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 ABSTRACT The article is devoted to the topical issues of developing systems for detection and classifying of 
unmanned aerial vehicles (UAVs). The proposed approach to the implementation acoustic intelligence methods in the 
tasks of UAV detection and classifying involves combining different principles of building a control system for an 
interceptor UAV in a single information management system in order to achieve maximum efficiency and effectiveness 
in countering enemy UAVs. The article discusses the methods of detecting and classifying UAVs using sound patterns 
of their engines, forming a steering vector of the sound beam shaper to calculate the azimuth and height of the target 
UAV. The study focuses on barrage munitions with internal combustion engines of the Shahed type, which are classified 
as Class 2 according to NATO classification. The relevance of the study is due to the massive use of this type of 
munitions in hostilities, which overloads air defense systems and makes it quite expensive and inefficient to destroy 
such targets with existing means.  
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I. INTRODUCTION 
urrent global trends in the field of robotization and 
automation of both individual objects and various civilian 

and military systems, along with a significant expansion of 
their capabilities, lead to new security challenges. This issue is 
especially relevant in the context of building air defense 
systems to protect both civilian critical infrastructure and 
military facilities and units on the battlefield due to the massive 
use of UAV of various classes and purposes. 

Research on building air defense systems [1], particularly 
those countering UAVs - Countering Unmanned Aircraft 
Systems (C-UAS), reveals that no single technical system or 
solution can fully address UAV protection. The development 
of C-UAS systems poses a complex scientific and technical 
challenge, requiring the resolution of multiple technical and 
theoretical tasks, which is not a simple feat due to the diverse 
range of UAV usage scenarios. 

To effectively outline the research objectives in developing 
C-UAS systems, we must examine the current landscape 
regarding the theoretical foundations, hardware, and software 
related to UAV detection methods. 

But first of all, let's analyze the characteristics of UAVs that 
allow us to detect and classify them. We can distinguish several 
large groups of parameters (Table 1): 

 
1. Geometric dimensions or layouts and visibility that 

allow UAVs to be detected using visual inspection and 
radar operating in different frequency bands, actively 
irradiating the UAV. It is clear that the effectiveness of 
such methods and means depends on the size of the 
UAV and the characteristics of the detection 
environment (weather, conditions, flight altitude, etc.).  

2. Thermal radiation (IR - infrared) is produced by engine 
heating, aerodynamic heating of fuselage surfaces, and 
exhaust emissions. It’s clear that this parameter 
diminishes when transitioning from jet to electric-
powered UAVs, which emit very low levels of radiation 
in the IR spectrum. 

3. The sound generated by UAV engines and propellers. 
The sound of propellers can be a source for UAV type 
identification by ground-based arrays of highly 
sensitive microphones that use Doppler effects in the 
acoustic spectrum to calculate the azimuth, altitude, and 
speed of a target. 

4. The emission of telemetry signals and video signals 
(radio frequency radiation) received from video 
cameras are also parameters used to detect and identify 
UAVs. 

C
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We will focus on Class 2 Shahed UAVs, which cause the 
greatest damage to critical infrastructure and civilian objects, 
as well as on fiber-optic UAVs. They have one characteristic 
feature in common: they do not emit telemetry and control 
radio signals, which complicates the task of detecting and 
destroying them. 

Table 1. UAV detection means 

Characteristi
cs 

Means of 
detection 

Limitations 
Detection 
distance, 

km. 

Material 
object 

(geometric 
dimensions) 

Radar (active 
radiation) 

 High cost of 
equipment; 
 Adjustment of 
frequency bands; 
 Terrain obstacles. 

1 - 20 

Material 
object 

(visibility) 

Optoelectronic 
cameras 

 Dependence on the 
external environment; 
 Obstacles of the 
terrain. 

0,5 - 2 

Thermal 
radiation 

Infrared camera 

 Low accuracy, 
especially in the case 
of UAVs with electric 
motors. 

1 - 10 

Radio 
frequency 

signal 

Radio 
frequency 
receiver 

 Inability to detect 
for offline flight 
without radiation. 

3 - 40  

Acoustic 
signal 

High-sensitivity 
microphone 

(array) 

 Low detection 
accuracy; 
 Small detection 
radius; 
 High complexity of 
signal processing. 

0,1 - 0,6 

 
Since the use of Shahed-136 UAVs, it has been established 

that since the beginning of the armed aggression, these UAVs 
have been used most frequently and are most effective at night, 
between 23:00 and 06:00. This is when it is difficult to visually 
detect and determine their number and reduce the effectiveness 
of means of covering objects. 

On the marching section, the flight path is straight. The 
average speed of Shahed-136 kamikaze drones observed during 
combat use is 140-150 km/h (although movement at speeds of 
80 to 180 km/h was observed), and the flight altitude on the 
marching area is from 700 m to 2000 m, and in the target area 
it drops to 200 m. 

Thus, the issue of detecting and identifying UAVs by sound 
is a very relevant research topic that will help build an effective 
anti-UAV system.  

The relevance of this study is due to the above-mentioned 
features of the tactics of use and characteristics of the UAV, 
namely, the nighttime of use and the characteristic sound 
pattern of its engine. 

The object of study is acoustic intelligence of moving 
targets in the broad sense of their identification and 
classification by acoustics approaches. The subject of the study 
is models for calculating the spatial position of a UAV in flight 
by the angles of arrival of a sound pattern of its engine on an 
array of microphones. 

The aim of the work is to improve the efficiency of 
detection and identification of moving targets such as Class 2 
UAVs by Beamforming methods in addition to existing 
machine learning methods. 

II. RELATED WORKS 
A quick review of the research findings published in various 
journals and conference proceedings reveals a diverse range of 

ideas and approaches that researchers are exploring to address 
the development of C-UAS systems. Let's examine the key 
research areas, which generally align with the primary 
detection methods outlined in Table 1. 

Paper [2] presents the results obtained from experiments 
conducted to investigate the viability of acoustic sensing to 
create the basis for a non-cooperative system for aircraft 
collision avoidance (ACAS). An UAV equipped with two 
microphones flew near another onboard UAV to determine the 
maximum distance at which the offending aircraft could be 
detected. A method of increasing the detection distance by 
using the harmonic nature of acoustic signals generated by 
propeller-driven aircraft is presented. It was found that a small 
gasoline-powered UAV could be detected at a distance of up to 
678 m. 

The review paper [3] is interesting in terms of providing a 
thorough analysis of the methods used to detect and track 
UAVs or drones. Common methods are described that allow 
measuring the position, speed, and pitch of UAVs, and then 
using them for detection and tracking. Hybrid detection 
methods are also presented. Various technologies are 
considered, such as infrared cameras, radio frequency scanners, 
radars, optical cameras, and acoustic sensors. Special attention 
is paid to the use of deep learning (CNN, YOLO, Faster R-
CNN) to automate the process of UAV detection and 
classification). The article is a quick reference for a wide range 
of methods used in the process of UAV detection. 

Article [4] is devoted to the study of acoustic signatures of 
aircraft engine and propeller noise in the context of target 
tracking. The authors analyze harmonics in the spectrograms of 
light aircraft collected by a stationary microphone array on the 
ground. Using the Doppler frequency shift model, the speed 
and height of the target are estimated from the spectrogram of 
the recorded acoustic signal. The authors focus that frequency 
destructive interference can affect signal accuracy and must 
been considered in tracking algorithms. 

In [5], the authors tested the applicability of an inexpensive 
long-wave infrared sensor for detecting various UAVs in flight. 

The study found that the limit of detection for the Parrot 
AR.drone 2 was on average 41 m, for the Phantom 4 was 51 m, 
and for the hexacopter was beyond the 100 m line of the test 
track. The study also found that the images obtained from the 
sensor were noisy, with increased graininess and dynamic 
brightness range. The study concluded that batteries are the 
primary heat sources on UAVs. The study also suggested that 
future work should include testing the detectability 
of UAVs against more diverse backgrounds and reducing the 
heat signature of the UAV. 

A large number of papers have been devoted to the study of 
infrared detection methods. 

Paper [6] describes a visual and thermal monitoring system 
that combines detection and tracking modules based on deep 
learning. The authors present an integrated detection and 
tracking system that outperforms the performance of each 
individual module containing only detection or tracking. The 
proposed system achieves an AUC score of 43.8 on the test set, 
and the experiments show that the system performs well on 
real-world drone images with complex backgrounds, even 
when trained on synthetic data. 

The study concludes that the proposed 
integrated drone monitoring system outperforms the detection-
only and tracking-only sub-systems, and that the system can 
monitor drones during both day and night. 
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The main approaches for UAV detection based on radio 
frequencies are communication intelligence (COMINT) in 
addition to signal intelligence (SIGINT). Despite the fact that 
the classification accuracy deteriorates with an increase in the 
number of UAV types (number of classes), the detection 
accuracy remains satisfactory. 

The objective of the study [7] is to investigate non-military 
grade anti-drone systems, and to propose a hypothetical anti-
drone system that presents guidelines for adaptable and 
effective drone defense operations. The study also aims to 
contribute to future technology developments.  

The study also concludes that integrating detection, 
identification, and neutralization schemes, and automating the 
overall system would greatly improve anti-drone system 
accessibility and reduce labor costs. 

The conclusions of the study emphasize the importance of 
developing guidelines for designing anti-drone systems, and 
the need for optimal placement of drone detection networks to 
improve security against illegal drone incursion. 

The results of the study show that anti-drone systems should 
include multiple neutralization solutions and utilize them 
appropriately to improve defense reliability, and that 
destructive and non-destructive methods should be separately 
treated in system design. 

The process of detecting UAVs using radar is based on the 
use of reflected radio signals to calculate and determine their 
direction, speed, range, and shape.  A large number of studies 
have been devoted to this area of research, since the use of radar 
began in the Second World War. The modern development of 
this principle of UAV detection using machine learning 
methods is reflected in [8], where the authors employed the 
Holographic RadarTM. This radar uses a 2-D antenna array and 
signal processing to create a multi-beam, 3-D, wide-area 
surveillance sensor, achieving high detection sensitivity. 

Experimental trials using an L-band 32×8 element receiver 
array successfully detected a small hexacopter. However, the 
system's high sensitivity results in the detection of many other 
small moving objects, particularly birds. To address this issue, 
an additional processing stage was implemented using a 
machine learning classifier (decision tree), which effectively 
filters out non-UAS targets, providing nearly complete 
elimination of false tracks while maintaining a high probability 
of drone detection. 

Similar to infrared cameras, optoelectronic cameras are 
being widely researched for use in UAV detection and 
countermeasures. In recent years, deep convolutional neural 
networks (DCNN) have become the main tool for the 
development of visual systems for detecting and classifying 
UAVs. Paper [9] investigates the issues and various approaches 
to building convolutional networks in object detection tasks. 

The article emphasizes the transition from traditional object 
detection methods, which relied on handcrafted features, to 
deep learning approaches that utilize Convolutional Neural 
Networks (CNNs). This shift has led to substantial 
improvements in detection accuracy and efficiency. 

The article presents experimental evaluations on 
benchmark datasets such as PASCAL VOC and Microsoft 
COCO, demonstrating that deep learning models consistently 
outperform traditional methods. It highlights the importance of 
multi-scale feature extraction and the integration of contextual 
information to enhance detection performance. 

Despite the advancements, the article identifies ongoing 
challenges, particularly in detecting small objects and handling 

occlusions. It suggests that future work should focus on 
improving localization accuracy and developing models that 
can adapt to various scales and contexts. 

Object tracking is one of the most important tasks in 
computer vision, which has many practical applications such as 
motion monitoring, robotics, autonomous vehicle tracking, etc. 
Various studies have been conducted in recent years, but due to 
various problems such as occlusion, lighting variations, fast 
movement, etc., research in this area continues.  

The paper [10] investigates various object tracking methods 
and presents a comprehensive classification that classifies 
tracking methods into four main categories: feature-based, 
segmentation-based, estimation-based, and learning-based 
methods. Each category has its own subcategories and 
approaches tailored to specific challenges in tracking. The 
article emphasizes the growing importance of learning-based 
methods, particularly deep learning techniques, which have 
shown significant improvements in tracking accuracy. These 
methods can automatically extract features and adapt to various 
conditions, making them robust against challenges like 
occlusion and illumination changes. Various challenges persist 
in object tracking, including occlusion, illumination variation, 
fast motion, and background clutter. The article discusses how 
these challenges necessitate ongoing research and the 
development of more sophisticated algorithms. 

A variety of datasets are highlighted, which are essential for 
training and evaluating tracking algorithms. These datasets 
include OTB100, VOT, and TrackingNet, among others, each 
designed to test different aspects of tracking performance. 

In summary, the article concludes that while significant 
progress has been made in object tracking through learning-
based methods, ongoing challenges and the need for robust 
evaluation metrics and diverse datasets remain critical for 
future advancements in the field. 

The development of machine learning methods for UAV 
detection and classification requires training datasets that allow 
training and adjusting model parameters to obtain an acceptable 
level of detection accuracy, which in turn has created a 
powerful impetus for the development of research in the field 
of creating these datasets.  

In [11], the authors present a new object detection dataset 
created entirely for training computer vision-based machine 
learning object detection algorithms for the task of detecting 
binary objects. The dataset extends the existing multi-class 
image classification and object detection datasets (ImageNet, 
MS-COCO, PASCAL VOC, anti-UAV) with a diverse set of 
UAV images. 

The authors developed a specialized dataset consisting of 
51,446 training images and 5,375 test images, specifically 
designed for detecting drones in real-world scenarios. This 
dataset includes 52,676 drone instances in the training set and 
2,863 in the test set, with bounding box annotations for accurate 
object detection. 

In summary, the article introduces a comprehensive dataset 
tailored for UAV detection, proposes an efficient labeling 
methodology, and evaluates different detection approaches to 
address real-world challenges in drone identification. 

The analysis of research in the development of C-UAS 
systems leads us to the following conclusions: 

1. No single technology provides 100% accuracy; 
combining several methods (hybrid systems) 
significantly improves results. 
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2. All of the papers are devoted to theoretical research and, 
in some cases, description of elements of practical 
implementation of UAV detection and classification 
systems. None of the papers consider the 
implementation of the interception concept as a logical 
extension of their research. 

3. None of the considered approaches fully satisfies the 
requirements for the implementation of highly efficient 
C-UAS systems in terms of ensuring the detection of 
UAVs within the possible scenarios of their use. 

4. Due to the rapid development of algorithms and 
hardware for implementing machine learning methods 
in object detection and tracking, we are witnessing an 
intensification of the implementation of convolutional 
neural networks in UAV detection. Deep neural 
networks (YOLO, Faster R-CNN, ResNet) are effective 
for UAV recognition and tracking, especially when 
using large datasets. 

5. Optical and thermal cameras are useful for accurate 
detection, but depend on weather conditions. Radio 
frequency scanners are good at detecting drones based 
on control signals, but have limitations for autonomous 
UAVs.  

6. In terms of the massive use of UAVs at night and on 
fiber optics, which reduces the possibility of detecting 
them by visual and radio means, the development of 
ground-based acoustic systems for detecting UAVs at 
short distances within the suburbs and combat zones is 
promising. 

The development of machine learning and combined 
methods is key to improving the effectiveness of drone 
detection and tracking systems. 

In developing effective and affordable systems for 
detecting, classifying, and tracking UAVs, initial research 
highlights the potential of acoustic signatures for accurately 
detecting and tracking moving targets with distinct sound 
patterns. This approach could been combined with other 
methods, such as using infrared cameras to detect and track 
UAVs, especially since most massive attacks on critical 
infrastructure occur at night. Integrated systems will enable the 
full range of tasks for detecting, recognizing, tracking, and 
intercepting UAVs. 

Given the scale of damage caused by Shahed-type UAVs 
during the full-scale war waged against Ukraine and the state 
of affairs with the development of C-UAS systems both in 
terms of methods and mathematical models and in terms of 
UAV carriers (interceptors) [12], the development of the 
concept of a promising anti-drone system is an urgent scientific 
and applied task. 

Thus, we can draw a general conclusion about a promising 
anti-drone system that should been built for specific types and 
classes of UAVs, taking into account their tactics of use and 
their characteristics. For example, for Shahed-type UAVs, a 
combined system that combines detection, identification using 
machine learning methods, calculation of altitude and azimuth 
to guide the interceptor to the target, interception using tracking 
methods, and additional targeting at the affected area using an 
infrared camera will be effective.  

However, in this article, the authors will cover only the 
issues of acoustic detection and identification, as well as 
methods for calculating the azimuth to the target. 

 

III.  SOUND-BASED DETECTION OF MOBILE OBJECTS 
Acoustic Intelligence (ACINT) collects and utilizes acoustic 
signals or radiation [13]. ACINT has a long history in the study 
of sound waves in the marine environment (sonar), but it has 
also been successfully used to detect missile launch locations 
and artillery installations in counter-battery warfare. 
Specialized acoustic systems for detecting the spatial position 
of UAVs in flight have already been developed and are 
available on the market, but their current effective range is 
limited to several kilometers. At longer distances, ambient 
noise will drown out the target sound of the engine or engines 
and significantly reduce the effectiveness of this class of 
systems, and sometimes make their use impractical in terms of 
the probability of UAV detection. 

However, at the tactical level, within the combat zone, 
directly in the suburban area, databases of sound signatures of 
various types of UAVs could been effectively used as an 
element of the algorithmic part of the air defense system to 
intercept them, especially at night, when visual detection is 
practically impossible [14]. 

Most UAVs have gasoline or electric propulsion systems 
that generate a significant amount of noise. Depending on the 
altitude, the noise can be so loud that it could been used by itself 
to detect UAVs by ground personnel, even without the use of 
acoustic detectors. However, unmanned aerial vehicles 
operating at high altitudes are usually inaudible to humans and 
require special acoustic sensors to detect them [15]. 

The noise of the propellers or the engine itself can be 
measured using ground-based stationary microphones that use 
the Doppler effect in the acoustic spectrum to calculate the 
aircraft's altitude, speed, and engine speed. The real-time 
calculation of such signals can help determine the flight 
direction or location of the UAV [16]. 

A.  SPECTRAL ANALYSIS OF UAV TYPE SHAHED 
SOUND PATTERNS 
Class I micro and mini UAVs emit significantly less noise than 
turboprop UAVs. However, the noise level of first-class small 
and second-class tactical UAVs is still high enough to be heard 
at certain distances. The typical sound level of micro and mini 
drones is between 70 and 80 dB measured at a distance of one 
meter. If the distance to the sound source doubles, the sound 
pressure level drops by 6 dB. According to Work [1], this 
formula could been applied to show that the noise level will 
drop below 20 dB at a distance of around 350 m for a 70 dB 
drone and 1000 m for an 80 dB drone. This means that in a 
quiet rural area, the average ambient noise will be loud enough 
to mask the residual noise of first-class drones from the first 
and second subgroups. 

Very interesting studies on the noise level of first-class 
UAVs could been found at [17]. As a result, of the study of the 
noise generated by DJI's Mavic and Inspire 2 drones, the 
following data were obtained (Table 2). 

Table 2. Noise generated by drones 

Height, m. 
Noise, dB 

DJI's Mavic Inspire 2 
Environment - 0  43 41 

7,5 57 68 
15 52 65,5 
30 45,5 55,5 
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As for tactical UAVs of the second-class weighing 150 kg 
or more, which are usually already equipped with an internal 
combustion engine or a turboprop or jet engine, the situation 
with detecting such UAVs is somewhat better in terms of the 
noise level they generate during flight. 

Thus, the Shahed-136 UAV is equipped with a four-
cylinder horizontally opposed two-stroke gasoline engine with 
air cooling (L550E, MD 550), which develops a power of 37 
kW (50 h.p) with a rather high power-to-weight ratio: 2.3 
kW/kg. It uses pulse ignition, four carburetors, and lubrication 
with a lubricant mixture with a fuel-to-oil ratio of 25:1 (for 
mineral oils) or 50:1 (for synthetic oils) [18]. The air cooling 
system makes the UAV a bright target in the infrared range as 
well. 

The power plant of the Shahed-136 UAV emits powerful 
sounds in a wide range of frequencies. In calm weather, the 
noise from a running engine could been heard at a distance of 
more than 10 km, making them targets suitable for acoustic 
detection. 

The noise spectrum of a propeller power plant includes the 
tonal components of the propeller noise at frequencies that are 
multiples of the blade frequency and the piston engine at 
frequencies that are multiples of the cylinder flash frequency. 
The frequencies of the cylinder tones (𝑓ц) and engine tones (𝑓д) 
in the engine noise spectrum have been determined by the 
relations (1): 

 

𝑓ц =
𝑘𝑛д

30𝑠д

, 

𝑓д = 𝑘𝑓ц𝑁ц, 
(1) 

 
where 𝑘 is the number (order) of the tone, 𝑛д - engine speed 

(revolutions per minute, rpm), 𝑠д - number of engine strokes, 
𝑁ц - number of cylinders. 

Thus, for a four-cylinder two-stroke engine MD 550 with a 
speed in the range of 4000 - 7500 rpm, given a cruising speed 
of 140-150 km/h (5500-6000 rpm), we can obtain the following 
calculated data of the sound frequency in Hz (Table 3). 

Table 3. Shahed sound frequency  

Engine speed, rpm. 
Number (order) of the tone, 𝒌 
1 2 3 4 

4000 267 1067 2400 4267 
5500 367 1467 3300 5867 
6000 400 1600 3600 6400 
6500 433 1733 3900 6933 
7500 500 2000 4500 8000 

 
The spectral analysis of the sound fragment (duration 14 

seconds, Fig. 1a), made by the author of the article using a real 
flight recording of the UAV Shahed-136, confirms the 
calculated results regarding the range of engine operation 
frequencies (Fig.1b). 

The main sound samples were in the range up to 3 kHz (Fig. 
2).  Fig. 2 shows fragments of the spectra of two sound samples, 
one of which (Fig. 2a) corresponds to the sample (Fig. 1) made 
over the city and obviously more noisy, and the sound recorded 
outside the city on the flight path (Fig. 2b), which has more 
clearly defined peaks of the fundamental frequency and 
harmonic components. 

 

 

Figure 1a. Sample of the Shahed-136 sound 

 

Figure 1b. Spectral analysis of the Shahed-136 sound. 

 

a) Sound made over the city 

 

b) Sound recorded outside the city on the flight path 
Figure 2. Spectral analysis of the Shahed-136 sound. 
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Obviously, the flight carried out at speeds close to the 
maximum at the time of the target approach. The spectral 
analysis of the sound of the Shahed-136 UAV engine could 
been used in further studies of acoustic detection methods. 

B. MODELING THE DETECTION OF SOUND DIRECTION 
OF THE SHAHED TYPE UAVS 
The approaches to acoustic analysis and detection of UAVs 
considered in [2-4] involved the use of ground-based acoustic 
arrays of highly sensitive microphones to detect objects and 
transmit data to the relevant information systems or mobile 
response teams. In addition, some works [19, 20] considered 
the principles of building systems for preventing collisions 
with other UAVs, which could been used as starting points for 
building interception systems. 

The detection of the direction of sound radiation is based on 
an approach described in the literature as beamforming. 
Beamforming is a signal processing operation used by antenna 
arrays to create a spatial filter; it filters out signals from all 
directions except the desired one [21]. Beamforming could 
been used to increase the signal-to-noise ratio (SNR) of desired 
signals, to create a beamforming pattern, or even to 
transmit/receive multiple data streams simultaneously and at 
the same frequency. Beamforming is a signal processing 
technique that aims to estimate the direction of signals entering 
a sensor array. In beamforming, we use weights that are applied 
to each element of the array in digital or analog form. We 
experiment with the weights to form the beam(s) of the array, 
which is what gave rise to the name beamforming. We can steer 
these beams extremely fast; much faster than mechanically 
rotated antennas, which can be seen as an alternative to phased 
arrays. 

Let us consider the simplified mathematics of beam 
formation (Fig. 3). 

 

Figure 3. Beamforming. 

If the sound wave arrives at an angle 𝜃 other than zero at 
the third microphone, then it arrives at the 1st and 2nd 
microphones with a delay 𝜏ଶ, 𝜏ଷ due to the need to travel an 
additional distance 𝑑ఛ  (2). 

 
𝑑ఛ = 𝑑 cos(90 − 𝜃), (2) 

𝜏 =
𝑑 sin 𝜃

𝑐
, 

 
where c is the speed of sound under certain environmental 

conditions. 
The sound generated by the UAV is transmitted in a certain 

band 𝑥(𝑡) with a carrier frequency 𝑓௖ and can be written as: 
𝑥(𝑡)𝑒ଶ௝గ௙೎௧. 

If the first microphone receives the signal at time 𝑡, then the 
second microphone will receive the signal at time 𝑡 − 𝜏, i.e. 
𝑥(𝑡 − 𝜏)𝑒ଶ௝గ௙೎(௧ିఛ). If we replace 𝑡 with 𝑇𝑛, where 𝑇 is the 
sampling period and 𝑛 = {1,2,3, … } and considering that 𝜏 is 
much smaller than 𝑇𝑛, we can write (3) 

 

𝑥(𝑛)𝑒ିଶ௝గ௙೎ௗ ୱ୧୬
ఏ
௖ . (3) 

 
Given that 𝑓௖ = 𝑐/𝜆 and moving from distances to the ratio 

between the sound wavelength and the distance between 
microphones 𝑑ఒ = 𝑑/𝜆, we can write (4) for the kth element: 

 
𝑥(𝑛)𝑒ିଶ௝గ௞ ௗഊୱ୧୬ ఏ . (4) 

 
For an array of 𝐾 microphones, the expression could been 

written as a vector (5): 
 

𝑥

⎣
⎢
⎢
⎡

𝑒ିଶ௝గ(଴) ௗഊୱ୧୬ ఏ

𝑒ିଶ௝గ(ଵ) ௗഊୱ୧୬ ఏ

𝑒ିଶ௝గ(ଶ) ௗഊୱ୧୬ ఏ
…

𝑒ିଶ௝గ(௄ିଵ) ௗഊୱ୧୬ ఏ⎦
⎥
⎥
⎤

, (5) 

 
The vector 𝑥 is called the steering vector, which is often 

referred to in the beamforming literature as the 𝑠 vector [22]. 
To simulate the operation of a linear array of three 

microphones, let's apply the control vector s to the sound signal 
(Fig. 1), assuming that the sound came at an angle of 20 degrees 
(𝜃 = 20°), and the ratio of the distance between the 
microphones to the wavelength is 0.5. The result (Fig. 4) shows 
three sound signals shifted in time by 𝑡. 

 

 

Figure 4. Three sound signals shifted in time by steering 
vector. 

The steering vector, which depends solely on the angle of 
incidence and the geometry of the microphone array, is 
calculated for these conditions as follows: 
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[1.+0.j, 0.47618256-0.87934645j,-0.54650034-

0.83745888j]. 
 
The Delay-and-Sum Beamformer applies a time delay to 

the input signal from each element and sums the output. If we 
set the time delays correctly, we will have one high output 
signal. We can then use the time delays that created this signal 
to determine the angle of its arrival. 

The search for the sound wave's direction-of-arrival (DOA) 
involves scanning (sampling) all directions of arrival from -π 
to +π (from -180 to +180 degrees), for example, in 1-degree 
increments. In each direction, we calculate weights (steering 
vector coefficients) using a beamformer. Applying the weights 
to our input signal (previously passed through the 20 degree 
beamforming procedure) will give us a one-dimensional array 
of samples as if we received it with 1 directional antenna. We 
can then calculate the signal strength by calculating the 
correlation of the shifted signals for each scan angle. The signal 
of maximum power (correlation) will correspond to an arrival 
angle of 20 degrees (Fig. 5a). 

 

 

Figure 5a. The signal of maximum power (20 degrees) 

We can steer the array at different angles and choose the 
angle that gives the best response. We process the input signal 
with the control vector to get the response of the array. The 
angle that produces the largest response is the most likely sound 
arrival angle. The response of the array is determined by the 
dispersion of the output vector, a small dispersion means that 
the received signals have a high degree of constructive 
interference (maximum correlation) and the output signal will 
be the largest. If the variance is very large, the steering vector 
(time delays) is much deviated from the angle of the input 
signal. 

The modeling results are also presented using the polar 
coordinate system (Fig. 5b), which allows us to detect a second 
peak at 160 degrees. This ambiguity is associated with the 
linearity of the microphone array, which can receive a signal 
from both the front and the back (180 − 𝜃). This problem can 
be solved with the help of both software tools and by 
implementing volumetric (non-linear) arrays, such as 2 and 3D 
arrays. 

 

Figure 5b. DOA in polar coordinate system (20 degrees) 

C. MODELING THE DETECTION OF SOUND DIRECTION 
FROM TWO SHAHED UAV  
There are several approaches to forming a steering vector [21] 
and finding the angle of incidence of the signal, among which 
we can distinguish Bartlett Beamformer and Capon 
Beamformer. In both cases, the input signal is considered as a 
sequence of discrete power (amplitude) values at certain 
moments of time, the so-called snapshot model. In theoretical 
studies, a uniform linear matrix (ULM), or Uniform Linear 
Array (ULA), as described above, with K microphones and D 
signals is considered for all signals and models, for which the 
snapshot model notation can be written as (6): 
 

𝑥(𝑡) = 𝑣(𝑡)𝑓(𝑡) + 𝑛(𝑡), (6) 
 
where �⃗� is a vector of input signal of dimension (𝐾 × 1) 

received at time 𝑡, 𝑣 is a matrix of control vectors of dimension 
(𝐾 × 𝐷), 𝑓(𝑡) is a random vector with zero mean values, which 
includes desired and possibly undesired input signals, with 
dimension (D × 1), 𝑛(𝑡) is a complex additive white Gaussian 
noise. 

To simplify calculations in hardware of low power and 
performance, model (6) is represented in a vectorized form (7): 

 
𝑋 = 𝑉𝐹 + 𝑁, (7) 

 
in which all terms correspond to the model (6) in terms of 

content, and in their dimensions 1 is replaced by 𝑇. 
Bartlett Beamformer is a beam scanning algorithm that 

scans beams using a steering vector and collects the response 
of an array of microphones (sensors) for each angle of 
incidence [23]. The angle with the highest response level is 
recognized as the Angle of Arrival (AoA), and if there are 
several angles of incidence, several peaks will be calculated, 
which will represent the angles of arrival of the signals. 

The Delay-and-Sum Beamformer estimates the variance of 
the output vector (the response of the control vector to the input 
signal) to estimate the signal power for each angle of incidence 
(arrival) 𝜃, as described in the previous section. Bartlett 
Beamformer is able to directly estimate the signal power in the 
direction of 𝜃 using expression (8) - the time-averaged power 
of the output vector [24]: 
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𝒫 =
1

𝑇
෍[𝑣∗(𝜃௦)்𝑥(𝑡)]ଶ,

்ିଵ

௧ୀ଴

 (8) 

 
Using the time-averaged power of the output vector (), we 

can obtain a formula for calculating the Bartlett power of the 
signal using only the control vector and the correlation matrix 
of the input signal R_X (9): 

 

𝒫஻ = 𝑣∗்𝑅௑𝑣, (9) 
 
where  

𝑅௑ =
𝑋𝑋∗்

𝐾
. 

 
Capon Beamformer, also known as Minimum Variance 

Distortionless Response (MVDR) Beamformer, is also a ray-
scanning algorithm for determining the angles of incidence, 
which minimizes the variance of signals during their processing 
and allows, in addition to detecting the angles of incidence, to 
make a complete reconstruction of signals that came from 
different directions and were heavily noisy. The signal power 
is calculated using expression (10) [25]: 

 

𝒫஼ =
1

𝑣∗்𝑅௑
ିଵ𝑣

, (10) 

 
We will search for the angles of arrival of the sound signal 

from two UAVs using the Bartlett Beamformer and Capon 
Beamformer (Minimum Variance Distortionless Response 
Beamformer, MVDR) approaches to calculating the power of 
the output signals. As input data for the modeling, we will use 
sound signals recorded during the actual use of the UAV 
Shahed-136 at different times. The first sound signal (Fig. 1), 
which was used in the previous study, came at an angle of 10 
degrees and the second signal of slightly lower power (recorded 
for UAVs at a greater distance) came at an angle of 55 degrees 
are shown in Fig. 6. 

 

Figure 6. Sound from two Shahed UAV 

The result of processing the signals with an input array 
consisting of 4 microphones and creating a steering vector of 
dimension (4 × 2): 

 
(array([[ 1.+0.j,                          1. +0.j                              ], 
        [0.85485145-0.51887281j,-0.74183541-.67058201j ], 
        [0.46154202-0.88711835j,0.10063955+0.99492295j], 
        [-0.06575172-0.99783601j,0.5925194-.80555614j]] ), 
 (4, 2)),  

is shown in Fig.7. 
 

 

Figure 7. The result of processing two input signals 

 
The correlation matrix 𝑅௑ of size (4 × 4) for the received 

signals (Fig. 7) was as follows: 
(array([[ 0.06260932+0.j,  0.0448803 +0.03258401j, 
       0.02869024+0.04640957j,-0.00310373+0.06243946j], 
        [ 0.0448803 -0.03258401j,  0.06619568+0.j, 
        0.04492317+0.0363746j,  0.02826974+0.04641909j], 
        [ 0.02869024-0.04640957j,  0.04492317-0.0363746j, 
          0.06661629+0.j,  0.04488532+0.03302857j], 
       [-0.00310373-0.06243946j,  0.02826974-0.04641909j, 
          0.04488532-0.03302857j,  0.06265865+0.j]]), 
 (4, 4)). 
 
The use of these beamforming methods made it possible to 

determine accurately the angles of arrival of the sounds of the 
UAV engines (Fig. 8). 

 

 

Figure 8. AoAs of two input signals (10 and 55 degrees) 

The analysis of Figure 8 also confirms the different power 
levels of the signals, since the signal that arrived at an angle of 
10 degrees was more powerful, we can observe a higher peak 
on the graph than the signal that arrived at an angle of 55 
degrees.  
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IV. CONCLUSIONS 
The results of the research and calculations carried out within 
the framework of the goals and objectives allow us to draw the 
following conclusions: 

1. Current acoustic detection methods effectively detect 
specific types of UAVs with a high degree of accuracy. 
The distinct sound spectrum produced by the MD 550 
engine enables the detection of Shahed-136 UAVs in 
dry, calm conditions with high probability. 

2. The sound beamforming techniques, specifically the 
Bartlett Beamformer and Capon Beamformer, facilitate 
the calculation of both the azimuth and altitude of 
targets. These methods also allow for the simultaneous 
tracking of multiple targets. 

3. The effectiveness of acoustic detection is influenced by 
several critical factors, including the distance between 
microphones. This distance is determined by the design 
of the array, and in the case of an array mounted on a 
UAV interceptor; it is also constrained by the UAV's 
design. 

4. Improving the quality of UAV classification based on 
the sound patterns of their engine operation will require 
a significant increase in the training dataset. 

5. Further research is needed in the area of acoustic 
detection and classification, particularly for scenarios 
involving multiple UAV attacks, where it is essential to 
allocate targets among UAV interceptors effectively. 

6. The research confirms the possibility of building 
interceptor UAVs with microphones on board in terms 
of the geometric constraints imposed by existing 
prototypes. The practical modeling results obtained and 
the approaches considered are also a good starting point 
for the further development of combined UAV intercept 
systems.   

7. Obviously, anti-drone systems for the considered class 
of UAVs will implement the following algorithm: 
 Detection and identification of the UAV class using 

machine learning methods. 
 Calculating the height and azimuth of an enemy 

UAV. 
 Bringing the interceptor UAV to the target at a 

distance that allows the infrared camera to work. 
 Capturing the enemy UAV with an infrared camera. 
 Tracking the UAV and subsequent destruction. 

8. Further research is needed on the issue of guiding the 
UAV interceptor to the enemy drone using an infrared 
camera. The issue is quite promising in terms of using 
second-class UAVs with appropriate gasoline engines 
with a characteristic spectrum of thermal radiation, in 
which even inexpensive cameras available today work 
very well. 
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