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 ABSTRACT The article examines methodologies for evaluating the quality of clustering algorithms used to 
identify patterns within codebases in the context of a decision support system (DSS) module for software quality 
verification in information and communication systems. A novel feature dictionary is introduced, wherein 
evaluation metrics represent a software class as an implementation vector. These metrics are preselected based on 
the most salient characteristics of programming code. The five widely recognized clustering algorithms - namely, 
K-Means, DBSCAN, OPTICS, Affinity Propagation, and Gaussian Mixture Models are evaluated in this study. 
The proposed methodology is applied to five Java application projects that implement diverse architectural 
solutions and software patterns. These applications are distributed under an open license and are readily accessible 
for research purposes. The source code of the selected software is transformed into vectors by extracting relevant 
code characteristics, thereby facilitating subsequent training. The results obtained confirmed the suitability of the 
proposed feature vector, and the optimal clustering model was subsequently selected for integration into the 
decision-making system module for quality assessment in information and communication systems. 
 

 KEYWORDS software quality; software metrics; clustering; K-Means; DBSCAN; OPTICS; Affinity 
Propagation; Gaussian Mixture; DSS. 
 

I. INTRODUCTION 
owadays, there are billions of software systems. Ensuring 
their correct functionality necessitates continuous 

updates, maintenance, and enhancements. Furthermore, the 
integration of a developer into an existing project presents 
significant challenges, as it requires not only the 
implementation of functional components but also adherence 
to the stylistic and structural conventions of the existing 
codebase. To address this issue, the implementation of a 
decision support system capable of analyzing code and 
assessing the compatibility of new functionalities with the 
established framework would be highly advantageous. Such a 
system would substantially expedite both development and 
verification processes by enabling experts to concentrate on 
substantive modifications to the software system, rather than 
dedicating time to rectifying stylistic discrepancies and 
preserving the overall architectural integrity of the system. 

A variety of static analysis tools exist to address these 
issues, enabling the identification of vulnerabilities, 
rectification of errors, and monitoring of predefined metrics. 
The premise that program code represents the sole definitive 
source of knowledge is sound, as alternative representations - 

such as diagrams or specifications - only partially capture the 
correctness of new functionality. In addition to conventional 
static analysis methods, it is advisable to incorporate data 
mining techniques to extract supplementary factors and discern 
architectural patterns within the system under development. 
These techniques facilitate the derivation of rules that can be 
applied to refine coding styles during the development process. 
Given the frequent turnover within development teams [1] and 
the inherent challenges associated with knowledge transfer [2], 
there arises a critical need to convert internal empirical rules 
into verifiable standards. According to the Broken Windows 
Theory [3], even minor deviations from established norms may 
ultimately precipitate systemic disorder; applied to software 
development, this suggests that the accumulation of low-
quality code exacerbates maintenance complexity. 

Consequently, the primary objective is to investigate 
methodologies for verifying the quality of software within 
information and communication systems, with the aim of 
formalizing these rules. This approach would ensure greater 
consistency, maintainability, and scalability of software 
systems in the face of evolving team dynamics and project 
requirements. 

N
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II. MATERIALS AND METHODS 
Clustering represents one of the most widely utilized methods 
in the field of data mining [4]. To identify patterns within data, 
it is essential to represent the data in a format that is 
computationally interpretable and to select an appropriate 
algorithm. Clustering falls under the category of unsupervised 
machine learning tasks, making it particularly well-suited for 
the analysis of program code. This is due to the fact that it does 
not require pre-processing of a labeled training dataset, and the 
patterns identified are derived directly from the existing 
codebase. The outcomes of clustering enable the identification 
of similar objects within the codebase, facilitate their grouping 
into coherent categories, and support the maintenance of a 
consistent stylistic approach across the implementation of 
diverse functionalities. This method thus serves as a valuable 
tool for enhancing code uniformity and reducing variability in 
software development practices. 

As the subject of investigation, codebases utilizing the 
object-oriented programming language Java are selected. 
Given that the atomic unit of code in Java is the class, the study 
focuses on exploring the potential for identifying patterns 
among distinct classes through the application of clustering 
techniques. This approach allows for the systematic analysis of 
structural and functional similarities within the codebase, 
leveraging the inherent organization of Java's class-based 
architecture. 

As part of this research, five widely recognized algorithms 
frequently employed in clustering tasks are selected for 
evaluation: 

 K-Means Algorithm [5, 6]. This is one of the most 
prominent methods in clustering, where the assignment of data 
points to clusters is determined by minimizing the root-mean-
square distance to the centroid of each cluster. A significant 
limitation of this approach is the necessity to predefine the 
number of clusters. Additionally, its computational complexity 
of O(n2) [7] makes it less efficient for large datasets. 

 DBSCAN Algorithm [8]. This algorithm partitions data 
based on density, requiring two parameters for optimization: 
the minimum distance between points within a cluster and the 
minimum number of elements required to form a cluster. 
Unlike K-Means, DBSCAN autonomously determines the 
number of clusters, making it advantageous when the expected 
number of clusters is unknown. Furthermore, enhancements to 
the DBSCAN algorithm were proposed to reduce 
computational time for high-dimensional datasets [9]. 

 OPTICS Algorithm [10, 11]. Similar to DBSCAN, 
OPTICS operates on the principle of density but is optimized 
to automatically identify the minimum distance between 
points. While this optimization simplifies practical application, 
it increases the computational complexity of the algorithm. 

 Gaussian Mixture Algorithm [12, 13]. Unlike K-Means, 
this algorithm is capable of identifying clusters in more 
complex data structures. It achieves this through an iterative 
process that estimates the parameters of a normal distribution 
for each cluster, allowing for greater flexibility in modeling 
data. 

 Affinity Propagation Algorithm [14]. This is one of the 
most advanced clustering techniques, relying on the exchange 
of "messages" between data points to determine cluster 
assignments. A key advantage of this method is that it does not 
require the number of clusters to be specified in advance; 

instead, it identifies the optimal number of clusters during the 
iterative process. 

These algorithms were chosen for their diverse approaches 
to clustering, each offering unique strengths and limitations, 
which were evaluated in the context of software code analysis. 

Since the clustering task is a supervised learning task, the 
quality of clustering can only be checked using metrics that 
evaluate the separation result. The most well-known metric for 
evaluating the quality of clustering is silhouette [15], which 
estimates that the elements of one cluster are more similar than 
the elements of two different clusters. The metric score ranges 
from -1 to 1 depending on the quality of cluster separation. 
Metric (3) is calculated as the ratio of the average distance (ai) 
between points within the same cluster (1) to the ratio of the 
average distance between points in different clusters bi (2). 
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As an alternative to the silhouette metric, there is the 

Davies–Bouldin score (5) [16], which evaluates the ratio of the 
variance of points in one cluster to the ratio of the variance in 
different clusters (4). 

 

𝑅௜௝ =  
𝑆௜ + 𝑆௝

𝑑௜௝

 ,(4) 

 
where Si – average distance between points and center 
of cluster i; Sj – average distance between points and 
center of cluster j. 
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where k – count of clusters; Ri – separation level in cluster i. 

The third approach to evaluating clustering results is the 
Calinski-Harabasz index (8). This metric is computed using the 
formulas presented in equations (6-7). A low index value 
indicates that the clusters are widely dispersed, whereas a well-
separated clustering structure should yield a high index value. 
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where ni – number of points in cluster; ci – center of 
cluster i; c – general center of data cluster. 
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where k – count of clusters; x – point in cluster;  

ci – center of cluster i. 
 

 

𝐶𝐻 =  
𝐵𝐶𝑆𝑆

WCSS 
 ,(8) 

  
where BCSS – weighted sum of squared Euclidean distance 
between center and general center of data cluster; WCSS – 
squared Euclidean distance between point and their cluster 
centers. 

Most clustering methodologies necessitate the specification 
of the number of expected clusters to evaluate their 
performance. However, there is no universally accepted 
approach to addressing this challenge. In study [18], the authors 
evaluated the quality of the resulting partitions through cross-
validation, employing various models in conjunction with 
cluster assessment metrics. Meanwhile, other researchers 
proposed modified algorithms that incorporate optimization 
steps directly within the clustering process [19, 20]. These 
approaches aim to enhance the accuracy and efficiency of 
clustering by integrating iterative refinement mechanisms into 
the algorithmic framework. 

An alternative to predefining the number of clusters is to 
adopt an empirical approach. With comprehensive knowledge 
of the underlying data structure, one can infer the expected 
number of clusters, subsequently optimizing the results based 
on these estimates. For instance, employing the pure 
architecture approach proposed by R. Martin [21] suggests that 
the anticipated number of clusters should approximate the 
number of application layers. 

In a typical Java web application, one would expect to find 
a controller class characterized by low cyclomatic complexity 
that serves as the entry point for processing HTTP requests. 
However, controller classes often exhibit low cohesion, as they 
typically delegate control to other classes. In contrast, entity 
classes - which represent domain objects and correspond to 
relational database tables - usually contain numerous 
properties, a limited number of methods with low cyclomatic 
complexity, and similarly display low cohesion. Repository 
classes, which abstract access to the data store, tend to have 
higher cyclomatic complexity, increased cohesion, and fewer 
properties. Service classes, responsible for implementing 
business logic, generally exhibit high cyclomatic complexity 
and, provided that developers adhere to the principle of single 
responsibility, high cohesion. 

A similar architectural paradigm is observed in mobile 
applications, where models are responsible for data 
management. Given that SQLite is the predominant relational 
database solution in mobile environments, the repository and 

entity pattern remains equally pertinent. Moreover, the 
construction of user interfaces relies on specialized view 
classes, which are characterized by both high cyclomatic 
complexity and high cohesion. Considering the above analysis, 
the following metrics are chosen to construct the representation 
vectors that should characterize the classes: 

Table 1. Evaluated class metrics 

Metrics Description 

Cyclomatic 
complexity 

metric of cyclomatic complexity of a class; 

NPath complexity another metric of cyclomatic complexity 

Cognitive 
complexity 

metric of cognitive complexity of code 

Boolean 
expression 
complexity 

a metric of the complexity of Boolean expressions 

Class length 
class size metric, equal to the number of significant 
strings in the class 

File length class size metric, total file size 

Average method 
length 

class size metric, total file size 

Average line 
length 

string length metric, which is equal to the average 
string length 

Class FanOut 
complexity 

metric of the number of classes used in this class 

Average  If depth metric for nesting conditional statements; 

Average  For 
depth 

nesting metric for loop statements 

Average  Try 
depth 

nesting metric for try...catch blocks 

Law of Demeter 
metric of violation of Demeter's law, the number of 

violations in a separate class 

LCOM1[22] lack of class cohesion metric(LCOM1) 

LCOM2[22] lack of class cohesion metric(LCOM2) 

LCOM3[22] lack of class cohesion metric(LCOM3) 

LCOM4[22] lack of class cohesion metric(LCOM4) 

LCOM5[22] lack of class cohesion metric(LCOM5) 

The article proposes an investigation into the efficacy of a 
generated representative feature vector for partitioning a 
codebase into clusters, followed by an evaluation of the results 
using predefined quality metrics. This approach aims to assess 
the suitability of the feature vector in facilitating meaningful 
and accurate clustering within the context of software code 
analysis. 

III. RELATED WORKS 
Among the existing body of research on this topic, it is 
noteworthy to highlight study [23], in which the authors 
employed clustering techniques to identify similar code 
fragments. The primary objective of this work is to develop a 
tool for detecting plagiarism; however, the methodology 
proposed can be extended to other related tasks. A similar 
approach was adopted in research [24], where hierarchical 
clustering was utilized to detect analogous code segments. The 
authors evaluated their results using precision, recall, and F-
measure metrics to validate the effectiveness of their approach. 

In another study [25], the authors explored the relationships 
between software metrics by applying the K-Means clustering 
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technique. Research [26] further advanced this methodology by 
enhancing the performance of the K-Means algorithm. 
Specifically, the authors implemented a parallelized version of 
K-Means and introduced additional data transformations to 
reduce the dimensionality of input vectors, thereby improving 
computational efficiency. 

Research [27] also contributed to this domain by 
investigating various methods of code representation. The 
authors constructed models that leverage abstract syntax trees, 
control flow graphs, and bytecode as sources of knowledge for 
deep learning models. Their findings demonstrate that models 
incorporating multiple code representations excel in tasks such 
as classification and code clone detection. Similarly, the 
authors of [28] proposed a novel model for generating 
embeddings based on the BERT architecture. Their approach 
demonstrated strong performance in code clustering and 
labeling tasks, further underscoring the potential of advanced 
representation techniques in software analysis. 

Collectively, these studies highlight the diverse 
applications of clustering and representation methods in 
software engineering, offering valuable insights into their 
effectiveness for tasks ranging from plagiarism detection to 
code analysis and classification. 

IV.  RESULTS 
To assess the effectiveness of the proposed methodology for 
identifying similar elements within a codebase using selected 
feature vectors, a sample of five representative application 
projects was selected. Given the widespread use of the Java 
programming language in both server-side and mobile 
application development, the chosen projects encompass 
systems that employ diverse architectural paradigms. These 
include: 

 Spring REST [29]. This project serves as an example of a 
standard application that provides a RESTful API for various 
purposes, adhering to conventional Java API development 
practices. 

 Spring GraphQL [30]. This API is developed using 
GraphQL technology as an alternative to REST, offering a 
server equipped with the necessary set of mutations and queries 
for data manipulation. 

 Java EE Application [31]. This application is constructed 
using technologies provided by the Java EE platform, 
representing a traditional enterprise-level architecture. 

 Android MVVM (Model-View-ViewModel) [32]. This 
architecture exemplifies a common pattern for Android 
application development, emphasizing the separation of view 
and model components to improve testability and 
maintainability. 

 Android MVP (Model-View-Presenter) [33]. Similar to 
MVVM, this architecture is widely used in Android 
development, further promoting separation of concerns and 
modular design. 

A more detailed overview of the selected projects, 
including their specific characteristics and metrics, is provided 
in Table 2. This selection ensures a comprehensive evaluation 
of the proposed methodology across a range of architectural 
styles and application domains. 

 

Table 2. Software selected for analysis 

Project 
Spring 

GraphQL 
Spring 
REST 

JiavaEE 
Android 
MVVM 

Android 
MVP 

Number of 
classes 

93 50 122 60 116 

Number of 
rows 

3800 2500 6200 7000 8254 

 
These projects were analyzed and divided into sets of 

possible components presented in Table 3. 
 

Table 3. Components descriptions 

Project 
Name of 

Component 
Description 

Count of 
components 

Spring 
Graph 

QL 

Resolver 
 

Entry point for query or 
mutation 

8 

Repository 
 

Abstraction over 
database to data access 

Entity 
 

Mapping between 
database object and 
business logic object 

Configurations 
 

Framework setup 
classes 

Exceptions 
 

Objects to represent 
program errors 

Interfaces 
 

Public contact for 
classes 

Utils 
 

Collection of static 
methods that perform 
common tasks. 

DTO Plain java objects to 
exchange data between 
different systems 

Spring 
REST 

Controller 
 

Entry point for http 
request 

9 

Services Business logic 
component 

Repository 
 

Abstraction over 
database to data access 

Entity 
 

Mapping between 
database object and 
business logic object 

Configurations 
 

Framework setup 
classes 

Exceptions 
 

Objects to represent 
program errors 

Interfaces 
 

Public contact for 
classes 

Utils 
 

Classes that perform 
common tasks. 

DTO Plain java objects to 
exchange data between 
different systems 

Java EE 

Resources Entry point for request 

9 

Service Business logic 
component 

Repository Abstraction over 
database to data access 

Entity Mapping between 
database object and 
business logic object 

Configurations 
 

Framework setup 
classes 

Exceptions Objects to represent 
program errors 

Interfaces Public contact for 
classes 

Utils Classes that perform 
common tasks. 

DTO Plain java objects to 
exchange data between 
different systems 
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Android 
MVVM 

View Activity that represents 
logic to display data for 
users 

10 

Model Business logic 
components that 
encapsulate data store  

ViewModel Components that 
contain logic to handle 
events from view and 
changes from data store 

Controller Logic to manage 
several view models 

Repository Abstraction over 
database to data access 

Entity Mapping between 
database object and 
business logic object 

Configurations Framework setup 
classes 

Interfaces Public contact for 
classes 

Utils Classes that perform 
common tasks. 

Broadcast 
receivers 

Components to listen 
events from operation 
system and other apps 

Android 
MVP 

View Usually, activity that 
represents logic to 
display data for users 

9 

Model Business logic 
components that 
encapsulate data store  

Presenter Class that represents 
data for view 

Repository Abstraction over 
database to data access 

Entity Mapping between 
database object and 
business logic object 

Configurations 
 

Framework setup 
classes 

Interfaces Public contact for 
classes 

Utils Classes that perform 
common tasks. 

Broadcast 
receivers 

Components to listen 
events from operation 
system and other apps 

 
The source code of each project was subjected to analysis, 

during which metrics for the classes enumerated in Table 1 
were computed. This process resulted in the generation of input 
vectors, the quantity of which corresponds to the number of 
classes within each project. Subsequently, the clustering 
procedure was executed utilizing the selected algorithms, and 
the corresponding quality metrics were calculated. The 
outcomes of this analysis are presented in Table 4. 

The initial dataset cannot be effectively visualized in a two-
dimensional space; therefore, the Principal Component 
Analysis (PCA) technique [34] was employed to illustrate the 
clustering results. In PCA, the axes are referred to as principal 
components (PC1, PC2, etc.), with each component 
representing a direction in the data space that captures the 
maximum variance within the dataset. Figure 1 depicts the 
clustering outcomes for a web application developed using the 
Spring framework and GraphQL technology. As evident from 
the graphical representation, the K-Means model yielded the 
most favorable results, while the Affinity Propagation and 
Gaussian models also exhibited high cluster resolution. In 
contrast, the DBSCAN model failed to achieve a clear 
separation of clusters within the given dataset, resulting in 

overlapping clusters, as illustrated in Figure 1. This observation 
is corroborated by the silhouette metric for the DBSCAN 
model, which returned a negative value, indicating suboptimal 
clustering performance. 

 
Table 4. Software selected for analysis 

 

 
Project 

Spring 
GraphQL 

Spring 
REST 

Java 
EE 

Android 
MVVM 

Android 
MVP 

K
M

ea
ns

 

Silhouette 
metric 

0.56 0.46 0.59 0.64 0.58 

Davis-Baldwin 
metric 

0.49 0.63 0.63 0.47 0.57 

Kalinski-
Harabash metric 

311 73 200 1114 329 

Number of 
classes 

6 7 9 9 9 

D
B

SC
A

N
 

Silhouette 
metric 

-0.22 0.4 0.57 0.46 -0.01 

Davis-Baldwin 
metric 

1.25 0.93 1.41 1.52 1.54 

Kalinski-
Harabash metric 

3.04 8.09 29 16.1 5.3 

Number of 
classes 

4 2 3 3 5 

O
P

T
IC

S 

Silhouette 

metric 
0.39 0.12 0.11 -0.14 0.02 

Davis-Baldwin 

metric 
1.21 1.41 1.15 1.5 1.28 

Kalinski-

Harabash metric 
22 20 13 1.84 15 

Number of 

classes 
4 6 9 6 13 

A
ff

in
it

y 

P
ro

pa
ga

ti
on

 

Silhouette 

metric 
0.1 0.44 0.41 0.36 0.4 

Davis-Baldwin 

metric 
1.34 0.53 0.60 0.51 0.4 

Kalinski-

Harabash metric 
1014 74 284 1951 324 

Number of 

classes 
9 9 7 12 13 

G
au

ss
ia

n 

M
ix

tu
re

 

Silhouette 

metric 
0.33 0.36 0.49 0.5 0.49 

Davis-Baldwin 

metric 
0.87 0.65 0.63 0.52 0.46 

Kalinski-

Harabash metric 
298 73 264 1341 255 

Number of 

classes 
6 8 9 8 7 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 1. Visualization for the code base of the GraphQL 
application based on the Spring framework 

a) K-Means model, b) DBSCAN model, c) OPTICS model, 
d) Affinity propagation model, e) Gaussian Mixture model 

Figure 2 presents the results of clustering applied to a web 
application built on the Spring framework, which implements 
a REST API. As illustrated in the graphs, the DBSCAN and 
OPTICS models demonstrated relatively poor clustering 
performance, despite achieving higher metric scores compared 
to the previous application. Notably, the silhouette metric score 
for the DBSCAN model exceeded that of the Gaussian Mixture 
model, although it underperformed in other metrics. This 
discrepancy can be attributed to the elongated and irregular 
shapes of the clusters, which deviate from the rounded forms 
typically associated with more effective clustering outcomes. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Figure 2. Visualization for the REST API code base of the 
application using the Spring framework a) KMeans model, b) 
DBSCAN model, c) OPTICS model, d) Affinity propagation 

model, e) Gaussian Mixture model 

According to Figure 3, the DBSCAN and OPTICS models 
once again demonstrated suboptimal performance when 
applied to the web application project based on JavaEE 
technology. While the silhouette metric for these models 
appears relatively high, the Davis-Bouldin and Calinski-
Harabasz metrics reveal the inadequacy of such clustering 
outcomes. Specifically, the ratio of the Calinski-Harabasz 
index for the DBSCAN model to that of the Affinity 
Propagation model is 9.79, further underscoring the inferiority 
of the DBSCAN model's clustering performance in this 
context. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 3. Visualization for the code base of the application 
built on JavaEE technology 

a) KMeans model, b) DBSCAN model, c) OPTICS model, d) 
Affinity propagation model, e) Gaussian Mixture model 

Figure 4 illustrates the visual representation of clustering 
results for a mobile application utilizing the MVVM 
architecture. As observed in Figures 4.a and 4.d, the models 
have achieved a relatively effective separation of clusters, 
supported by high metric scores. Notably, the Calinski-
Harabasz score for the Affinity Propagation model exceeds that 
of the K-Means model, despite underperforming in the other 
two metrics. Conversely, the silhouette score for the OPTICS 
model falls below zero, a result visually corroborated in Figure 
4.c, where a single large cluster dominates, encompassing the 
majority of data points. This poor separation is further validated 
by the other quality metrics, which collectively indicate the 
inadequacy of the OPTICS model in this context. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4. Visualization for the code base of a mobile 
application using MVVM architecture a) KMeans model, b) 
DBSCAN model, c) OPTICS model, d) Affinity propagation 

model, e) Gaussian Mixture model 

Figure 5 presents the clustering outcomes for a mobile 
application employing the MVP architecture. For the 
DBSCAN model, the silhouette score is negative, the Calinski-
Harabasz metric yields a low value, and the Davies-Bouldin 
metric, in contrast, is significantly high. The ratio of the 
Davies-Bouldin metric results between the K-Means and 
DBSCAN models is approximately 3, favoring the K-Means 
model. Conversely, the ratio of the scores between the K-
Means and Affinity Propagation models is nearly 0, indicating 
that the clustering quality of these two models is comparable. 
This suggests that while DBSCAN underperforms, K-Means 
and Affinity Propagation demonstrate similar effectiveness in 
this context. 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Figure 5. Visualization for the code base of a mobile 
application with MVP architecture 

a) KMeans model, b) DBSCAN model, c) OPTICS model, 
d) Affinity propagation model, e) Gaussian Mixture model 

Table 3 presents the clustering results along with the 
corresponding values of the metrics used to evaluate clustering 
quality. Based on the findings, the K-Means model achieved 
high-quality cluster separation, as evidenced by its consistently 
high scores across all metrics. This performance was further 
corroborated by additional visualizations of the clustering 
outcomes. The number of clusters obtained through metric-
based optimization closely aligns with the empirically expected 
number of clusters, reinforcing the model's effectiveness. 

In contrast, the DBSCAN model exhibited poor 
performance in the majority of experiments. Although it 
achieved a favorable silhouette metric score for the JavaEE 
web application, the Calinski-Harabasz and Davies-Bouldin 
metrics indicate suboptimal separation quality. Additionally, 
the number of clusters generated by DBSCAN was 

significantly lower than the expected number. Similarly, the 
OPTICS model underperformed in most experiments, with its 
most inaccurate results observed for a mobile application based 
on the MVVM architecture. 

The Affinity Propagation model, however, demonstrated 
high-quality results across all cases examined. The average 
differences between its metrics and those of the K-Means 
model were -0.224 for the silhouette metric, 0.118 for the 
Davies-Bouldin metric, and 324 for the Calinski-Harabasz 
metric, indicating that its performance is comparable to that of 
K-Means. A notable advantage of the Affinity Propagation 
model is its ease of use, as it does not require prior analytical 
determination of the number of clusters, eliminating the need 
for extensive pre-analysis of input data. In most instances, the 
number of clusters produced by this model exceeded 
expectations, suggesting a tendency to identify outliers. This 
characteristic could prove beneficial for detecting anomalous 
software classes. 

The Gaussian Mixture model also yielded positive results, 
with average differences of -0.132, 0.068, and 40.8 compared 
to K-Means for the silhouette, Davies-Bouldin, and Calinski-
Harabasz metrics, respectively. Visualization further 
confirmed the high quality of cluster separation achieved by 
this model. Overall, these findings highlight the strengths and 
limitations of each clustering approach in the context of 
software class analysis. 

V.  CONCLUSIONS 
The demonstrated results confirm the feasibility of employing 
clustering techniques to identify patterns in the structure and 
construction of software code. Among the models evaluated, 
the K-Means, Affinity Propagation, and Gaussian Mixture 
models emerged as the most suitable, exhibiting strong 
performance in both visual representation and established 
clustering metrics. Notably, the Affinity Propagation model 
stands out as the most appropriate choice due to its ease of use 
and high-quality clustering outcomes for codebases. 

The scientific contribution of this study lies in the 
development of a novel methodology for assessing codebase 
clustering and its application to verify the quality of software 
in information and communication systems. Central to this 
methodology is the use of a specialized feature vector, uniquely 
designed to represent each class, which captures the functional 
purpose and characteristics of software classes. 

From a practical perspective, this research introduces a new 
approach for evaluating the effectiveness of codebase 
clustering and identifying patterns in software construction. 
This approach is highly versatile, as it leverages existing static 
analysis tools to derive the necessary metrics. Furthermore, the 
proposed methodology for processing and visualizing 
clustering results is applicable to any object-oriented 
programming language. This framework is intended to serve as 
the foundation for a quality control module within a Decision 
Support System (DSS) for verifying software in information 
and communication systems. 

Future research will focus on refining the feature vector 
used to characterize software classes for clustering purposes. 
Additionally, the demonstrated technology will be instrumental 
in developing decision rules for the DSS, enhancing its 
capability to ensure software quality and maintainability. 
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