 
known classes. 

Table 3. Number of records for each class 

Class name Count Percent 
All 3826947 - 

Benign 2162576 56.51% 
Malicious 910391 23.78% 

Outlier 753980 19.71% 

 
If we look at Table 3, which counts the number of all classes 

and each class individually, we can see that the malicious class 
that will need to be identified is only about a quarter of the total 
dataset. According to the imbalance classification provided by 
Google in their training programs [31], the imbalance of the 
class is moderately light, as it is in the range of 20 to 40%. 
However, the gap of 20-40% is still quite large, and taking into 

account the number of records, we can say that the figure of 
23.78% for this class is an indicator of moderate imbalance. 

To ensure a representative and unbiased dataset for training 
and evaluation, the data were sampled from a large continuous 
data stream collected over several days. The selected subset 
covers typical operating conditions and includes both common 
and less frequent events, ensuring variability in the input 
features and stability of model training. 

After data cleaning and preprocessing, the dataset was 
divided into training and testing subsets using a standard 
randomized partitioning approach. Specifically, the 
train_test_split function from the scikit-learn library. This 
function randomly assigns 80% of the samples to the training 
set and 20% to the testing set, while fixing the random seed 
(random_state=30) to ensure reproducibility of the results. 

V.  RESULTS AND ANALYSIS 
According to Table 2, the label field is a text field and, 
accordingly, the name of each class is also written in text form. 
Such a format for presenting markups is not suitable for further 
research and should be converted to a numerical format. From 
this point on, a situation arises when the further execution of 
the task differs in approach due to the peculiarities of the task 
interpretation. In the case of the data set under study, there are 
clearly 3 classes, which is nothing more than a multi-class 
classification task.  

However, there is another approach when the goal is to 
identify malicious traffic and consider everything else as 
normal traffic. In this case, the type of problem changes from 
multi-class to binary. To better understand the problems of each 
of the tasks, we need to consider their final results. 

A. BINARY CLASSIFICATION IN UNBALANCED DATA 
SETS 
Binary classification is a type of machine learning problem 
where the model is trained to distinguish between two different 
classes, i.e., to determine which of the two possible options 
each input example belongs to. In the case of the dataset under 
study, if we follow the commonly used path and ignore the 
outlier class, as it represents outliers of unlabeled data, we will 
be left with only two classes that are subject to binary 
classification. 

Since there are fewer classes, the outlier data is ignored, and 
the imbalance of the classes has changed slightly. From 
Table 4, we can conclude that benign has increased its 
dominance, and malicious, in turn, has begun to occupy a third 
of the dataset. To fit the data for this case, it is possible to use 
the bincount function of the numpy library, as shown in the 
examples for classifying unbalanced classes from Keras [32]. 
The results of weight selection are shown in Table 5. 

Table 4. Number of records for each class 

Class name Count Percent 
All 3072967 - 

Benign 2162576 70.37% 
Malicious 910391 29.63% 

 

Table 5. Defined class weights 

Class name Weight 
Benign 2.3118e-06 

Malicious 5.6707e-06 
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Knowing the type of problem, features of the data set, and 
weighting factors, we can proceed to developing the model. 
Developing a model is an iterative process that requires 
constant experimentation and tuning. The layers of the model, 
the number of neurons, are usually selected in practice through 
trial and error, and are not determined on the first try. After a 
certain number of retraining sessions, the network structure 
looked like the one shown in Fig. 6. The Keras tool, in 
particular its Sequential class, is used to build the model. 
 

 

Figure 6. A neural network model for the binary classification 
task. 

In Fig. 7, we show the number of parameters for each layer 
and mention dropout layers. The dropout layer is a 
regularization technique in neural networks that randomly 
disables some neurons during training to prevent overfitting 
and improve the generalization ability of the model. 

 

 

Figure 7. Number of parameters in the layers of the neural 
network. 

For the loss function, binary_crossentropy is used, which is 
a classic approach in such tasks. As for the metrics, in the task 
of detecting malicious traffic in a telecommunications network, 
as a rule, more importance is given to the recall indicator. This 
is due to the fact that malicious traffic can cause significant 
damage to the network and its users, and therefore it is very 
important to detect as many malicious packets as possible. 
However, a high recall metric can lead to an increase in the 
number of false positives (i.e., the number of packets that are 
incorrectly classified as malicious). 

This can lead to unnecessary actions on the part of the 
security system, such as blocking legitimate users or slow 
connections. In turn, if we focus on the accuracy metric, we can 
find that high accuracy is achieved due to the imbalance of 
classes and the constant, correct prediction of non-malicious 
traffic that is not the ultimate goal. Based on the results 
presented in Table 6, the model performed almost perfectly 
during training. 

Table 6. Results of the last epoch of model training 

Class name Count 
False negative 430 
False positive 547 
True negative 1729478 
True positive 705109 

Precision 0.9992 
Recall 0.9994 

 
Based on this data alone, the model was wrong only 977 

times out of more than 2 million for the task at hand. On the 
test dataset, which contains 432547 records for Benign and 
176344 for Malicious, the results are expected to be perfect 
prediction of malicious and normal traffic (Fig. 8). 

 

 

Figure 8. Traffic forecasting. 

This could be the end of the experiment, but there is a 
problem that these are only the results for perfectly labeled 
data. In real systems, unfortunately, there is no such well-
labeled data and no perfect separation into two classes. 
Therefore, working with outliers is a necessity. 

B. MULTI-CLASS CLASSIFICATION IN IMBALANCED 
DATASETS 
Multi-class classification in machine learning is a type of task 
where a model is trained to distinguish between more than two 
classes by determining which of several possible options each 
input example belongs to [33-37]. In the case of the dataset 
under study, in the previous step, one of the classes was ignored 
and binary classification was performed, and in this step, the 
outlier class is also investigated. 

As with the binary classification, it is necessary to calculate 
the weights of the classes for further use in model training. In 
this case, we used a slightly different approach to calculating 
class weights and used the compute_class_weight function of 
the scikit-learn library. The results of calculating the weights 
are presented in Table 7. 

Table 7. Defined class weights 

Class name Weight 
Benign 0.5832 

Malicious 1.4298 
Outlier 1.7066 

 
Knowing the type of task, features of the dataset, and 

weighting factors, we can proceed to building the model. The 
model development did not lead to any major changes in the 
architecture. Only the output layer that requires multi-class 
classification has changed. 
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In this layer, as shown in Fig. 9, the output neuron is no 
longer sigmoid, but softmax. The sigmoid activation function 
is used for binary classification and returns a value between 0 
and 1, while the softmax activation function is used for 
multiclass classification and returns the probabilities for each 
class summed to 1. 

Since the overall architecture of the neural network remains 
unchanged, including the number of layers and the size of 
hidden units, the training time of the model also remains 
virtually unchanged. After all, the main modifications only 
concern the weighting of classes and the activation function in 
the output neuron. 

 

 
Figure 9. A neural network for the task of multi-class 

classification. 

Fig. 10 shows the number of parameters for each layer and 
the dropout layer. Compared to the parameters in Fig. 7, the 
changes are almost invisible. 

 

 

Figure 10. A neural network for the task of multi-class 
classification. 

Also, in this task, the loss function is changed from 
binary_crossentropy to categorical_crossentropy. For 
categorical_crossentropy, there is a certain peculiarity in its 
operation, namely that the function expects class labels to be 
passed in the one_hot format. The one_hot format is a way of 
representing class labels where each class is encoded by a 
vector that has a value of 1 at the position corresponding to that 
class and a value of 0 at all other positions. This allows the loss 
function to correctly calculate the difference between model 
predictions and true labels [32].  

To obtain this format, the to_categorical function, which is 
part of the Keras package, was used on a dataset that described 
the label for each record in the dataset. So, in the process of 
training the model, the last epoch of training showed the results 
presented in Table 8. 

 

Table 8. Results of the last epoch of model training 

Class name Count 
False negative 361755 
False positive 360617 
True negative 5692039 
True positive 2664573 

Precision 0.8808 
Recall 0.8805 

 
At first glance, the results for misclassification of positive 

and negative records are enormous compared to the results in 
Table 6. However, it is worth remembering that out-liers are 
also used here, which account for almost 20% of the entire 
dataset. Therefore, it is worth reviewing the results of the 
predict function for the test dataset. The test dataset has 756582 
records, which are described in detail in Table 9. 

Table 9. Defined class weights 

Class name Count 
Benign 432850 

Malicious 176371 
Outlier 147361 

 
Considering the prediction of benign traffic, Fig. 11 shows 

how the prediction fully understands what a normal data flow 
is and classifies it accordingly. In fact, the number of correctly 
classified benign traffic and its number in the dataset are the 
same. 

 

Figure 11. Benign flow prediction. 

With the outlier data flow, the situation is already radically 
different (Fig.12). The model missed a lot of traffic of this type 
and did not classify it as any kind of outlier. The most sensitive 
interval is 0.8-0.85. This is where most of the errors were made. 

 

 

Figure 12. Outlier flow prediction. 
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As for the malicious flow, the situation is very similar to 
Figure 11, but in this case, the model has made more malicious 
traffic labels in the same range of 0.8-0.85 than there actually 
is.  

In fact, if we compare Figures 11, 12, and 13, we wonder 
whether the outliers are the same overlap that the model shows 
for malicious traffic. To check this, we need to combine the 
graphs from Figures 12 and 13. 

 

 

Figure 13. Distribution of malicious label and prediction 
values. 

 

Figure 14. Distribution of label and prediction values. 

These indicators should be considered in absolute terms. To 
do this, we need to supplement Table 9 into Table 10. 

Table 10. Number of records for each class 

Class name Count Predict Difference 
Benign 432850 432803 - 0.01 % 

Malicious 176371 244790 38% 
Outlier 147361 78989 - 53.6% 

 
Based on the data in Table 10, the result of the model has 

several aspects. First of all, the QoS for a normal user should 
not suffer, since under normal operation and normal traffic, the 
misclassification of normal traffic is close to 0. As for 
emissions and malicious traffic, the situation is a bit more 
complicated. In fact, it has been possible to build a pessimistic 
system that can label most of the traffic that does not look like 
normal traffic as malicious. In general, this can be a problem in 
terms of using additional resources. On the other hand, the 
theoretical losses due to the passage of malicious traffic are not 
proportional and can cause much more damage. Comparison of 
existing labels and their coincidence with the prediction for the 
binary classification scenario is depicted in Fig. 15 and with the 

multi-class classification scenario in Fig. 16. 
The results of the experiment show that due to the 

heterogeneity of data in communication systems and the 
disproportionate sets of labeled data representing each of the 
studied classes, the behavior of the trained model may differ 
from its settings. In a task where it is necessary to identify 
malicious traffic, outlier or unlabeled traffic, which exists in 
abundance in real systems, will also be captured and labeled as 
malicious. 

 

 

Figure 15. Comparison of existing labels and their 
coincidence with the prediction for the binary classification 

scenario. 

 

Figure 16. Comparison of existing labels and their 
coincidence with the prediction for the multi-class 

classification scenario. 

Working with real data will always carry a certain 
percentage of errors. However, depending on the model 
settings and thresholds that will satisfy the conditions of the 
task, the percentage of false classifications will migrate from 
one class to another. Thus, the experiments once again 
confirmed the problem of unlabeled datasets. 

VI.  DISCUSSION 
Finally, addressing the implementation of neural networks, 
there are many controversial issues and challenges that both 
businesses and researchers are working on. As research has 
shown once again, the most effective way to train neural 
networks is still training based on well-labeled data. However, 
since real telecommunications systems generate petabytes of 
unlabeled or poorly labeled data, only a comprehensive 
approach can resolve this issue. 

Difficulties in using neural networks for structured data. 
Structured data refers to a standardized format that organizes 
data into tables with rows and columns, such as network traffic 
data. However, the earliest and most successful applications of 
machine learning report challenges with unstructured data, 
such as video, images, text, and audio. Some machine learning 
experts oppose the use of neural networks for structured data, 
as they believe that labeled structured datasets are not large 
enough to train machine learning algorithms. Furthermore, they 
argue that classical machine learning algorithms, such as KNN 
and SVM, are much simpler and more understandable, making 
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them the only suitable options for use. This issue requires 
deeper investigation, as there is substantial evidence to the 
contrary. 

Most machine learning algorithms are designed to be 
trained and utilized on devices with sufficient resources. 
Training neural networks with a large number of samples and 
parameters requires devices with substantial computational 
power, memory, and energy. This directly conflicts with the 
growing interest in deploying resource-constrained devices 
(e.g., IoT devices) equipped with AI technologies and AI-based 
applications. 

Unlike other ML applications, network technologies suffer 
from high dynamism, thus requiring model retraining to adapt 
to new network situations. 

Network heterogeneity issue stems from the fact that 
networks lack a unified theory that can be applied across all 
networks. This means that network behavior is heterogeneous, 
depending on factors such as different topologies, equipment, 
scale, and applications. This leads to an important point: 
machine learning models, for further use in prediction modules, 
must be trained for each network separately. This issue is also 
a crucial research direction, as the more flexible the system, the 
more potential telecommunications networks it can cover. 

Despite the promising results, the proposed approach has 
certain limitations in both time and accuracy. The training 
process of deep neural networks remains computationally 
expensive, especially when the model must be frequently 
retrained to adapt to dynamic network conditions. In addition, 
the overall accuracy strongly depends on the quality and 
balance of labeled data. Since the “malicious” class typically 
represents a small fraction of real traffic, the model may still 
struggle to maintain high detection accuracy for this class. 

Future research should focus on optimizing training time 
and improving detection accuracy for minority classes through 
advanced class-weighting, semi-supervised, or transfer 
learning techniques. 

VII.  CONCLUSION 
In this article, we developed a comprehensive approach to 
enhancing network monitoring systems through the integration 
of predictive techniques and machine learning models. The 
architecture of monitoring systems was thoroughly examined, 
emphasizing their modular design, which includes monitoring 
agents, central servers, and alert systems. We compared active 
and passive monitoring methods, highlighting their advantages 
and limitations. Additionally, we introduced a novel predictive 
monitoring framework that anticipates potential network issues 
before they occur, offering a proactive solution in contrast to 
traditional reactive methods. Furthermore, the study tackled the 
issue of data imbalance in machine learning models, which is a 
significant challenge in accurately detecting anomalies, 
particularly in underrepresented traffic classes such as 
malicious activities. To address this, we proposed dynamic 
class weighting to enhance the accuracy of anomaly detection. 
The paper also utilized the LUFlow dataset for model training, 
employing honeypots to gather valuable data for network 
intrusion detection and demonstrating the practical application 
of the proposed monitoring framework. The results 
demonstrate that the proposed transition from binary to 
multiclass classification provides a more accurate 
representation of real network traffic conditions. While the 
numerical metrics appear lower (Precision 0.88, Recall 0.88 
compared to 0.999 in binary form), this configuration 

significantly improves the model’s ability to identify the 
minority malicious class and to differentiate it from uncertain 
traffic. Thus, the approach enhances the interpretability and 
operational relevance of intrusion detection models for 
complex telecommunication environments. In the future, the 
proposed technique with dynamic adjustment of class weights 
may become an important step in improving communication 
network monitoring systems. This method allows for efficient 
adaptation of the model to new input data, reducing errors in 
anomaly recognition, which is especially important in complex 
and changing conditions of real networks. The simplicity of the 
linear model, which does not require a large number of layers, 
will not only speed up the process of retraining the system, but 
also ensure its stability in the event of new types of traffic or 
threats. This approach opens up prospects for more flexible and 
reliable predictive monitoring, allowing for increased 
efficiency and security of modern communications systems. 
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