

VOLUME 24(2), 2025 397

Date of publication JUN-30, 2025, date of current version MAR-16, 2025.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.24.2.4024

Methodology for Determining the Optimal
Clustering Algorithm for Software Quality

Verification
VLADYSLAV PARASHCHENKO, OLEH BEREST

Computer Sciences Department, Sumy State University, Sumy, Ukraine

Corresponding author: Vladyslav Parashchenko (e-mail: vladyslav.parashchenko@student.sumdu.edu.ua)

 ABSTRACT The article examines methodologies for evaluating the quality of clustering algorithms used to
identify patterns within codebases in the context of a decision support system (DSS) module for software quality
verification in information and communication systems. A novel feature dictionary is introduced, wherein
evaluation metrics represent a software class as an implementation vector. These metrics are preselected based on
the most salient characteristics of programming code. The five widely recognized clustering algorithms - namely,
K-Means, DBSCAN, OPTICS, Affinity Propagation, and Gaussian Mixture Models are evaluated in this study.
The proposed methodology is applied to five Java application projects that implement diverse architectural
solutions and software patterns. These applications are distributed under an open license and are readily accessible
for research purposes. The source code of the selected software is transformed into vectors by extracting relevant
code characteristics, thereby facilitating subsequent training. The results obtained confirmed the suitability of the
proposed feature vector, and the optimal clustering model was subsequently selected for integration into the
decision-making system module for quality assessment in information and communication systems.

 KEYWORDS software quality; software metrics; clustering; K-Means; DBSCAN; OPTICS; Affinity
Propagation; Gaussian Mixture; DSS.

I. INTRODUCTION
owadays, there are billions of software systems. Ensuring
their correct functionality necessitates continuous

updates, maintenance, and enhancements. Furthermore, the
integration of a developer into an existing project presents
significant challenges, as it requires not only the
implementation of functional components but also adherence
to the stylistic and structural conventions of the existing
codebase. To address this issue, the implementation of a
decision support system capable of analyzing code and
assessing the compatibility of new functionalities with the
established framework would be highly advantageous. Such a
system would substantially expedite both development and
verification processes by enabling experts to concentrate on
substantive modifications to the software system, rather than
dedicating time to rectifying stylistic discrepancies and
preserving the overall architectural integrity of the system.

A variety of static analysis tools exist to address these
issues, enabling the identification of vulnerabilities,
rectification of errors, and monitoring of predefined metrics.
The premise that program code represents the sole definitive
source of knowledge is sound, as alternative representations -

such as diagrams or specifications - only partially capture the
correctness of new functionality. In addition to conventional
static analysis methods, it is advisable to incorporate data
mining techniques to extract supplementary factors and discern
architectural patterns within the system under development.
These techniques facilitate the derivation of rules that can be
applied to refine coding styles during the development process.
Given the frequent turnover within development teams [1] and
the inherent challenges associated with knowledge transfer [2],
there arises a critical need to convert internal empirical rules
into verifiable standards. According to the Broken Windows
Theory [3], even minor deviations from established norms may
ultimately precipitate systemic disorder; applied to software
development, this suggests that the accumulation of low-
quality code exacerbates maintenance complexity.

Consequently, the primary objective is to investigate
methodologies for verifying the quality of software within
information and communication systems, with the aim of
formalizing these rules. This approach would ensure greater
consistency, maintainability, and scalability of software
systems in the face of evolving team dynamics and project
requirements.

N

 Vladyslav Parashchenko et al. / International Journal of Computing, 24(2) 2025, 397-406

398 VOLUME 24(2), 2025

II. MATERIALS AND METHODS
Clustering represents one of the most widely utilized methods
in the field of data mining [4]. To identify patterns within data,
it is essential to represent the data in a format that is
computationally interpretable and to select an appropriate
algorithm. Clustering falls under the category of unsupervised
machine learning tasks, making it particularly well-suited for
the analysis of program code. This is due to the fact that it does
not require pre-processing of a labeled training dataset, and the
patterns identified are derived directly from the existing
codebase. The outcomes of clustering enable the identification
of similar objects within the codebase, facilitate their grouping
into coherent categories, and support the maintenance of a
consistent stylistic approach across the implementation of
diverse functionalities. This method thus serves as a valuable
tool for enhancing code uniformity and reducing variability in
software development practices.

As the subject of investigation, codebases utilizing the
object-oriented programming language Java are selected.
Given that the atomic unit of code in Java is the class, the study
focuses on exploring the potential for identifying patterns
among distinct classes through the application of clustering
techniques. This approach allows for the systematic analysis of
structural and functional similarities within the codebase,
leveraging the inherent organization of Java's class-based
architecture.

As part of this research, five widely recognized algorithms
frequently employed in clustering tasks are selected for
evaluation:

 K-Means Algorithm [5, 6]. This is one of the most
prominent methods in clustering, where the assignment of data
points to clusters is determined by minimizing the root-mean-
square distance to the centroid of each cluster. A significant
limitation of this approach is the necessity to predefine the
number of clusters. Additionally, its computational complexity
of O(n2) [7] makes it less efficient for large datasets.

 DBSCAN Algorithm [8]. This algorithm partitions data
based on density, requiring two parameters for optimization:
the minimum distance between points within a cluster and the
minimum number of elements required to form a cluster.
Unlike K-Means, DBSCAN autonomously determines the
number of clusters, making it advantageous when the expected
number of clusters is unknown. Furthermore, enhancements to
the DBSCAN algorithm were proposed to reduce
computational time for high-dimensional datasets [9].

 OPTICS Algorithm [10, 11]. Similar to DBSCAN,
OPTICS operates on the principle of density but is optimized
to automatically identify the minimum distance between
points. While this optimization simplifies practical application,
it increases the computational complexity of the algorithm.

 Gaussian Mixture Algorithm [12, 13]. Unlike K-Means,
this algorithm is capable of identifying clusters in more
complex data structures. It achieves this through an iterative
process that estimates the parameters of a normal distribution
for each cluster, allowing for greater flexibility in modeling
data.

 Affinity Propagation Algorithm [14]. This is one of the
most advanced clustering techniques, relying on the exchange
of "messages" between data points to determine cluster
assignments. A key advantage of this method is that it does not
require the number of clusters to be specified in advance;

instead, it identifies the optimal number of clusters during the
iterative process.

These algorithms were chosen for their diverse approaches
to clustering, each offering unique strengths and limitations,
which were evaluated in the context of software code analysis.

Since the clustering task is a supervised learning task, the
quality of clustering can only be checked using metrics that
evaluate the separation result. The most well-known metric for
evaluating the quality of clustering is silhouette [15], which
estimates that the elements of one cluster are more similar than
the elements of two different clusters. The metric score ranges
from -1 to 1 depending on the quality of cluster separation.
Metric (3) is calculated as the ratio of the average distance (ai)
between points within the same cluster (1) to the ratio of the
average distance between points in different clusters bi (2).

𝑎௜ =
1

|𝐶௜| − 1
෍ 𝑑௜௝

௝ ∈ ஼೔,, ௜ ஷ௝

, (1)

where Ci - count of points in cluster; dij -
distance between points.

𝑏௜ =
𝑚𝑖𝑛

𝑗 ≠ 𝑖

1

ห𝐶௝ห
෍ 𝑑௜௝

௝ ∈ ஼ೕ,, ௜ ஷ௝

,

where Cj – count of points in other cluster; dij

- distance between points.

(2)

𝑠 =

⎩
⎪
⎨

⎪
⎧ 1 −

𝑎௜

𝑏௜

, 𝑖𝑓 𝑎௜ < 𝑏௜

0, 𝑖𝑓 𝑎௜ = 𝑏௜
𝑎௜

𝑏௜

− 1, 𝑖𝑓 𝑎௜ > 𝑏௜

. (3)

As an alternative to the silhouette metric, there is the

Davies–Bouldin score (5) [16], which evaluates the ratio of the
variance of points in one cluster to the ratio of the variance in
different clusters (4).

𝑅௜௝ =
𝑆௜ + 𝑆௝

𝑑௜௝

 ,(4)

where Si – average distance between points and center
of cluster i; Sj – average distance between points and
center of cluster j.

𝐷𝐵 =
1

𝑘
෍ max 𝑅௜

௞

௜ୀଵ

 ,(5)

where k – count of clusters; Ri – separation level in cluster i.

The third approach to evaluating clustering results is the
Calinski-Harabasz index (8). This metric is computed using the
formulas presented in equations (6-7). A low index value
indicates that the clusters are widely dispersed, whereas a well-
separated clustering structure should yield a high index value.

Vladyslav Parashchenko et al. / International Journal of Computing, 24(2) 2025, 397-406

VOLUME 24(2), 2025 399

𝐵𝐶𝑆𝑆 = ෍ 𝑛௜

௞

௜ୀଵ

ห|𝑐௜ − 𝑐|ห ,(6)

where ni – number of points in cluster; ci – center of
cluster i; c – general center of data cluster.

WCSS = ෍ ෍ ห|𝑥 − 𝑐௜|ห

௫∈஼௜

௞

௜ୀଵ

 ,(7)

where k – count of clusters; x – point in cluster;

ci – center of cluster i.

𝐶𝐻 =
𝐵𝐶𝑆𝑆

WCSS
 ,(8)

where BCSS – weighted sum of squared Euclidean distance
between center and general center of data cluster; WCSS –
squared Euclidean distance between point and their cluster
centers.

Most clustering methodologies necessitate the specification
of the number of expected clusters to evaluate their
performance. However, there is no universally accepted
approach to addressing this challenge. In study [18], the authors
evaluated the quality of the resulting partitions through cross-
validation, employing various models in conjunction with
cluster assessment metrics. Meanwhile, other researchers
proposed modified algorithms that incorporate optimization
steps directly within the clustering process [19, 20]. These
approaches aim to enhance the accuracy and efficiency of
clustering by integrating iterative refinement mechanisms into
the algorithmic framework.

An alternative to predefining the number of clusters is to
adopt an empirical approach. With comprehensive knowledge
of the underlying data structure, one can infer the expected
number of clusters, subsequently optimizing the results based
on these estimates. For instance, employing the pure
architecture approach proposed by R. Martin [21] suggests that
the anticipated number of clusters should approximate the
number of application layers.

In a typical Java web application, one would expect to find
a controller class characterized by low cyclomatic complexity
that serves as the entry point for processing HTTP requests.
However, controller classes often exhibit low cohesion, as they
typically delegate control to other classes. In contrast, entity
classes - which represent domain objects and correspond to
relational database tables - usually contain numerous
properties, a limited number of methods with low cyclomatic
complexity, and similarly display low cohesion. Repository
classes, which abstract access to the data store, tend to have
higher cyclomatic complexity, increased cohesion, and fewer
properties. Service classes, responsible for implementing
business logic, generally exhibit high cyclomatic complexity
and, provided that developers adhere to the principle of single
responsibility, high cohesion.

A similar architectural paradigm is observed in mobile
applications, where models are responsible for data
management. Given that SQLite is the predominant relational
database solution in mobile environments, the repository and

entity pattern remains equally pertinent. Moreover, the
construction of user interfaces relies on specialized view
classes, which are characterized by both high cyclomatic
complexity and high cohesion. Considering the above analysis,
the following metrics are chosen to construct the representation
vectors that should characterize the classes:

Table 1. Evaluated class metrics

Metrics Description

Cyclomatic
complexity

metric of cyclomatic complexity of a class;

NPath complexity another metric of cyclomatic complexity

Cognitive
complexity

metric of cognitive complexity of code

Boolean
expression
complexity

a metric of the complexity of Boolean expressions

Class length
class size metric, equal to the number of significant
strings in the class

File length class size metric, total file size

Average method
length

class size metric, total file size

Average line
length

string length metric, which is equal to the average
string length

Class FanOut
complexity

metric of the number of classes used in this class

Average If depth metric for nesting conditional statements;

Average For
depth

nesting metric for loop statements

Average Try
depth

nesting metric for try...catch blocks

Law of Demeter
metric of violation of Demeter's law, the number of

violations in a separate class

LCOM1[22] lack of class cohesion metric(LCOM1)

LCOM2[22] lack of class cohesion metric(LCOM2)

LCOM3[22] lack of class cohesion metric(LCOM3)

LCOM4[22] lack of class cohesion metric(LCOM4)

LCOM5[22] lack of class cohesion metric(LCOM5)

The article proposes an investigation into the efficacy of a
generated representative feature vector for partitioning a
codebase into clusters, followed by an evaluation of the results
using predefined quality metrics. This approach aims to assess
the suitability of the feature vector in facilitating meaningful
and accurate clustering within the context of software code
analysis.

III. RELATED WORKS
Among the existing body of research on this topic, it is
noteworthy to highlight study [23], in which the authors
employed clustering techniques to identify similar code
fragments. The primary objective of this work is to develop a
tool for detecting plagiarism; however, the methodology
proposed can be extended to other related tasks. A similar
approach was adopted in research [24], where hierarchical
clustering was utilized to detect analogous code segments. The
authors evaluated their results using precision, recall, and F-
measure metrics to validate the effectiveness of their approach.

In another study [25], the authors explored the relationships
between software metrics by applying the K-Means clustering

 Vladyslav Parashchenko et al. / International Journal of Computing, 24(2) 2025, 397-406

400 VOLUME 24(2), 2025

technique. Research [26] further advanced this methodology by
enhancing the performance of the K-Means algorithm.
Specifically, the authors implemented a parallelized version of
K-Means and introduced additional data transformations to
reduce the dimensionality of input vectors, thereby improving
computational efficiency.

Research [27] also contributed to this domain by
investigating various methods of code representation. The
authors constructed models that leverage abstract syntax trees,
control flow graphs, and bytecode as sources of knowledge for
deep learning models. Their findings demonstrate that models
incorporating multiple code representations excel in tasks such
as classification and code clone detection. Similarly, the
authors of [28] proposed a novel model for generating
embeddings based on the BERT architecture. Their approach
demonstrated strong performance in code clustering and
labeling tasks, further underscoring the potential of advanced
representation techniques in software analysis.

Collectively, these studies highlight the diverse
applications of clustering and representation methods in
software engineering, offering valuable insights into their
effectiveness for tasks ranging from plagiarism detection to
code analysis and classification.

IV. RESULTS
To assess the effectiveness of the proposed methodology for
identifying similar elements within a codebase using selected
feature vectors, a sample of five representative application
projects was selected. Given the widespread use of the Java
programming language in both server-side and mobile
application development, the chosen projects encompass
systems that employ diverse architectural paradigms. These
include:

 Spring REST [29]. This project serves as an example of a
standard application that provides a RESTful API for various
purposes, adhering to conventional Java API development
practices.

 Spring GraphQL [30]. This API is developed using
GraphQL technology as an alternative to REST, offering a
server equipped with the necessary set of mutations and queries
for data manipulation.

 Java EE Application [31]. This application is constructed
using technologies provided by the Java EE platform,
representing a traditional enterprise-level architecture.

 Android MVVM (Model-View-ViewModel) [32]. This
architecture exemplifies a common pattern for Android
application development, emphasizing the separation of view
and model components to improve testability and
maintainability.

 Android MVP (Model-View-Presenter) [33]. Similar to
MVVM, this architecture is widely used in Android
development, further promoting separation of concerns and
modular design.

A more detailed overview of the selected projects,
including their specific characteristics and metrics, is provided
in Table 2. This selection ensures a comprehensive evaluation
of the proposed methodology across a range of architectural
styles and application domains.

Table 2. Software selected for analysis

Project
Spring

GraphQL
Spring
REST

JiavaEE
Android
MVVM

Android
MVP

Number of
classes

93 50 122 60 116

Number of
rows

3800 2500 6200 7000 8254

These projects were analyzed and divided into sets of

possible components presented in Table 3.

Table 3. Components descriptions

Project
Name of

Component
Description

Count of
components

Spring
Graph

QL

Resolver

Entry point for query or
mutation

8

Repository

Abstraction over
database to data access

Entity

Mapping between
database object and
business logic object

Configurations

Framework setup
classes

Exceptions

Objects to represent
program errors

Interfaces

Public contact for
classes

Utils

Collection of static
methods that perform
common tasks.

DTO Plain java objects to
exchange data between
different systems

Spring
REST

Controller

Entry point for http
request

9

Services Business logic
component

Repository

Abstraction over
database to data access

Entity

Mapping between
database object and
business logic object

Configurations

Framework setup
classes

Exceptions

Objects to represent
program errors

Interfaces

Public contact for
classes

Utils

Classes that perform
common tasks.

DTO Plain java objects to
exchange data between
different systems

Java EE

Resources Entry point for request

9

Service Business logic
component

Repository Abstraction over
database to data access

Entity Mapping between
database object and
business logic object

Configurations

Framework setup
classes

Exceptions Objects to represent
program errors

Interfaces Public contact for
classes

Utils Classes that perform
common tasks.

DTO Plain java objects to
exchange data between
different systems

Vladyslav Parashchenko et al. / International Journal of Computing, 24(2) 2025, 397-406

VOLUME 24(2), 2025 401

Android
MVVM

View Activity that represents
logic to display data for
users

10

Model Business logic
components that
encapsulate data store

ViewModel Components that
contain logic to handle
events from view and
changes from data store

Controller Logic to manage
several view models

Repository Abstraction over
database to data access

Entity Mapping between
database object and
business logic object

Configurations Framework setup
classes

Interfaces Public contact for
classes

Utils Classes that perform
common tasks.

Broadcast
receivers

Components to listen
events from operation
system and other apps

Android
MVP

View Usually, activity that
represents logic to
display data for users

9

Model Business logic
components that
encapsulate data store

Presenter Class that represents
data for view

Repository Abstraction over
database to data access

Entity Mapping between
database object and
business logic object

Configurations

Framework setup
classes

Interfaces Public contact for
classes

Utils Classes that perform
common tasks.

Broadcast
receivers

Components to listen
events from operation
system and other apps

The source code of each project was subjected to analysis,

during which metrics for the classes enumerated in Table 1
were computed. This process resulted in the generation of input
vectors, the quantity of which corresponds to the number of
classes within each project. Subsequently, the clustering
procedure was executed utilizing the selected algorithms, and
the corresponding quality metrics were calculated. The
outcomes of this analysis are presented in Table 4.

The initial dataset cannot be effectively visualized in a two-
dimensional space; therefore, the Principal Component
Analysis (PCA) technique [34] was employed to illustrate the
clustering results. In PCA, the axes are referred to as principal
components (PC1, PC2, etc.), with each component
representing a direction in the data space that captures the
maximum variance within the dataset. Figure 1 depicts the
clustering outcomes for a web application developed using the
Spring framework and GraphQL technology. As evident from
the graphical representation, the K-Means model yielded the
most favorable results, while the Affinity Propagation and
Gaussian models also exhibited high cluster resolution. In
contrast, the DBSCAN model failed to achieve a clear
separation of clusters within the given dataset, resulting in

overlapping clusters, as illustrated in Figure 1. This observation
is corroborated by the silhouette metric for the DBSCAN
model, which returned a negative value, indicating suboptimal
clustering performance.

Table 4. Software selected for analysis

Project

Spring
GraphQL

Spring
REST

Java
EE

Android
MVVM

Android
MVP

K
M

ea
ns

Silhouette
metric

0.56 0.46 0.59 0.64 0.58

Davis-Baldwin
metric

0.49 0.63 0.63 0.47 0.57

Kalinski-
Harabash metric

311 73 200 1114 329

Number of
classes

6 7 9 9 9

D
B

SC
A

N

Silhouette
metric

-0.22 0.4 0.57 0.46 -0.01

Davis-Baldwin
metric

1.25 0.93 1.41 1.52 1.54

Kalinski-
Harabash metric

3.04 8.09 29 16.1 5.3

Number of
classes

4 2 3 3 5

O
P

T
IC

S

Silhouette

metric
0.39 0.12 0.11 -0.14 0.02

Davis-Baldwin

metric
1.21 1.41 1.15 1.5 1.28

Kalinski-

Harabash metric
22 20 13 1.84 15

Number of

classes
4 6 9 6 13

A
ff

in
it

y

P
ro

pa
ga

ti
on

Silhouette

metric
0.1 0.44 0.41 0.36 0.4

Davis-Baldwin

metric
1.34 0.53 0.60 0.51 0.4

Kalinski-

Harabash metric
1014 74 284 1951 324

Number of

classes
9 9 7 12 13

G
au

ss
ia

n

M
ix

tu
re

Silhouette

metric
0.33 0.36 0.49 0.5 0.49

Davis-Baldwin

metric
0.87 0.65 0.63 0.52 0.46

Kalinski-

Harabash metric
298 73 264 1341 255

Number of

classes
6 8 9 8 7

 Vladyslav Parashchenko et al. / International Journal of Computing, 24(2) 2025, 397-406

402 VOLUME 24(2), 2025

(a)

(b)

(c)

(d)

(e)

Figure 1. Visualization for the code base of the GraphQL
application based on the Spring framework

a) K-Means model, b) DBSCAN model, c) OPTICS model,
d) Affinity propagation model, e) Gaussian Mixture model

Figure 2 presents the results of clustering applied to a web
application built on the Spring framework, which implements
a REST API. As illustrated in the graphs, the DBSCAN and
OPTICS models demonstrated relatively poor clustering
performance, despite achieving higher metric scores compared
to the previous application. Notably, the silhouette metric score
for the DBSCAN model exceeded that of the Gaussian Mixture
model, although it underperformed in other metrics. This
discrepancy can be attributed to the elongated and irregular
shapes of the clusters, which deviate from the rounded forms
typically associated with more effective clustering outcomes.

(a)

(b)

(c)

(d)

Vladyslav Parashchenko et al. / International Journal of Computing, 24(2) 2025, 397-406

VOLUME 24(2), 2025 403

(e)

Figure 2. Visualization for the REST API code base of the
application using the Spring framework a) KMeans model, b)
DBSCAN model, c) OPTICS model, d) Affinity propagation

model, e) Gaussian Mixture model

According to Figure 3, the DBSCAN and OPTICS models
once again demonstrated suboptimal performance when
applied to the web application project based on JavaEE
technology. While the silhouette metric for these models
appears relatively high, the Davis-Bouldin and Calinski-
Harabasz metrics reveal the inadequacy of such clustering
outcomes. Specifically, the ratio of the Calinski-Harabasz
index for the DBSCAN model to that of the Affinity
Propagation model is 9.79, further underscoring the inferiority
of the DBSCAN model's clustering performance in this
context.

(a)

(b)

(c)

(d)

(e)

Figure 3. Visualization for the code base of the application
built on JavaEE technology

a) KMeans model, b) DBSCAN model, c) OPTICS model, d)
Affinity propagation model, e) Gaussian Mixture model

Figure 4 illustrates the visual representation of clustering
results for a mobile application utilizing the MVVM
architecture. As observed in Figures 4.a and 4.d, the models
have achieved a relatively effective separation of clusters,
supported by high metric scores. Notably, the Calinski-
Harabasz score for the Affinity Propagation model exceeds that
of the K-Means model, despite underperforming in the other
two metrics. Conversely, the silhouette score for the OPTICS
model falls below zero, a result visually corroborated in Figure
4.c, where a single large cluster dominates, encompassing the
majority of data points. This poor separation is further validated
by the other quality metrics, which collectively indicate the
inadequacy of the OPTICS model in this context.

 Vladyslav Parashchenko et al. / International Journal of Computing, 24(2) 2025, 397-406

404 VOLUME 24(2), 2025

(a)

(b)

(c)

(d)

(e)

Figure 4. Visualization for the code base of a mobile
application using MVVM architecture a) KMeans model, b)
DBSCAN model, c) OPTICS model, d) Affinity propagation

model, e) Gaussian Mixture model

Figure 5 presents the clustering outcomes for a mobile
application employing the MVP architecture. For the
DBSCAN model, the silhouette score is negative, the Calinski-
Harabasz metric yields a low value, and the Davies-Bouldin
metric, in contrast, is significantly high. The ratio of the
Davies-Bouldin metric results between the K-Means and
DBSCAN models is approximately 3, favoring the K-Means
model. Conversely, the ratio of the scores between the K-
Means and Affinity Propagation models is nearly 0, indicating
that the clustering quality of these two models is comparable.
This suggests that while DBSCAN underperforms, K-Means
and Affinity Propagation demonstrate similar effectiveness in
this context.

(a)

(b)

Vladyslav Parashchenko et al. / International Journal of Computing, 24(2) 2025, 397-406

VOLUME 24(2), 2025 405

(c)

(d)

(e)

Figure 5. Visualization for the code base of a mobile
application with MVP architecture

a) KMeans model, b) DBSCAN model, c) OPTICS model,
d) Affinity propagation model, e) Gaussian Mixture model

Table 3 presents the clustering results along with the
corresponding values of the metrics used to evaluate clustering
quality. Based on the findings, the K-Means model achieved
high-quality cluster separation, as evidenced by its consistently
high scores across all metrics. This performance was further
corroborated by additional visualizations of the clustering
outcomes. The number of clusters obtained through metric-
based optimization closely aligns with the empirically expected
number of clusters, reinforcing the model's effectiveness.

In contrast, the DBSCAN model exhibited poor
performance in the majority of experiments. Although it
achieved a favorable silhouette metric score for the JavaEE
web application, the Calinski-Harabasz and Davies-Bouldin
metrics indicate suboptimal separation quality. Additionally,
the number of clusters generated by DBSCAN was

significantly lower than the expected number. Similarly, the
OPTICS model underperformed in most experiments, with its
most inaccurate results observed for a mobile application based
on the MVVM architecture.

The Affinity Propagation model, however, demonstrated
high-quality results across all cases examined. The average
differences between its metrics and those of the K-Means
model were -0.224 for the silhouette metric, 0.118 for the
Davies-Bouldin metric, and 324 for the Calinski-Harabasz
metric, indicating that its performance is comparable to that of
K-Means. A notable advantage of the Affinity Propagation
model is its ease of use, as it does not require prior analytical
determination of the number of clusters, eliminating the need
for extensive pre-analysis of input data. In most instances, the
number of clusters produced by this model exceeded
expectations, suggesting a tendency to identify outliers. This
characteristic could prove beneficial for detecting anomalous
software classes.

The Gaussian Mixture model also yielded positive results,
with average differences of -0.132, 0.068, and 40.8 compared
to K-Means for the silhouette, Davies-Bouldin, and Calinski-
Harabasz metrics, respectively. Visualization further
confirmed the high quality of cluster separation achieved by
this model. Overall, these findings highlight the strengths and
limitations of each clustering approach in the context of
software class analysis.

V. CONCLUSIONS
The demonstrated results confirm the feasibility of employing
clustering techniques to identify patterns in the structure and
construction of software code. Among the models evaluated,
the K-Means, Affinity Propagation, and Gaussian Mixture
models emerged as the most suitable, exhibiting strong
performance in both visual representation and established
clustering metrics. Notably, the Affinity Propagation model
stands out as the most appropriate choice due to its ease of use
and high-quality clustering outcomes for codebases.

The scientific contribution of this study lies in the
development of a novel methodology for assessing codebase
clustering and its application to verify the quality of software
in information and communication systems. Central to this
methodology is the use of a specialized feature vector, uniquely
designed to represent each class, which captures the functional
purpose and characteristics of software classes.

From a practical perspective, this research introduces a new
approach for evaluating the effectiveness of codebase
clustering and identifying patterns in software construction.
This approach is highly versatile, as it leverages existing static
analysis tools to derive the necessary metrics. Furthermore, the
proposed methodology for processing and visualizing
clustering results is applicable to any object-oriented
programming language. This framework is intended to serve as
the foundation for a quality control module within a Decision
Support System (DSS) for verifying software in information
and communication systems.

Future research will focus on refining the feature vector
used to characterize software classes for clustering purposes.
Additionally, the demonstrated technology will be instrumental
in developing decision rules for the DSS, enhancing its
capability to ensure software quality and maintainability.

 Vladyslav Parashchenko et al. / International Journal of Computing, 24(2) 2025, 397-406

406 VOLUME 24(2), 2025

References

[1] R. E. S. Santos, F. Q. B. da Silva, M. T. Baldassarre, and C. V. C. de
Magalhães, “Benefits and limitations of project-to-project job rotation in
software organizations: A synthesis of evidence,” Inf Softw Technol, vol.
89, pp. 78–96, 2017. https://doi.org/10.1016/j.infsof.2017.04.006.

[2] P. Silva de Garcia, M. Oliveira, and K. Brohman, “Knowledge sharing,
hiding and hoarding: how are they related?” Knowledge Management
Research & Practice, vol. 20, no. 3, pp. 339–351, 2022.
https://doi.org/10.1080/14778238.2020.1774434.

[3] D. Thomas and A. Hunt, The pragmatic programmer, Addison-Wesley
Professional, 2019.

[4] A. A. Yahya, A. Osman, “Using data mining techniques to guide
academic programs design and assessment,” Procedia Computer
Science, vol. 163, pp. 472-481, 2019.
https://doi.org/10.1016/j.procs.2019.12.130.

[5] J. A. Hartigan and M. A. Wong, “A k-means clustering algorithm,” Appl
Stat, vol. 28, no. 1, pp. 100–108, 1979.
http://dx.doi.org/10.2307/2346830.

[6] B. Karthikeyan, D. J. George, G. Manikandan, and T. Thomas, “A
comparative study on K-means clustering and agglomerative hierarchical
clustering,” International Journal of Emerging Trends in Engineering
Research, vol. 8, no. 5, pp. 1600-1604, 2020.
http://dx.doi.org/10.30534/ijeter/2020/20852020.

[7] M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A
comprehensive survey and performance evaluation,” Electronics (Basel),
vol. 9, no. 8, p. 1295, 2020. https://doi.org/10.3390/electronics9081295.

[8] R. S. V Chandrasekar and G. A. Britto, “Comprehensive review on
density-based clustering algorithm in data mining,” Int J Res Anal, vol.
6, no. 2, pp. 5–9, 2019.

[9] S. Weng, J. Gou, and Z. Fan, “h-DBSCAN: A simple fast DBSCAN
algorithm for big data,” Proceedings of the Asian Conference on Machine
Learning, PMLR, 2021, pp. 81–96.

[10] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
Ordering points to identify the clustering structure,” ACM Sigmod
Record, vol. 28, no. 2, pp. 49–60, 1999.
http://dx.doi.org/10.1145/304182.304187.

[11] Z. Deng, Y. Hu, M. Zhu, X. Huang, and B. Du, “A scalable and fast
OPTICS for clustering trajectory big data,” Cluster Comput, vol. 18, pp.
549–562, 2015. http://dx.doi.org/10.1007/s10586-014-0413-9.

[12] C. A. Bouman, M. Shapiro, G. W. Cook, C. B. Atkins, and H. Cheng,
“Cluster: An unsupervised algorithm for modeling Gaussian mixtures.”
1997. [Online]. Available at:
https://engineering.purdue.edu/~bouman/software/cluster/manual.pdf.

[13] Y. Zhang et al., “Gaussian mixture model clustering with incomplete
data,” ACM Transactions on Multimedia Computing, Communications,
and Applications (TOMM), vol. 17, no. 1s, pp. 1–14, 2021.
https://doi.org/10.1145/3408318.

[14] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science, vol. 315, no. 5814, pp. 972–976, 2007.
https://doi.org/10.1126/science.1136800.

[15] K. R. Shahapure and C. Nicholas, “Cluster quality analysis using
silhouette score,” Proceedings of the 2020 IEEE 7th international
conference on data science and advanced analytics (DSAA), 2020, pp.
747–748. https://doi.org/10.1109/DSAA49011.2020.00096.

[16] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE
Trans Pattern Anal Mach Intell, no. 2, pp. 224–227, 1979.
https://doi.org/10.1109/TPAMI.1979.4766909.

[17] T. Caliński, and J. Harabasz, “A dendrite method for cluster analysis,”
Communications in Statistics, vol. 3, no. 1, pp. 1–27, 1974.
https://doi.org/10.1080/03610927408827101.

[18] A. Vysala and D. J. Gomes, “Evaluating and validating cluster results,”
Proceedings of the 9th International Conference on Data Mining &
Knowledge Management Process (CDKP’2020), 2020,
https://doi.org/10.5121/csit.2020.100904.

[19] A. Shafeeq and K. S. Hareesha, “Dynamic clustering of data with
modified k-means algorithm,” Proceedings of the 2012 Conference on
Information and Computer Networks, 2012, pp. 221–225.
http://dx.doi.org/10.13140/2.1.4972.3840.

[20] M. A. Masud, M. M. Rahman, S. Bhadra, and S. Saha, “Improved k-
means algorithm using density estimation,” Proceedings of the 2019
IEEE International Conference on Sustainable Technologies for Industry
4.0 (STI), 2019, pp. 1–6.
https://doi.org/10.1109/STI47673.2019.9068033.

[21] R. C. Martin, Clean architecture, Prentice Hall, 2017.
[22] E. N. H. Kirgil та T. E. Ayyildiz, “Analysis of lack of cohesion in

methods (LCOM): A case study,” Proceedings of the 2021 2nd IEEE Int.

Inform. Softw. Eng. Conf. (IISEC), Ankara, Turkey, 16–17 December
2021, pp. 1-4. https://doi.org/10.1109/IISEC54230.2021.9672419.

[23] M. Ďuračík, E. Kršák, and P. Hrkút, “Searching source code fragments
using incremental clustering,” Concurr Comput, vol. 32, no. 13, p. e5416,
2020. https://doi.org/10.1002/cpe.5416.

[24] Y. Amaliah, W. Musu, and M. Fadlan, “Auto clustering source code to
detect plagiarism of student programming assignments in Java
programming language,” Proceedings of the 2021 3rd IEEE International
Conference on Cybernetics and Intelligent System (ICORIS), 2021, pp.
1–6. https://doi.org/10.1109/ICORIS52787.2021.9649465.

[25] B. Mathur and M. Kaushik, “In object-oriented software framework
improving maintenance exercises through k-means clustering approach,”
Proceedings of the 2018 3rd IEEE International Conference on Internet
of Things: Smart Innovation and Usages (IoT-SIU), 2018, pp. 1–7.
https://doi.org/10.1109/IoT-SIU.2018.8519897.

[26] P. Hrkút, M. Ďuračík, M. Mikušová, M. Callejas-Cuervo, and J.
Zukowska, “Increasing K-means clustering algorithm effectivity for
using in source code plagiarism detection,” Proceedings of the
International Conference on Smart Technologies, Systems and
Applications, Springer, 2019, pp. 120–131.

[27] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D.
Poshyvanyk, “Deep learning similarities from different representations of
source code,” Proceedings of the 15th International Conference on
Mining Software Repositories, 2018, pp. 542–553.
https://doi.org/10.1145/3196398.3196431.

[28] M. Hägglund, F. J. Pena, S. Pashami, A. Al-Shishtawy, and A. H.
Payberah, “Coclubert: Clustering machine learning source code,”
Proceedings of the 2021 20th IEEE International Conference on Machine
Learning and Applications (ICMLA), 2021, pp. 151–158.
https://doi.org/10.1109/ICMLA52953.2021.00031.

[29] E. Ozdemir, “A general overview of RESTful web services,” Advances
in Systems Analysis, Software Engineering, and High Performance
Computing. IGI Glob., 2020, pp. 133–165. https://doi.org/10.4018/978-
1-7998-2142-7.ch006.

[30] P. Mandani, Lolith Raj B. K., Nithyananda R. Shetty and Rahul T. N., “A
comprehensive analysis of GraphQL,” SSRN Electron. J., 2024.
https://doi.org/10.2139/ssrn.4915678.

[31] J. Juneau, RESTful Web Services. In: Java EE 8 Recipes. Apress,
Berkeley, CA. https://doi.org/10.1007/978-1-4842-3594-2_15.

[32] N. S. P. K. Yadati, “Architecture Design (MVVM + Clean
Architecture),” J. Artif. Intell., Mach. Learn. Data Sci., vol. 1, no. 3,
pp. 703–706, 2023. https://doi.org/10.51219/JAIMLD/naga-satya-
praveen-kumar-yadati/177.

[33] R. F. García, “MVP: Model–View–Presenter,” iOS Architecture
Patterns, Berkeley, CA: Apress, 2023, pp. 107–144.
https://doi.org/10.1007/978-1-4842-9069-9_3.

[34] M. Greenacre, P. J. F. Groenen, T. Hastie, A. I. D’Enza, A. Markos and
E. Tuzhilina, “Principal component analysis,” Nature Rev. Methods
Primers, vol. 2, no. 1, 2022. https://doi.org/10.1038/s43586-022-00184-
w.

Vladyslav Parashchenko is a PhD
student in Sumy State University.
Previously received a bachelor and
master's degree in Computer
Sciences in Sumy State University.
Research interests: in software
development, software architecture,
development automatization

Oleh Berest, Software engineer in
Swisscom LTD. Research interests:
software development, machine
learning, pattern recognition,
multidimensional visualization.

