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ABSTRACT Falls represent a critical challenge in healthcare, particularly for the elderly and those with
limited mobility. They can cause severe injuries or deaths if not detected and addressed. Existing fall-
detection systems often struggle with lacking large, diverse, and balanced datasets; this limitation hinders
the development of accurate and generalizable machine-learning (ML) solutions. This paper introduces
a complete big dataset designed explicitly for video- and sensor-based fall detection, featuring 8,953
recorded activities, including 2,791 falls and 6,162 activities of daily living (ADL), collected from 29
diverse subjects. The dataset encompasses various fall scenarios—left, right, front, back, and complex
cases such as attempting to sit on a chair or falling from elevated positions—along with ADL tasks
such as walking, running, standing up from the ground, and driving. Each activity is recorded for 8 s
at 100 Hz, yielding 800 data points per file. Including barometer-derived altitude-delta data significantly
improves the performance of transformer-based models, raising accuracy from 97–98 % to more than 99.5
%. All 3,000 fall recordings were individually processed and non-matching patterns removed to confirm
data quality, producing a clean and consistent corpus. Comparative experiments with existing datasets
demonstrate superior detection accuracy and reduced false-positive rates, underscoring the robustness and
reliability of our contribution. Overall, the proposed dataset provides the research community with a vital
resource for advancing fall-detection systems and promotes the development of robust, deployable ML
solutions for real-world healthcare applications.

KEYWORDS fall detection; big dataset; sensor-based fall detection; Activities of Daily Living; machine
learning; dataset balancing; healthcare; elderly care; multi-modal data

I. INTRODUCTION

FALL detection is a vital area of research in healthcare
due to the increasing incidence of falls, particularly

among the elderly population [1]. Falls are one of the
leading causes of fatal and non-fatal injuries, often leading
to serious health consequences such as fractures, head in-
juries, and long-term disabilities [2]. According to the World
Health Organization (WHO), around 684,000 individuals die
from falls annually, making it the second leading cause
of unintentional injury deaths worldwide [3]. The elderly
population is particularly vulnerable, with approximately
30% of people 65 years and older experiencing a fall each
year [4]. The aging population and the growing number
of people living alone have further amplified the need

for automated fall detection systems. These systems are
crucial to ensure timely medical intervention [5]. A delay
in identifying falls can lead to severe health complications,
such as dehydration, pressure ulcers, and even death, due to
the prolonged period spent on the ground without assistance
[6].

The increasing prevalence of chronic conditions such as
osteoporosis and diabetes also exacerbates the severity of
fall-related injuries [7] [8]. These conditions reduce bone
density, muscle strength, and balance, making individuals
more prone to falls and complicating recovery [9]. Tra-
ditional fall detection systems, such as wearable sensors
and alert buttons, rely on user or active monitoring, which
may not be feasible in all circumstances [10]. Therefore,
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advances in video and sensor-based fall detection systems
are important [5]. These systems can monitor individuals in
real time, allowing for continuous, unobtrusive tracking of
movements and immediate detection of falls [11]. Creating
and curating big datasets that combine video and sensor data
for fall detection is essential in this context. These datasets
provide a foundation for developing robust machine learning
models. They allow researchers to train, test, and refine their
algorithms to improve fall detection accuracy, reduce false
alarms, and contribute to life-saving interventions.

In tasks such as fall detection, the availability of large
and well-balanced datasets is crucial for developing accurate
and reliable ML. A large dataset confirms that the model
is exposed to different scenarios, covering various types
of falls, daily activities, and conditions. This is essential
because fall events are rare compared to normal activities,
making it challenging for models to differentiate between
falls and non-fall activities [12]. A well-collected large
dataset helps to improve the generalization capabilities of
ML, allowing them to identify fall events more accurately
in real-world settings [13]. In addition, datasets that include
video and sensor data offer a multi-modal approach to fall
detection, providing the model with richer information for
analysis. For example, while a sensor may detect rapid
movement, video data can provide visual context, helping
the model determine whether the movement is a fall or just
a regular activity [14].

However, the balance of the dataset is equally essential.
Unbalanced datasets, where fall events are significantly
lower than non-fall activities, can lead to biased models
[15]. In such cases, models tend to favor the majority
class (non-fall activities) and may not correctly identify
falls, increasing false negatives [16]. This is particularly
dangerous in detecting falls, as a missed fall could delay
medical intervention, exacerbate injuries, or even lead to
fatalities [17]. Moreover, unbalanced datasets can also result
in high false positive rates, where everyday activities are
misclassified as falls. This causes alarm fatigue for users and
reduces trust in the system’s reliability. Therefore, ensuring
that the datasets used for fall detection are both large
and balanced is vital to improving the performance and
robustness of ML. Techniques such as data augmentation,
resampling, or using cost-sensitive algorithms can address
the issue of unbalanced datasets, enhancing the model’s
ability to detect falls while minimizing false alarms [18].

Several publicly available solutions have been proposed
to address the issue of unbalanced datasets in falling de-
tection. Standard techniques include under-sampling, where
a portion of the majority class is removed to create a
balanced dataset, and over-sampling, where the minority
class (fall events) is duplicated or synthesized to match
the size of the majority class [19]. More advanced methods
involve using Generative Adversarial Networks (GANs) to
generate synthetic fall data, enriching the minority class
without duplicating existing samples [20]. Although these
techniques can help balance the dataset, they have significant

drawbacks. Undersampling can lead to the loss of valuable
information from the majority class, weakening the model’s
ability to recognize non-fall activities [21]. Oversampling,
mainly through duplication, can cause overfitting, where
the model performs well in the training data but does
not generalize to unseen data [22]. Synthetic GAN-based
data generation, while promising, can introduce unrealis-
tic or non-representative samples that may not accurately
reflect real-world fall events, further complicating model
performance [23]. These limitations highlight the need for
alternative solutions that do not compromise data quality or
model robustness.

Given the shortcomings of existing methods, there is a
pressing need for big, balanced datasets designed explicitly
for fall detection tasks. Such datasets must accurately repre-
sent the diversity of fall events and non-fall daily activities
to ensure that models can effectively differentiate between
them. A balanced dataset improves the model’s ability to
detect rare fall events and reduces the occurrence of false
positives, which can be a significant issue in real-world
applications. By providing a large volume of well-balanced
and high-quality data, researchers can develop models that
are more robust, reliable, and capable of generalizing to
different environments and populations. In addition, the
availability of a complete dataset with both video and sensor
data can significantly improve the accuracy of multi-modal
models, allowing them to make more informed decisions by
combining different information streams.

This research aims to create a large, balanced dataset for
sensor-based fall detection that can be used to train, test, and
validate ML. This dataset will address the current limitations
of unbalanced datasets and provide a solid foundation for
developing more accurate fall detection systems, ultimately
improving the safety and quality of life of vulnerable
populations. The research objectives are as follows:

• To curate and compile a complete fall and non-fall
activity dataset using video and sensor data.

• To ensure that the dataset is balanced, employ advanced
techniques that maintain the quality and diversity of the
data without introducing biases.

• To evaluate the performance of ML trained on the
balanced dataset and compare it with models trained
on traditional imbalanced datasets.

The proposed dataset consists of data from 29 subjects,
encompassing a diverse range of falls and ADL. Fall-
related activities include scenarios such as falling to the
left, right, front, or back, as well as sliding, stumbling, and
custom falls, where subjects decide independently how to
fall. Scenarios have also been carefully recorded, such as
falling while trying to sit in a chair or from a higher place.
ADL activities span walking, running, standing up from
the ground, and driving, along with specific actions such
as reaching, waving, climbing, and descending. Each file
contains 8 seconds of data recorded at a 100 Hz, resulting in
800 records per file. The structure of the dataset mirrors the
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real-world constraints of detecting falls directly on devices,
demonstrating consistency in the data representation.

This dataset incorporates barometer data (altitude delta),
significantly improving the accuracy of transformer-based
fall detection models (from 97-98% to over 99.5%). The
altitude delta is calculated by subtracting the initial altitude
from each subsequent record, enhancing the dataset’s ability
to provide actionable insights. Furthermore, every one of the
3,000 recorded falls was individually processed, with charts
drawn to identify and remove non-matching fall patterns,
demonstrating data consistency and reliability.

To validate the robustness of the dataset, its performance
was compared to baseline fall detection methods. The re-
sults show that including different fall and ADL scenarios
improves detection accuracy and confirms a better gener-
alization between varying environments and subject behav-
iors. This balanced and high-quality dataset is an essential
resource for advancing fall detection research, allowing the
development of ML that can reliably differentiate between
falls and routine daily activities.

A. RESEARCH CONTRIBUTIONS
• We collected a large and balanced dataset of 8,953

recorded activities, including 2,791 falls and 6,162
ADLs, showing diversity and real-world applicability.
Each file contains 8 seconds of data sampled at a 100Hz
frequency, producing 800 records per file.

• Processed all 3,000 fall recordings individually by
generating charts and removing non-matching patterns
to confirm the consistency and reliability of data for
training ML.

• The introduced barometer (altitude delta) data, calcu-
lated using the initial altitude, significantly increases
the accuracy of transformer models from 97-98% to
over 99.5%.

• Complex and realistic fall scenarios captured, including
falls while trying to sit on a chair or from elevated
positions, alongside various ADLs such as driving,
standing up from the ground, and climbing.

• Validated the dataset performance against baseline fall
detection methods, demonstrating improvements in ac-
curacy and generalizability across different environ-
mental and behavioral conditions.

• Combined sensor data and barometer readings to create
a dataset optimized for advanced machine learning
algorithms, enabling better differentiation between fall
events and everyday activities.

• Provided the research community with a valuable re-
source to advance fall detection systems, promoting
the development of robust and reliable models for
healthcare applications.

II. LITERATURE REVIEW
Fall detection is a vital area of research in healthcare,
especially for older people and people with mobility chal-
lenges, where timely detection of falls can significantly

reduce health risks. Advancements in technology, body-
worn sensors, and video-based fall detection systems have
contributed to developing different datasets to increase ma-
chine learning-based fall detection methods. This review
covers all the significant datasets, their contributions, and
the ML applied to fall detection tasks. In addition to sensor-
based datasets, video-based fall detection datasets illustrate
the broader scope of research in this domain.

A. EXISTING FALL DETECTION DATASETS
Publicly available datasets for fall detection vary according
to the types of sensors used, the number of subjects, and the
activities recorded. These datasets serve as vital resources
for developing and testing machine learning algorithms,
particularly to benchmark their performance in detecting
falls.

The MobiFall dataset [24] consists of data collected from
smartphone accelerometers and gyroscopes that are worn in
the pocket of the pants. The dataset includes 24 subjects
aged between 22 and 47 years who performed four types of
falls (fall forward, backward, sideways, and impact on the
knees) and 10 ADL, such as walking, running, and sitting.
Studies using the MobiFall dataset have applied threshold-
based models and SVMs, achieving a high accuracy of
99.12% in fall detection. However, the placement of the
sensor in the trouser pocket limits its generalization to other
sensor placements.

The SisFall dataset [25] is one of the most complete
datasets, containing 4505 activities (2701 ADLs and 1804
falls) of 38 subjects. It uses two accelerometers and a
waist gyroscope to record different types of falls, including
forward, backward, lateral, and seated falls. ML such as
Random Forest (RF) and Convolutional Neural Networks
(CNN) have been used on this dataset, achieving up to 95.
4% fall detection precision in young adults and 88.1% in
elderly subjects. The SisFall dataset highlights the potential
for significant model improvements when addressing the
discrepancy in performance between age groups.

The FARSEEING dataset [26] offers a unique perspective
by capturing real-world fall events with body-worn inertial
sensors. This dataset includes more than 300 real-world
falls recorded between 2012 and 2015, with more than 208
verified falls available for analysis. Real-world fall data offer
insight into how falls occur in uncontrolled environments,
and models trained on this dataset have achieved promis-
ing results. For example, a ConvLSTM model achieved a
sensitivity of 93. 33% and a specificity of 73. 33%, show-
casing real-world data’s potential to increase fall detection
accuracy. However, the small number of falls in this dataset
remains a limitation.

The UP-Fall dataset [27] includes data collected from 17
young participants using a combination of sensors (IMU,
EEG) and vision-based devices (cameras, infrared). The
dataset covers 11 activities and fall types, collected from
more than 850 GB of motion data. ML such as RFs and
Support Vector Machines (SVMs) have been evaluated on
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this dataset, with results reaching 95. 58% accuracy and 99.
Specificity 5% for different sensor modalities. The use of
multi-modal data makes this dataset particularly valuable for
researchers interested in exploring the integration of sensor
and video data for fall detection.

The KFall dataset [28] was developed to address the
need for pre-impact fall detection using body-worn iner-
tial sensors. It includes 21 types of ADL and 15 types
of falls collected from 32 Korean participants. One key
feature of this dataset is the inclusion of temporal labels for
fall events, allowing researchers to focus on detecting fall
before impact. When benchmarked with SVMs, threshold-
based models, and Deep Learning (DL) models, the dataset
achieved excellent performance, with SVMs reaching a
sensitivity of 99. 77% and a specificity of 94. 87%. This
dataset is essential for exploring proactive fall detection and
prevention.

The NTU-RGB+D dataset [29] consists of 276 fall sam-
ples and 55,724 ADL samples from 40 subjects performing
60 activities. The TST Fall Detection dataset [30] con-
tains 132 fall samples from 11 subjects. These datasets
primarily use RGB-D cameras for fall detection and rely
on skeleton joints and accelerometer data to detect falls.
Spatial-temporal graph convolutional networks (ST-GCN)
applied to these datasets achieved remarkable precision
100% in detecting falls. Although effective, these datasets
are primarily vision-based and may not generalize well to
scenarios without video surveillance.

The UMAFall dataset [31] provides a complete set of
movement traces using wearable sensors at five different lo-
cations in the body: ankle, wrist, waist, chest, and thigh. The
dataset includes 17 subjects who performed a combination
of ADLs and falls. The focus on sensor placement is vital
in this dataset, as it allows researchers to study the effect of
sensor positioning on fall detection accuracy. Experiments
using this dataset have demonstrated the importance of op-
timal sensor placement, with models achieving a sensitivity
of 95% and a specificity of 97%.

The Charfi dataset [32] includes falls recorded using one
Kinect camera. The dataset contains data for falls in differ-
ent directions, along with different ADLs such as walking,
sitting, and house cleaning. The fall detection performance
of this dataset using 3D-based SVM models achieved an
accuracy of 99.6%, making it a valuable resource for vision-
based fall detection research.

The EDF dataset [33] contains falls and ADLs recorded
using two Kinect cameras from 10 subjects performing 8
types of falls in different directions. Similarly, the OCCU
dataset records falls and ADLs using two Kinect cameras,
including occluded falls. These datasets have been used to
test CNN and SVM models, achieving accuracies between
81% and 94%. However, their reliance on visual data
may limit their generalizability to non-visual fall detection
scenarios.

Auvinet et al. [34] includes fall recordings captured
by eight cameras placed in different positions around the

subject. The dataset focuses on recording both forward and
backward falls and ADLs such as sitting and standing. Using
multiple camera viewpoints allows for robust detection of
fall events in different directions, with models achieving an
accuracy of 95.7%. However, the complexity of the setup
may limit its real-world applicability.

The Dovgan dataset [35] uses six infrared cameras and
wearable sensors to record different types of falls and ADLs.
Integrating multi-modal data enables the development of
more accurate fall detection systems. A combination of
SVM and C4.5 algorithms applied to this dataset achieved a
fall detection accuracy of 95 7%, making it one of the most
effective datasets for multimodal fall detection research.

B. MODEL PERFORMANCE ON FALL DETECTION
DATASETS
Different ML models have been applied to these datasets,
producing a wide range of results. Below is a summary
of some key algorithms and their performance in different
datasets:

1) Threshold-Based Models
Threshold-based models are simple and easy to implement,
but often have low specificity. For example, on the KFall
dataset, threshold-based models achieved a sensitivity of
95.50% but a low specificity of 83.43%, resulting in a high
number of false positives.

2) Support Vector Machines
SVM models have shown strong performance in fall detec-
tion. For example, on the MobiFall dataset, SVM achieved
an accuracy of 99.12%, while on the KFall dataset it
achieved a sensitivity of 99. 77% and a specificity of 94.
87%. SVMs require careful tuning and may not always
generalize well across all datasets.

3) Convolutional Neural Networks
CNNs have been widely used in vision-based datasets such
as Charfi et al. and NTU RGB+D, where they achieved
accuracies above 95%. CNNs are particularly effective in
capturing complex visual patterns associated with falls, but
require large datasets and computational power.

4) Convolutional LSTM (ConvLSTM)
ConvLSTM models have been successfully applied to mul-
timodal datasets such as FARSEEING and UP-Fall. In the
FARSEEING dataset, ConvLSTM achieved a sensitivity of
93. 33% and a specificity of 73. 33%. These models are
beneficial for handling temporal data and can be applied in
real-time fall detection scenarios.

C. RESEARCH GAP
Although fall detection systems have advanced significantly,
several challenges remain. First, many datasets remain un-
balanced, with far more ADL samples than fall samples,
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Table 1. Summary of Sensor-Based Fall Detection datasets

dataset Year Subjects ADLs Fall Sensor Type Accuracy (%) Model Used
MobiFall 2014 24 10 4 Accelerometer, Gyroscope 99.12% SVM
SisFall 2015 38 19 15 Accelerometer, Gyroscope 95.4% RF, CNN
FARSEEING 2015 different - - Inertial Sensors 93.33% ConvLSTM
UP-Fall 2018 17 11 11 IMU, EEG, Infrared 95.58% RF, SVM
KFall 2019 32 21 15 Inertial Sensors 99.32% SVM, DL
NTU-RGB+D 2016 40 60 276 RGB-D Cameras 100% ST-GCN
TST Fall 2015 11 5 132 Accelerometer 97.33% CNN, SVM
UMAFall 2016 17 8 9 Wearable Sensors 95.4% RF

which can bias ML. Techniques like data augmentation
and GAN-based synthetic data generation are promising
but have limitations, including overfitting and generating
non-representative data. Second, video-based datasets offer
high accuracy but are only practical in some environments,
especially when continuous monitoring is impossible.

In addition, the placement of the sensor plays a vital
role in the accuracy of fall detection. As seen in datasets
such as UMAFall and SisFall, the position of sensors on the
body can lead to vastly different results. Finally, despite the
success of models such as SVM, CNN, and ConvLSTM,
there is still room for improvement in real-time perfor-
mance, energy efficiency, and robustness in uncontrolled
environments.

Given the limitations of existing datasets, a large, bal-
anced dataset is needed that incorporates sensor and video
data across diverse fall types and ADLs. Such a dataset
would enable the development of more robust, general-
izable models for real-world fall detection. Furthermore,
combining multi-modal data from wearable sensors, RGB
cameras, and depth cameras would allow researchers to
build more accurate, reliable, and applicable models in
different environments.

III. DATA ACQUISITION
The dataset for fall detection was collected using a com-
bination of sensors and cameras to confirm the complete
capture of motion and visual information. The primary
sensor used is the custom SoC, a versatile inertial measure-
ment unit (IMU) capable of capturing acceleration, angular
velocity, and orientation. Additionally, a Samsung Galaxy
A33 5G smartphone camera was used to record videos of
falls and ADL in different environments. The total size
of the dataset is approximately 20 GB. Data acquisition
occurred over 4 months, starting on June 3rd, 2024. Due
to the nature of the environment and equipment, the data
frequently captured noise, which required multiple reshoots
of several actions to confirm high-quality recordings. The
dual-modality approach, which uses sensor-based and video-
based data, provides rich multimodal data to increase the
robustness and accuracy of fall detection algorithms. Figure
1 provides the sensor interface.

A. PARTICIPANTS
The dataset comprises 29 subjects, including male and
female participants between 19 and 42 years of age. The

Figure 1. The Interface of Senor on the connected Mobile
device

table below outlines vital participant details, such as subject
code, weight, height, age, consent, and number of falls and
ADL performed. All subjects consented to participate in the
study, and their falls and ADLs were carefully recorded.

B. ACTIVITIES
The dataset recorded a total of 8,953 activities, including
2,791 falls and 6,162 ADLs. Fall-related activities include
common scenarios such as falling to the left, right, front, or
back, as well as scenarios such as sliding, stumbling, and
falling from a higher place. ADLs include walking, running,
standing up from the ground, driving, and other routine
activities. Each file contains 8 seconds of data sampled at a
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Table 2. Overview of Participant Characteristics: Includes
subject code, weight, height, age, and the number of falls
and ADLs recorded per participant.

Code Weight
(kg)

Height
(cm)

Age Total
Falls

Total
ADLs

SBJ01 96 178 32 43 0
SBJ02 90 175 30 37 0
SBJ03 83 180 32 32 41
SBJ04 85 176 19 43 60
SBJ05 73 176 19 50 15
SBJ06 90 173 22 50 65
SBJ07 70 178 27 51 52
SBJ08 68 174 24 50 52
SBJ09 65 N/A N/A 52 52
SBJ10 67 183 30 49 53
SBJ11 78 180 30 52 0
SBJ12 95 176 22 49 0
SBJ13 60 172 20 52 28
SBJ14 60 180 20 50 48
SBJ15 71 178 32 50 0
SBJ16 87 176 29 49 0
SBJ17 100 179 29 52 0
SBJ18 91 183 29 52 0
SBJ19 66 176 34 0 53
SBJ20 63 173 32 49 43
SBJ21 88 180 30 52 0
SBJ22 57 160 31 52 0
SBJ23 72 182 31 0 49
SBJ24 63 173 31 0 52
SBJ25 80 184 32 0 52
SBJ26 50.5 162 25 0 47
SBJ27 100 180 42 0 44
SBJ28 85 179 31 0 52
SBJ29 70 177 26 0 52

100Hz frequency, resulting in 800 records per file.

Table 3. Summary of Recorded Activities: Includes the
total number of falls and ADLs performed, categorized by
activity type and code.

Activity Type Code Type Total
Fall on the left ACT1 Fall 290
Fall on the right ACT2 Fall 300
Fall on the front ACT3 Fall 310
Fall on the back ACT4 Fall 320
Slide ACT5 Fall 250
Fall on knees ACT6 Fall 300
Stumble upon ACT7 Fall 250
Try to sit on a chair and fall ACT8 Fall 143
Walking ACT9 ADL 2,839
Running ACT10 ADL 1,141
Stand up from ground ACT11 ADL 2,009
Driving (car/bus) ACT12 ADL 174

C. LOCATIONS
Data collection was carried out in five different environ-
ments to capture diverse scenarios and test the system’s ro-
bustness under different conditions. The locations included:

• Basement (LOC1)
• Acrobatic Gym (LOC2)
• White Room (LOC3)
• Backyard (LOC4)
• Office (LOC5)

D. DATA QUALITY

Each video recording contains details about the subject,
the action, the position (left, right, front, back), and the
location of the activity. Although most recordings are of
high quality, some sensor data exhibited noise or unexpected
spikes due to environmental factors or sensor malfunctions.
These imperfections in the data are noted and should be
considered during pre-processing and model training.

The dataset offers a complete overview of different types
of falls and ADL in multiple environments, providing a rich
data source to test machine learning-based fall detection
systems. The sensor and video data combination offers
multi-modal insights, contributing to more accurate and
reliable fall detection models.

IV. DATA CLEANING AND PREPROCESSING

The raw dataset, collected using the custom Soc sensor,
contained significant noise due to different environmental
factors, motion artifacts, and sensor limitations. Complete
data cleaning and pre-processing steps were applied to
confirm the fall detection system’s accuracy. A Butterworth
low-pass filter was employed to eliminate high-frequency
noise and improve signal quality.

The noisy accelerometer data from the sensor’s X, Y, and
Z axes were smoothed using a fifth-order Butterworth low-
pass filter. This filter was applied to each axis individually,
showing that motion signals were retained while noise
was significantly reduced. The result was a cleaner, more
accurate dataset, essential for training reliable ML for fall
detection. These figures demonstrate the effectiveness of the
filtering process. Noise reduction was crucial in eliminating
motion artifacts and smoothing out irregularities, enhancing
the dataset’s quality.

However, due to the noise levels in some sessions,
reshoots were often required, which extended the data ac-
quisition period to four months, starting from June 3, 2024.
Despite these challenges, the cleaned data provide a robust
foundation for further analysis and model development. The
following algorithm outlines the process for cleaning and
filtering noisy accelerometer data.
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Figure 2. Comparison of noisy vs. filtered accelerometer
data for an Activity of ADL.

Algorithm 1 Data Cleaning and Filtering Algorithm

1: Input: Raw accelerometer data (AccX , AccY , AccZ)
2: Output: Filtered accelerometer data (AccX_filtered,

AccY _filtered, AccZ_filtered)
3: Step 1: Load data
4: Load the raw accelerometer data from TSV files for

each subject and activity.
5: Step 2: Define Butterworth low-pass filter
6: Define a 5th-order Butterworth filter with a cutoff

frequency of 1 Hz and a sample rate of 15 Hz.
7: Step 3: Apply filter
8: Apply the low-pass filter to the accelerometer data on

each axis (AccX , AccY , AccZ).
9: Step 4: Visual comparison

10: Generate graphs to compare each axis’s noisy vs. fil-
tered data.

11: Step 5: Save filtered data
12: Save the filtered accelerometer data for further analysis

and model training.

The above algorithm was applied consistently across all
subjects and activities, showing a uniformly cleaned and
processed dataset. This step was essential for the accurate
detection of falls and the classification of Activities of Daily
Living. Figures were generated to compare the original
noisy accelerometer data with the filtered data:

V. EXPLORATORY DATA ANALYSIS
Exploratory Data Analysis (EDA) was performed to uncover
the rich and diverse characteristics of the dataset. Using in-
sightful figs, we demonstrate this dataset’s unique strengths
and potential for activity recognition and fall detection
tasks. Each figure highlights vital aspects that highlight the
versatility and usability of the data.

Figure 3. Comparison of noisy vs. filtered accelerometer
data for a fall activity.

Figure 4. Activity Distribution Bar Chart

Figure 4 illustrates the distribution of activities within
the dataset. This chart highlights the dataset’s complete
nature, covering a wide variety of activities such as Walking,
Running, Standing Up, Driving, and Falls. This diversity
confirms that the dataset can support multiple research
applications, ranging from general activity recognition to
specific fall detection tasks. The well-documented class
definitions further increase its usability for different machine
learning tasks.

The density plot of Acceleration in the x-direction (AccX),
shown in Figure 5, captures the distinctive movement pat-
terns associated with each activity. The dataset’s detailed
recording of sensor data allows for observations, making
it particularly suitable for applications requiring precision
and robustness, such as fall detection and health monitoring
systems.

Figure 6 further demonstrates the ability of the dataset
to differentiate between activities based on the y-direction
acceleration (AccY). These plots emphasize the dataset’s
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Figure 5. Density Plot of AccX by Activity

Figure 6. Density Plot of AccY by Activity

capability to identify patterns that can be used in multi-class
classification problems.

Figure 7. Boxplot of Magnitude by Activity

The box plot of the magnitude of the movement (Figure 7)
provides information on the activity intensities. The dataset
includes precise magnitude calculations derived from ac-
celerometer readings, which are essential to detect abrupt
changes in movement, such as those that occur during

falls. This feature confirms its suitability for real-world
applications such as elderly monitoring and fitness tracking.

Figure 8. Correlation Heatmap of Features

The correlation heat map in Figure 8 demonstrates the
interrelationships among features. This figure shows the
completeness of the dataset, capturing both independent
and correlated sensor measurements. This richness supports
advanced feature engineering techniques, improving the
adaptability of the dataset for different machine learning
algorithms.

Figure 9. Binary Activity Distribution: Fall vs Non-Fall

For binary classification tasks (fall vs. nonfall), the
dataset’s structure remains robust and detailed, as shown
in Figure 9. By aggregating non-fall activities into a single
category, this distribution demonstrates the dataset’s flex-
ibility for use in targeted applications like fall detection
systems. Inclusion of realistic fall scenarios provides a
valuable resource for developing and testing safety-critical
systems.

The density plot for AccX in binary classification tasks
(Figure 10) highlights the ability of the dataset to distinguish
falls based on sensor readings. The clear differences in
the distributions between falls and non-falls underscore the
potential of the dataset to improve fall detection algorithms.
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Figure 10. Density Plot of AccX for Fall vs Non-Fall

Figure 11. Boxplot of Magnitude for Fall vs Non-Fall

Figure 11 illustrates the box plot of the magnitude of
the movement for fall and non-fall activities. The higher
magnitude values associated with falls reflect the ability
of the dataset to capture abrupt impacts accurately. This
makes the dataset a valuable tool for designing reliable fall
detection systems.

Figure 12. Correlation Heatmap for Binary Classification
(Fall vs Non-Fall)

Finally, the correlation heatmap for binary classification
(Figure 12) demonstrates the relationships between features,
specifically in fall and non-fall scenarios. The dataset cap-
tures vital patterns that can be used to develop high accuracy
and reliability models to distinguish falls.

These analyses highlight the versatility, detail, and po-
tential of the dataset for diverse applications, from activity
recognition to safety-vital systems, such as fall detection.
The careful design and rich feature set make this dataset
valuable for advancing research and development in wear-
able sensor-based activity monitoring.

VI. SIGNAL QUALITY AND STATISTICAL ANALYSIS
The statistical and spectral properties of the dataset were
analyzed to assess its quality, reliability, and representative-
ness. Summary statistics, variability measures, and spectral
characteristics of key sensor channels, such as acceleration,
gyroscope, altitude, and magnitude, are presented. Addition-
ally, correlation matrices were computed to evaluate inter-
channel relationships.

The statistical distribution of the dataset provides insight
into its signal quality. For example, each channel’s mean,
median, standard deviation, skewness, and kurtosis were
computed. Acceleration on the x-axis (AccX) exhibited
a mean of 0.0479, a median of -0.0187, and a standard
deviation of 0.5133. The skewness and kurtosis values of
1.0304 and 17.0458, respectively, suggest a significant right
skew and the presence of outliers.

Figure 13. Power Spectral Density of AccX. The plot
highlights dominant low-frequency components, reflecting
gradual and steady movements.

Similarly, AccY had a mean of 0.0193, a median of
0.0108, and a standard deviation of 0.2595, with a skewness
of 1.0368 and kurtosis of 49.5291, indicating pronounced
deviations from normality.

AccZ displayed a mean of 0.7271, a median of 0.9041,
and a standard deviation of 0.6309, with a slightly negative
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Figure 14. Power Spectral Density of AccY. The distri-
bution confirms similar trends to AccX, emphasizing low-
frequency dominance.

skewness of -0.6464 and a kurtosis of 4.8846, highlighting
more symmetric but peaked data.

Figure 15. Power Spectral Density of AccZ. The plot
reflects a relatively consistent frequency pattern, aligning
with steady motion changes.

The signal-to-noise ratio (SNR) estimates reveal the clar-
ity of the sensor signals. AccX had an SNR of 0.0377
dB, indicating some noise presence, while AccZ achieved a
higher SNR of 3.6700 dB, suggesting better signal quality.
Altitude signals demonstrated the highest clarity with an
SNR of 9.9573 dB, affirming its reliability for activity
detection tasks. Magnitude, a composite measure, exhibited
an SNR of 9.1001 dB, reflecting its consistency in aggre-
gating multi-dimensional data. Spectral characteristics were
analyzed using power spectral density (PSD) plots, high-

lighting frequency domain properties. The PSD of AccX
revealed dominant low-frequency components, reflecting
gradual changes in motion. Similar trends were observed
for AccY and AccZ.

Figure 16. Power Spectral Density of GyroX. The broader
frequency range indicates rapid rotational movements typi-
cal of dynamic activities.

Gyroscopic signals exhibited broader frequency distri-
butions due to faster rotational movements. The altitude
channel’s PSD showed a steep decline, reflecting its stable
and consistent signal nature, which is particularly important
for distinguishing between activities involving significant
elevation changes.

Figure 17. Power Spectral Density of Altitude. The steep
decline highlights its stable signal characteristics, which are
essential for identifying elevation-related activities.

Correlation analysis further evaluated inter-channel rela-
tionships. Pearson and Spearman correlation matrices re-
vealed notable relationships between certain channels. AccX
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and AccZ showed moderate positive correlations (0.22), in-
dicating linked movements along these axes. The magnitude
channel was strongly correlated with AccZ (0.39), which
confirms its composite nature as an aggregate of acceler-
ation components. The altitude correlations were minimal,
reflecting its distinct signal characteristics and independence
from other channels.

Figure 18. Pearson Correlation Matrix of Sensor Channels.
The matrix highlights the relationships between different
channels, showing stronger correlations among acceleration
components.

Figure 19. Spearman Correlation Matrix of Sensor Chan-
nels. The non-parametric correlation emphasizes similar
trends as Pearson, with slight variations in strength.

VII. EXPERIMENTS AND RESULTS
The experiments conducted on this dataset aimed to evaluate
its suitability for both multiclass and binary activity classi-
fication tasks using standard ML. The results demonstrate
the dataset’s exceptional quality and utility, as evidenced by
the high classification performance across multiple models.

For multi-class classification, models including XGBoost,
RF, Decision Tree (DT), and Logistic Regression were
evaluated. Table 4 summarizes the performance metrics for
each model. XGBoost achieved an overall accuracy of 99%,
with a macroaverage precision, recall, and F1 score of 99%.
RF performed exceptionally well, achieving near-perfect
metrics across all classes, reflecting its robustness and ability
to handle the dataset’s complexity. DT also performed well
with 99% accuracy, but slightly lower precision and recall
for minority classes. Logistic regression, however, struggled
with multiclass classification, particularly for less frequent
activities, yielding an overall accuracy of 60%.

Table 4. Multi-Class Classification Results

Model Precision Recall F1-Score Accuracy
XGBoost 0.99 0.99 0.99 99%
RF 99.53 99.51 99.56 100%
DT 0.99 0.99 0.99 99%
Logistic Regression 0.58 0.60 0.58 60%

Figure 20. Comparison of Model Performance for Multi-
Class Classification

In binary classification, the dataset was analyzed for its
ability to differentiate between fall and non-fall activities.
RF and DT both achieved perfect accuracy, precision, recall,
and F1-scores, showcasing the dataset’s ability to provide
clear distinctions between these two categories. Logistic
Regression, while slightly less effective, still achieved an
accuracy of 79%, with notable disparities in recall for the
fall class.

These results highlight the strengths of the dataset, includ-
ing its low noise levels, diverse activity coverage, and well-
defined patterns between classes. Compared to other datasets
in the literature, this dataset offers unparalleled performance
in fall detection and activity recognition tasks. For example,
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Table 5. Binary Classification Results

Model Precision Recall F1-Score Accuracy
RF 99.52 99.52 99.52 100%
DT 99.57 99.56 99.54 100%
Logistic Regression 0.77 0.71 0.73 79%

Figure 21. Comparison of Model Performance for Binary
Classification

Table 6 compares the dataset with existing benchmarks such
as MobiFall, SisFall, and UMAFall. The proposed dataset
consistently outperforms the others in terms of precision and
reliability.

Table 6. Comparison with public fall-detection corpora.

Dataset Yr Subj ADL Fall Acc. % Model Limitation
MobiFall 14 24 10 4 99.1 SVM Pocket-

only
sensor,
young
cohort

SisFall 15 38 19 15 95.4 RF,CNN Age-
gap
perfor-
mance
deficit

FARSEEING 15 45† – real 93.3 C-LSTM Few
falls;
uncon-
trolled
noise

UP-Fall 18 17 11 11 95.6 RF,SVM Vision
gear
needed;
small
cohort

KFall 19 32 21 15 99.3 SVM,DL Belt
IMU
only;
no
video

UMAFall 16 17 8 9 95.4 RF Five
fixed
sensor
spots

Ours 25 29 25 9 99.5–100 RF,XGB,DT Balanced;
alti-
tude; 5
venues

†Count taken from FARSEEING metadata.

The proposed dataset stands out for its complete coverage
of activities, large subject pool, and high reliability. Unlike
many existing datasets, it addresses limitations such as
limited activity diversity and small subject pools. With more
than 3,000 fall events and more than 25 ADLs, it provides a
rich dataset to train robust models. Including altimeter data
adds a unique dimension, improving classification accuracy
and reliability. The results achieved, as shown in Tables
4 and 5, further validate their quality and utility for fall
detection and activity recognition tasks.

VIII. CONCLUSION
This paper presents a novel contribution to the field of
fall detection and human activity analysis by introducing
a complete, big dataset. By capturing 8,953 activities, in-
cluding 2,791 falls and 6,162 ADL activities, the dataset
addresses the vital need for diverse, high-quality data in
developing accurate and generalizable ML. The inclusion
of barometer-derived altitude delta data, recorded at 100Hz,
demonstrates a substantial improvement in the performance
of the transformer-based model, increasing the accuracy
from 97 to 98% to over 99. 5%. The detailed pre-processing
of 3,000 fall recordings to remove inconsistencies further
confirms the reliability and robustness of the dataset.

The innovations introduced in this work are comple-
mented by the challenges encountered during the data
collection process. The self-built device, designed for scala-
bility, showcases its potential to revolutionize fall detection
research globally. However, practical challenges, such as
sweating-induced malfunctions, SD card oxidation, and wire
detachments during intense activities, highlighted areas for
improvement. These challenges have driven the development
of a PCB design that increases device stability and ensures
consistent data collection. Ethical considerations were rig-
orously upheld throughout the study. Participants provided
their informed consent and no personal data were recorded,
demonstrating privacy and compliance with ethical research
standards. This ethical approach supports the integrity of the
dataset and its utility for the broader research community.

In the future, the scope of the dataset will expand with
the integration of EKG sensor data in future iterations.
This increase in the applicability of the dataset will further
enrich the applicability, opening doors for new research
opportunities, and solidifying its value as a benchmark for
fall detection and human activity analysis. This work not
only provides a robust resource for advancing fall detection
systems but also addresses vital gaps in existing datasets,
setting a new standard for quality and scalability in human
activity recognition research. By overcoming challenges and
paving the way for future increasements, this dataset has
the potential to drive significant advancements in healthcare
technologies and beyond.
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