Methodology for Building Fuzzy Knowledge Bases to Support Medical Decisions

Authors

  • Marianna Sharkadi
  • Nelli Malyar-Gazda
  • Mykola Malyar

Keywords:

fuzzy sets, fuzzy knowledge base, fuzzy modelling, fuzzy inference system

Abstract

The article examines key aspects of applying artificial intelligence theory – especially fuzzy logic techniques – to address decision-making challenges in medicine under uncertain conditions. It provides an in-depth methodology for developing fuzzy knowledge bases tailored to the unique characteristics of medical data, taking into account its multifactorial complexity and inherent variability. Emphasis is placed on how fuzzy models enhance processes such as diagnosis, continuous monitoring of patients, and risk evaluation related to anesthetic management before surgery. In particular, the study highlights the necessity of second-order fuzzy logic models, which enable dynamic and flexible data processing while balancing analytical precision with clarity for healthcare professionals. The paper illustrates the use of expert insights formatted as “If-Then” linguistic rules to clarify the relationships among various physiological parameters. Additionally, it outlines procedures for constructing membership functions, implementing second-order fuzzy sets, and applying fuzzy inference algorithms. These approaches demonstrate that integrating fuzzy logic into medical diagnostics not only improves the reliability of preoperative anesthetic risk assessments but also minimizes decision-making errors and optimizes patient treatment protocols.

References

Q. Liang, J. M. Mendel, “Interval type-2 fuzzy logic systems: theory and design,” IEEE Transactions on Fuzzy Systems, vol. 8, issue 5, pp. 535–550, 2000. https://doi.org/10.1109/91.873577.

J. M. Fernandes, S. M. Vieira, F. Leite, C. Palos, S. Finkelstein, J. M. C. Sousa, “Clinical decision support systems for triage in the emergency department using intelligent systems: A review,” Artificial Intelligence in Medicine, vol. 102, 101762, 2020. https://doi.org/10.1016/j.artmed.2019.101762.

A. Mustaqeem, S. M. Anwar, M. Majid, “A modular cluster based collaborative recommender system for cardiac patients,” Artificial Intelligence in Medicine, vol. 102, 101761, 2020. https://doi.org/10.1016/j.artmed.2019.101761.

L. Souza-Pereira, N. Pombo, S. Ouhbi, V. Felizardo, N. Garcia, “Clinical decision support systems for chronic diseases: A systematic literature review,” Comput. Methods Program Biomed, vol. 195, 105565, 2020. https://doi.org/10.1016/j.cmpb.2020.105565.

O. O. Olakotan, M. M. Yusof, “Evaluating the alert appropriateness of clinical decision support systems in supporting clinical workflow,” Journal Biomedical Informatics, vol. 106, 103453, 2020. https://doi.org/10.1016/j.jbi.2020.103453.

M. P. MsRae, B. Bozkurt, C. M. Ballantyne, X. Sanchez, N. Christodoulides, G. Simmons et al., “Cardiac ScoreCard: A diagnostic multivariate index assay system for predicting a spectrum of cardiovascular disease,” Expert Systems with Applications: An International Journal, vol. 54, pp. 136–147, 2016. https://doi.org/10.1016/j.eswa.2016.01.029.

S. Thukral, V. Rana, “Versatility of fuzzy logic in chronic diseases: A review,” Medical Hypotheses, vol. 122, pp. 150–156, 2016. https://doi.org/10.1016/j.mehy.2018.11.017.

I. Gadaras, L. Mikhailov, “An interpretable fuzzy rule-based classification methodology for medical diagnosis,” Artif. Intell. Med., vol. 47, issue 1, pp. 25–41, 2009. https://doi.org/10.1016/j.artmed.2009.05.003.

S. A. Mokeddem, “A fuzzy classification model for myocardial infarction risk assessment,” Applied Intelligens, vol. 48, pp. 1233–1250, 2018. https://doi.org/10.1007/s10489-017-1102-1.

D. Nauck, R. Kruse, “Obtaining interpretable fuzzy classification rules from medical data,” Artif. Intell. Med., vol. 16, issue 2, pp. 149–169, 1999. https://doi.org/10.1016/S0933-3657(98)00070-0.

A. Kalantari, A. Kamsin, S. Shamshirband, A. Gani, H. Alinejad-Rokny, A. T. Chronopoulos, “Computational intelligence approaches for classification of medical data: State-of-the-art, future challenges and research directions,” Neurocomputing, vol. 276, pp. 2–22, 2018. https://doi.org/10.1016/j.neucom.2017.01.126.

H. Jemal, Z. Kechaou, M. Ben Ayed, “Enhanced decision support systems in intensive care unit based on intuitionistic fuzzy sets,” Advances in Fuzzy Systems, vol. 2017, 7371634, 8 pages, 2017. https://doi.org/10.1155/2017/7371634.

M. Pota, M. Esposito, G. De Pietro, “Designing rule-based fuzzy systems for classification in medicine,” Knowledge-Based Systems, vol. 124, pp. 105–132, 2017. https://doi.org/10.1016/j.knosys.2017.03.006.

A. Minutolo, M. Esposito, G. De Pietro, “A fuzzy framework for encoding uncertainty in clinical decision-making,”, Knowledge-Based Systems, vol. 98, pp. 95–116, 2016. https://doi.org/10.1016/j.knosys.2016.01.020.

H. Ahmadi, M. Gholamzadeh, L. Shahmoradi, M. Nilashi, P. Rashvand, “Diseases diagnosis using fuzzy logic methods: A systematic and meta-analysis review,” Comput. Methods Program Biomed., vol. 161, pp. 145–172, 2018. https://doi.org/10.1016/j.cmpb.2018.04.013.

H. Kour, J. Manhas, V. Sharma, “Usage and implementation of neuro-fuzzy systems for classification and prediction in the diagnosis of different types of medical disorders: a decade review”, Artif. Intell. Rev., vol. 53, pp. 4651-4706, 2020. https://doi.org/10.1007/s10462-020-09804-x.

N. A. Sajadi, S. Borzouei, H. Mahjub, M. Farhadian, “Diagnosis of hypothyroidism using a fuzzy rule-based expert system,” Clinical Epidemiology and Global Health, vol. 7, issue 4, pp. 519–524, 2019. https://doi.org/10.1016/j.cegh.2018.11.007.

G. Arji, H. Ahmadi, M. Nilashi, T. A. Rashid, O. H. Ahmed, N. Aljojo, et al, “Fuzzy logic approach for infectious disease diagnosis: A methodical evaluation, literature and classification,” Biocybernetics and Biomedical Engineering, vol. 39, issue 4, pp. 937–955, 2019. https://doi.org/10.1016/j.bbe.2019.09.004.

F. Amato, A. Lopez, E.M. Pena-Mendez, P. Vanhara, A. Hampl, J. Havel, “Artificial neural networks in medical diagnosis,” J. Appl. Biomed., vol. 11, issue 2, pp.47–58, 2013. https://doi.org/10.2478/v10136-012-0031-x.

J. Jiang, H. Wang, J. Xie, X. Guo, Y. Guan, Q. Yu, “Medical knowledge embedding based on recursive neural network for multi-disease diagnosis,” Artif. Intell. Med., vol. 103, 101772, 2020. https://doi.org/10.1016/j.artmed.2019.101772.

R. Alizadehsani, “Machine learning-based coronary artery disease diagnosis: A comprehensive review,” Computers in Biology and Medicine, vol. 111, 103346, 2019. https://doi.org/10.1016/j.compbiomed.2019.103346.

U. R. Acharya, H. Fujita, V. K. Sudarshan, S. L. Oh, M. Adam, J. H. Tan et al, “Automated characterization of coronary artery disease, myocardial infarction, and congestive heart failure using contourlet and shearlet transforms of electrocardiogram signal,” Knowl.-Based Syst., vol. 32, issue 15, pp. 156-166, 2017. https://doi.org/10.1016/j.knosys.2017.06.026.

K. C. Tan, Q. Yu, C. M. Heng, T. H. Lee, “Evolutionary computing for knowledge discovery in medical diagnosis,” Artif. Intell. Med., vol. 27, issue 2, pp. 129–154, 2003. https://doi.org/10.1016/S0933-3657(03)00002-2.

Y.-J. Park, S.-H. Chun, B.-C. Kim, “Cost-sensitive case-based reasoning using a genetic algorithm: Application to medical diagnosis,” Artif. Intell. Med., vol. 51, issue 2, pp. 133–145, 2011. https://doi.org/10.1016/j.artmed.2010.12.001.

M. Wang, H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing, vol. 88, 105946, 2020. https://doi.org/10.1016/j.asoc.2019.105946.

H. L. Chen, B. Yang, G. Wang, S.-J. Wang, J. Liu, D.-Y. Liu, “Support vector machine based diagnostic system for breast cancer using swarm intelligence,” J. Med. Syst., vol. 36, issue 4, pp. 2505–2519, 2012. https://doi.org/10.1007/s10916-011-9723-0.

L. A. Zadeh, “Fuzzy sets as a basis for theory of possibility,” Fuzzy Sets and Systems, vol. 100, Suplement 1, pp. 9-34, 1999. https://doi.org/10.1016/S0165-0114(99)80004-9.

J. M. Mendel, R. I. John, F. Liu, “Interval type-2 fuzzy logic systems made simple,” IEEE Trans. Fuzzy Syst., vol. 6, pp. 808-821, 2006. https://doi.org/10.1109/TFUZZ.2006.879986.

ASA Physical Status Classification System. [Online]. Available at: https://www.asahq.org/standards-and-guidelines/asa-physical-status-classification-system.

M. M. Sharkadi, “Fuzzy sets of the second kind”, Scientific Bulletin of Uzhhorod University. Series ‘Mathematics and Informatics’, vol. 2, no. 41, pp. 163-170, 2022. (in Ukrainian). https://doi.org/10.24144/2616-7700.2022.41(2).163-170.

P. Kora, K. Meenakshi, K. Swaraja, A. Rajani, K. M. Islam, “Detection of cardiac arrhythmia using fuzzy logic,” Inform. Med. Unlocked, vol. 17, 100257, 2019. https://doi.org/10.1016/j.imu.2019.100257.

A. Lahsasna, R. N. Ainon, R. Zainuddin, A. Bulgiba, “Design of a fuzzy-based decision support system for coronary heart disease diagnosis,” J. Med. Syst., vol. 36, issue 5, pp. 3293–3306, 2012. https://doi.org/10.1007/s10916-012-9821-7.

D. Pal, K. M. Mandana, S. Pal, D. Sarkar, C. Chakraborty, “Fuzzy expert system approach for coronary artery disease screening using clinica parameters,” Knowl.-Based Syst., vol. 36, pp. 162–174, 2012. https://doi.org/10.1016/j.knosys.2012.06.013.

S. Das, P. K. Ghosh, S. Kar, “Hypertension diagnosis: A comparative study using fuzzy expert system and neuro fuzzy system,” Proceedings of the IEEE International Conference on Fuzzy Systems, Hyderabad, 2013, pp. 1-7. https://doi.org/10.1109/FUZZ-IEEE.2013.6622434.

M. M. Malyar, N. M. Malyar-Gazda, M. M. Sharkadi, “Fuzzy model for intellectualizing medical knowledge,” Scientific Journal “Radioelectronics, Informatics, Management,” no. 2, pp. 61-70, 2024. https://doi.org/10.15588/1607-3274-2024-2-7.

A. Serkov, O. Kasilov, B. Lazurenko, V. Pevnev, & K. Trubchaninova, “Strategy of building a wireless mobile communication system in the conditions of electronic counteraction,” Radioelectronic and Computer Systems,” no. 2, pp. 160-170, 2023. https://doi.org/10.32620/reks.2023.2.13.

S. Vladov, L. Scislo, V. Sokurenko, O. Muzychuk, V. Vysotska, A. Sachenko, A. Yurko, “Helicopter turboshaft engines’ gas generator rotor R.P.M. neuro-fuzzy on-board controller development,” Energies, vol. 17, 4033, 2024. https://doi.org/10.3390/en17164033.

Downloads

Published

2025-07-01

How to Cite

Sharkadi, M., Malyar-Gazda, N., & Malyar, M. (2025). Methodology for Building Fuzzy Knowledge Bases to Support Medical Decisions. International Journal of Computing, 24(2), 351-358. Retrieved from https://www.computingonline.net/computing/article/view/4019

Issue

Section

Articles