Chatbot Assistant for Enhancing Religious Court Services in Indonesia Using Deep Learning-based Algorithms
Keywords:
chatbot, court services, deep learning, long short-term memory, religious courtsAbstract
The Religious Courts have the authority to carry out and settle Islamic law cases and need to continue to adapt to improve legal services for Muslim communities in Indonesia. This research aims to build chatbot artificial intelligence technology to improve the services of the Religious Courts, which are optimal, available at any time, responsive, and real-time. Chatbot technology is built using the Deep Neural Network (DNN), Transfer Learning-based, and Long Short-Term Memory (LSTM) as deep learning methods. Experiments were conducted using 1,702 pairs of questions and answers with service and case labels handled by the Religious Court. Experiment results using LSTM with 50 epochs, the SoftMax activation function, and Adam's optimization show that the LSTM has an accuracy rate of 0.9583 and a loss of 0.0848. LSTM has the best results compared to Transfer Learning-based and DNN on the chatbot service of the Religious Courts in Indonesia. This research contributes to using artificial intelligence technology in the legal sector to improve the quality of Religious Courts services.
References
E. Zuhriah, Peradilan agama Indonesia: sejarah, konsep, dan praktik di pengadilan agama. Setara Press, 2014. (in Indonesian)
J. Aripin, “Reformasi Hukum dan Posisi Peradilan Agama di Indonesia,” Al Qalam, vol. 26, no. 1, pp. 45–73, 2009. (in Indonesian). https://doi.org/10.32678/alqalam.v26i1.1513.
Pengadilan Agama Giri Menang, “Pengadila Agama Seluruh Indonesia,” pa-girimenang.go.id. [Online]. Available at: https://pa-girimenang.go.id/pengadilan-agama-seluruh-indonesia. (in Indonesian).
A. S. Wardani, “Pengguna Internet Dunia Tembus 4,66 Miliar, Rata-Rata Online di Smartphone,” liputan6.com, 2021. [Online]. Available at: https://www.liputan6.com/tekno/read/4469008/pengguna-internet-dunia-tembus-466-miliar-rata-rata-online-di-smartphone. (in Indonesian).
M. I. Marsyaf, “Jumlah Pengguna Internet Sedunia Mencapai 4,66 Miliar,” sindonews.com, 2021. https://tekno.sindonews.com/read/316920/207/jumlah-pengguna-internet-sedunia-mencapai-466-miliar-1611820860 (in Indonesian). (accessed Oct. 03, 2021).
V. B. Kusnandar, “Penetrasi Internet Indonesia Urutan ke-15 di Asia pada 2021,” Databoks, 2021. https://databoks.katadata.co.id/datapublish/2021/07/12/penetrasi-internet-indonesia-urutan-ke-15-di-asia-pada-2021 (in Indonesian). (accessed Oct. 03, 2021).
R. K. Nistanto, “Berapa Lama Orang Indonesia Akses Internet dan Medsos Setiap Hari?,” Kompas.com, 2021. https://tekno.kompas.com/read/2021/02/23/11320087/berapa-lama-orang-indonesia-akses-internet-dan-medsos-setiap-hari-?page=all#:~:text=Dari total populasi Indonesia sebanyak,3 persen dibandingkan tahun lalu. (in Indonesian).
K. Borne, “Top 10 List – The V’s of Big Data,” Data Science Central, 2014. https://www.datasciencecentral.com/profiles/blogs/top-10-list-the-v-s-of-big-data
S. Sagiroglu and D. Sinanc, “Big data: A review,” Proceedings of the 2013 International Conference on Collaboration Technologies and Systems, CTS 2013, 2013, pp. 42-47. https://doi.org/10.1109/CTS.2013.6567202.
S. Stieglitz, L. Dang-Xuan, A. Bruns, and C. Neuberger, “Socialmedia analytics,” Business and Information Systems Engineering, vol. 6, pp. 89–96, 2014, https://doi.org/10.1007/s12599-014-0315-7.
P. Brooker, J. Barnett, and T. Cribbin, “Doing social media analytics,” Big Data Soc, 2016, https://doi.org/10.1177/2053951716658060.
I. Lee, “Social media analytics for enterprises: Typology, methods, and processes,” Business Horizons, vol. 61, issue 2, pp. 199-210, 2018, https://doi.org/10.1016/j.bushor.2017.11.002.
S. Stieglitz, M. Mirbabaie, B. Ross, and C. Neuberger, “Social media analytics: Challenges in topic discovery, data collection, and data preparation,” Int J Inf Manage, vol. 39, pp. 156–168, 2018. https://doi.org/10.1016/j.ijinfomgt.2017.12.002.
P. M. Nadkarni, L. Ohno-Machado, and W. W. Chapman, “Natural language processing: An introduction,” Journal of the American Medical Informatics Association, vol. 18, no. 5, pp. 544–551, 2011, https://doi.org/10.1136/amiajnl-2011-000464.
V. K. Pandey and P. Rajput, “Review on natural language processing,” Journal of Critical Reviews, vol. 7, no. 10. pp. 1170–1174, 2020.
G. G. Chowdhury, “Natural language processing,” Annual Review of Information Science and Technology, vol. 37, pp. 51-89, 2005, https://doi.org/10.1002/aris.1440370103.
J. Hirschberg and C. D. Manning, “Advances in natural language processing,” Science (1979), vol. 349, no. 6245, pp. 261–266, 2015, https://doi.org/10.1126/science.aaa8685.
M. Dahiya, “A tool of conversation: Chatbot,” International Journal of Computer Sciences and Engineering, vol. 5, no. 5, pp. 158–161, 2017.
R. Muhtar et al., “Multinomial Naïve Bayes and Rapid Automatic Keywords Extraction for Taharah (Purify) Law Chatbot,” in Proceedings of the 1st International Conference on Islam, Science and Technology, ICONISTECH 2019, Bandung, 2020. https://doi.org/10.4108/eai.11-7-2019.2298028.
S. Hwang and J. Kim, “Toward a chatbot for financial sustainability,” Sustainability (Switzerland), vol. 13, no. 6, 2021, https://doi.org/10.3390/su13063173.
S. Khan and M. R. Rabbani, “Chatbot as islamic finance expert (CaIFE): When finance meets artificial intelligence,” in ACM International Conference Proceeding Series, 2020. https://doi.org/10.1145/3440084.3441213.
S. Khan and M. R. Rabbani, “Artificial Intelligence and NLP -Based Chatbot for Islamic Banking and Finance,” International Journal of Information Retrieval Research, vol. 11, no. 3, pp. 65–77, 2021, https://doi.org/10.4018/IJIRR.2021070105.
J. T. S. Quah and Y. W. Chua, “Chatbot assisted marketing in financial service industry,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, pp. 107–114. https://doi.org/10.1007/978-3-030-23554-3_8.
S. F. Suhel, V. K. Shukla, S. Vyas, and V. P. Mishra, “Conversation to Automation in Banking through Chatbot Using Artificial Machine Intelligence Language,” in ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), 2020, pp. 611–618. https://doi.org/10.1109/ICRITO48877.2020.9197825.
H. Hari, R. Iyer, and B. Sampat, “Customer Brand Engagement through Chatbots on Bank Websites– Examining the Antecedents and Consequences,” Int J Hum Comput Interact, vol. 38, no. 13, pp. 1212–1227, 2022, https://doi.org/10.1080/10447318.2021.1988487.
T. Okuda and S. Shoda, “AI-based chatbot service for financial industry,” Fujitsu Scientific and Technical Journal, vol. 54, no. 2, pp. 4–8, 2018.
S. Lee, J. Lee, and D. Chung, “A Study on the Factors Affecting the Acceptance Intention of Chatbot Service in the Financial Industry,” Journal of Korea Technology Innovation Society, vol. 24, no. 5, pp. 845–869, 2021, https://doi.org/10.35978/jktis.2021.10.24.5.845.
T. Hidayati, M. Irwan, and F. Nasution, “Pengaruh Fitur Chatbot Aisyah ( Asisten Interaktif Mandiri Syariah ) Terhadap Kualitas Pelayanan Nasabah,” Jurnal BanqueSyar’i, vol. 6, pp. 81–88, 2020.
B. P. Wicaksono and A. Zahra, “Design of the use of chatbot as a virtual assistant in banking services in Indonesia,” IAES International Journal of Artificial Intelligence, vol. 11, no. 1, pp. 23–33, 2022, https://doi.org/10.11591/ijai.v11.i1.pp23-33.
R. Richad, V. Vivensius, S. Sfenrianto, and E. R. Kaburuan, “Acceptance of Chatbot in the Banking Industry in Indonesia,” International Journal of Civil Engineering and Technology (IJCIET), vol. 10, no. 04, pp. 1270–1281, 2019. https://doi.org/10.34218/IJM.10.3.2019.011.
M. Nuruzzaman and O. K. Hussain, “IntelliBot: A Dialogue-based chatbot for the insurance industry,” Knowl Based Syst, vol. 196, 2020, https://doi.org/10.1016/j.knosys.2020.105810.
K. Palasundram, N. M. Sharef, N. A. Nasharuddin, K. A. Kasmiran, and A. Azman, “Sequence to sequence model performance for education chatbot,” International Journal of Emerging Technologies in Learning, vol. 14, no. 24, pp. 56–68, 2019, https://doi.org/10.3991/ijet.v14i24.12187.
G. R. Villanueva and T. Palaoag, “Design architecture of FAQ chatbot for higher education institution,” Journal of Advanced Research in Dynamical and Control Systems, vol. 12, no. 1 Special Issue, pp. 189–196, 2020, https://doi.org/10.5373/JARDCS/V12SP1/20201062.
A. Hajare, P. Bhosale, R. Nanaware, and G. Hiremath, “Chatbot for Education System,” International Journal of Advance Research, Ideas and Innovations in Technology ISSN:, 2018.
C. W. Okonkwo and A. Ade-Ibijola, “Chatbots applications in education: A systematic review,” Computers and Education: Artificial Intelligence, vol. 2. 2021. https://doi.org/10.1016/j.caeai.2021.100033.
E. Kasthuri and S. Balaji, “A chatbot for changing lifestyle in education,” in Proceedings of the 3rd International Conference on Intelligent Communication Technologies and Virtual Mobile Networks, ICICV 2021, 2021, pp. 1317–1322. https://doi.org/10.1109/ICICV50876.2021.9388633.
K. Chen, B. Su, R. Jones, M. Schmid, A. De Maria, and E. Kostenko, “VP34.20: Development of a chatbot education aid for prenatal testing options,” Ultrasound in Obstetrics & Gynecology, vol. 56, no. S1, pp. 201–202, 2020, https://doi.org/10.1002/uog.22853.
M. P., “The use of a chatbot in radiology education,” J Med Imaging Radiat Oncol, vol. 62, p. 97, 2018.
E. Maeda et al., “Promoting fertility awareness and preconception health using a chatbot: a randomized controlled trial,” Reprod Biomed Online, vol. 41, no. 6, pp. 1133–1143, 2020, https://doi.org/10.1016/j.rbmo.2020.09.006.
N. A. M. Mokmin and N. A. Ibrahim, “The evaluation of chatbot as a tool for health literacy education among undergraduate students,” Educ Inf Technol (Dordr), vol. 26, no. 5, pp. 6033–6049, 2021, https://doi.org/10.1007/s10639-021-10542-y.
C. W. Okonkwo and A. Ade-Ibijola, “Python-bot: A chatbot for teaching python programming,” Engineering Letters, vol. 29, no. 1, pp. 25–34, 2021.
C. Y. Chang, S. Y. Kuo, and G. H. Hwang, “Chatbot-facilitated Nursing Education: Incorporating a Knowledge Based Chatbot System into a Nursing Training Program,” Educational Technology and Society, vol. 25, no. 1, pp. 15–27, 2022.
Y. H. Chuang, Y. T. Chen, and C. L. Kuo, “The Design and Application of a Chatbot in Clinical Nursing Education,” Journal of Nursing, vol. 68, no. 6, pp. 19–24, 2021, https://doi.org/10.6224/JN.202112_68(6).04.
R. Srinivasan, M. Kavitha, R. Kavitha, and K. Thaslima Nasreen, “Chatbot application for tourism using natural language tool kit,” Turkish Journal of Computer and Mathematics Education, vol. 12, no. 9, pp. 1786–1789, 2021.
A. Acharya, Y. S. Sneha, A. R. Khettry, and D. Patil, “AtheNA an avid traveller using LSTM based RNN architecture,” Journal of Engineering Science and Technology, vol. 15, no. 2, pp. 1413–1428, 2020.
I. Nica, O. A. Tazl, and F. Wotawa, “Chatbot-based Tourist Recommendations Using Model-based Reasoning.,” in ConfWS, 2018, pp. 25–30.
T. Salisah, B. P. Sari, Y. Yulianto, and A. D. Hartanto, “Implementasi algoritma Boyer-Moore pada chatbot wisata yogyakarta,” Technomedia Journal, vol. 5, no. 1, pp. 54–66, 2020, https://doi.org/10.33050/tmj.v5i1.1189. (in Indonesian).
R. Wijayanto, F. Pradana, and F. A. Bachtiar, “Pembangunan sistem chatbot informasi objek wisata kota malang berbasis web,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 4, no. 5, pp. 1524–1530, 2020. (in Indonesian).
D. Rahayu, M. Mukrodin, and R. Hariyono, “Penerapan artificial intelligence dalam aplikasi chatbot sebagai helpdesk objek wisata dengan permodelan simple reflex-agent (Studi kasus : Desa Karangbenda),” Smart Comp :Jurnalnya Orang Pintar Komputer, vol. 9, no. 1, pp. 7–21, 2020, https://doi.org/10.30591/smartcomp.v9i1.1813. (in Indonesian).
D. S. A. Maylawati et al., “Chatbot for Virtual Travel Assistant with Random Forest and Rapid Automatic Keyword Extraction,” in 7th International Conference on Computing, Engineering and Design, ICCED 2021, 2021. https://doi.org/10.1109/ICCED53389.2021.9664876.
A. C. Sari, N. Virnilia, J. T. Susanto, K. A. Phiedono, and T. K. Hartono, “Chatbot developments in the business world,” Advances in Science, Technology and Engineering Systems, vol. 5, no. 6, pp. 627–635, 2020, https://doi.org/10.25046/aj050676.
M. Casillo, F. Colace, L. Fabbri, M. Lombardi, A. Romano, and D. Santaniello, “Chatbot in industry 4.0: An approach for training new employees,” in Proceedings of 2020 IEEE International Conference on Teaching, Assessment, and Learning for Engineering, TALE 2020, 2020, pp. 371–376. https://doi.org/10.1109/TALE48869.2020.9368339.
F. Clarizia, M. De Santo, M. Lombardi, and D. Santaniello, “E-learning and industry 4.0: A chatbot for training employees,” in Advances in Intelligent Systems and Computing, 2021, pp. 445–453. https://doi.org/10.1007/978-981-15-5859-7_44.
M. Chung, E. Ko, H. Joung, and S. J. Kim, “Chatbot e-service and customer satisfaction regarding luxury brands,” J Bus Res, vol. 117, pp. 587–595, 2020, https://doi.org/10.1016/j.jbusres.2018.10.004.
M. D. Illescas-Manzano, N. V. López, N. A. González, and C. C. Rodríguez, “Implementation of chatbot in online commerce, and open innovation,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 7, no. 2, 2021, https://doi.org/10.3390/joitmc7020125.
Sfenrianto and Vivensius, “Analyis on factors influencing customer experience of e-commerce users in Indonesia through the application of Chatbot technology,” J Theor Appl Inf Technol, vol. 98, no. 7, pp. 953–962, 2020.
M. M. Khan, “Development of An e-commerce Sales Chatbot,” in HONET 2020 - IEEE 17th International Conference on Smart Communities: Improving Quality of Life using ICT, IoT and AI, 2020, pp. 173–176. https://doi.org/10.1109/HONET50430.2020.9322667.
B. Wibowo, H. Clarissa, and D. Suhartono, “The Application of Chatbot for Customer Service in E-Commerce,” Engineering, MAthematics and Computer Science (EMACS) Journal, vol. 2, no. 3, pp. 91–95, 2020, https://doi.org/10.21512/emacsjournal.v2i3.6531.
F. Fitra Ramadhan, “Chatbot pada E-Commerce berbasis Android dengan Pendekatan Natural Language Processing,” JCSE Journal of Computer Science an Engineering, vol. 2, no. 1, pp. 27–39, 2021.
M. Rakhra et al., “E-Commerce Assistance with a Smart Chatbot using Artificial Intelligence,” in Proceedings of 2021 2nd International Conference on Intelligent Engineering and Management, ICIEM 2021, 2021, pp. 144–148. https://doi.org/10.1109/ICIEM51511.2021.9445316.
V. Socatiyanurak et al., “LAW-U: Legal Guidance through Artificial Intelligence Chatbot for Sexual Violence Victims and Survivors,” IEEE Access, vol. 9, pp. 131440–131461, 2021, https://doi.org/10.1109/ACCESS.2021.3113172.
V. A. H. Firdaus, P. Y. Saputra, and D. Suprianto, “Intelligence chatbot for Indonesian law on electronic information and transaction,” in IOP Conference Series: Materials Science and Engineering, 2020. https://doi.org/10.1088/1757-899X/830/2/022089.
S. Choi, J. Kim, J. Song, S. Jung, and S. Hong, “Labor Law Consulting System With IBM Watson Chatbot,” Journal of Digital Contents Society, vol. 20, no. 2, pp. 241–249, 2019, https://doi.org/10.9728/dcs.2019.20.2.241.
S. Dhavan, “Smart Medicare Chatbot Using Dialogflow and Support Vector Machine Algorithm,” Int J Res Appl Sci Eng Technol, vol. 9, no. 9, pp. 1848–1860, 2021, https://doi.org/10.22214/ijraset.2021.38240.
B. Tamizharasi, L. M. J. Livingston, and S. Rajkumar, “Building a medical chatbot using support vector machine learning algorithm,” in Journal of Physics: Conference Series, IOP Publishing, 2020, p. 12059. https://doi.org/10.1088/1742-6596/1716/1/012059.
J. K. Catapang, G. A. Solano, and N. Oco, “A Bilingual Chatbot Using Support Vector Classifier on an Automatic Corpus Engine Dataset,” in 2020 International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020, 2020, pp. 187–192. https://doi.org/10.1109/ICAIIC48513.2020.9065208.
X. Mu, X. Shen, and J. Kirby, “Support vector machine classifier based on approximate entropy metric for chatbot text-based communication,” International Journal of Artificial Intelligence, vol. 15, no. 2, pp. 1–16, 2017.
R. Muhtar et al., “Multinomial Naive Bayes and Rapid Automatic Keywords Extraction for Taharah (Purify) Law Chatbot,” in Proceedings of the 1st International Conference on Islam, Science and Technology, ICONISTECH 2019, 11-12 July 2019, Bandung, Indonesia., 2021. https://doi.org/10.4108/eai.11-7-2019.2298028.
T. Ige and S. Adewale, “AI powered anti-cyber bullying system using machine learning algorithm of multinomial naïve Bayes and optimized linear support vector machine,” arXiv preprint arXiv:2207.11897, 2022. https://doi.org/10.14569/IJACSA.2022.0130502.
G. S. S. Vikas, I. D. Kumar, S. A. Shareef, B. R. Roy, and G. Geetha, “Information Chatbot for College Management System Using Multinomial Naive Bayes,” in 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), IEEE, 2021, pp. 1149–1153. https://doi.org/10.1109/ICOSEC51865.2021.9591757.
S. Assayed, K. Shaalan, and M. Alkhatib, “A Chatbot Intent Classifier for Supporting High School Students,” EAI Endorsed Transactions on Scalable Information Systems, vol. 1, 2023. https://doi.org/10.4108/eetsis.v10i2.2948.
G. K. Vamsi, A. Rasool, and G. Hajela, “Chatbot: A deep neural network based human to machine conversation model,” in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), IEEE, 2020, pp. 1–7. https://doi.org/10.1109/ICCCNT49239.2020.9225395.
S. Prasomphan, “Improvement of chatbot in trading system for SMEs by using deep neural network,” in 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), IEEE, 2019, pp. 517–522. https://doi.org/10.1109/ICCCBDA.2019.8725745.
M. Jaiwai, K. Shiangjen, S. Rawangyot, S. Dangmanee, T. Kunsuree, and A. Sa-nguanthong, “Automatized educational chatbot using deep neural network,” in 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering, IEEE, 2021, pp. 5–8. https://doi.org/10.1109/ECTIDAMTNCON51128.2021.9425716.
H. Dihingia, S. Ahmed, D. Borah, S. Gupta, K. Phukan, and M. K. Muchahari, “Chatbot implementation in customer service industry through deep neural networks,” in 2021 International Conference on Computational Performance Evaluation (ComPE), IEEE, 2021, pp. 193–198. https://doi.org/10.1109/ComPE53109.2021.9752271.
M. Nuruzzaman and O. K. Hussain, “A survey on chatbot implementation in customer service industry through deep neural networks,” in 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE), IEEE, 2018, pp. 54–61. https://doi.org/10.1109/ICEBE.2018.00019.
Z. H. Syed, A. Trabelsi, E. Helbert, V. Bailleau, and C. Muths, “Question answering chatbot for troubleshooting queries based on transfer learning,” Procedia Comput Sci, vol. 192, pp. 941–950, 2021. https://doi.org/10.1016/j.procs.2021.08.097.
A. Kulkarni, A. Shivananda, A. Kulkarni, A. Kulkarni, A. Shivananda, and A. Kulkarni, “Building a chatbot using transfer learning,” Natural Language Processing Projects: Build Next-Generation NLP Applications Using AI Techniques, pp. 239–255, 2022. https://doi.org/10.1007/978-1-4842-7386-9_9.
V. Ilievski, C. Musat, A. Hossmann, and M. Baeriswyl, “Goal-oriented chatbot dialog management bootstrapping with transfer learning,” arXiv preprint arXiv:1802.00500, 2018. https://doi.org/10.24963/ijcai.2018/572.
V. Raj and M. S. B. Phridviraj, “A Generative Model Based Chatbot Using Recurrent Neural Networks,” in International Conference on Advanced Network Technologies and Intelligent Computing, Springer, 2022, pp. 379–392. https://doi.org/10.1007/978-3-031-28183-9_27.
P. Muangkammuen, N. Intiruk, and K. R. Saikaew, “Automated thai-faq chatbot using rnn-lstm,” in 2018 22nd International Computer Science and Engineering Conference (ICSEC), IEEE, 2018, pp. 1–4. https://doi.org/10.1109/ICSEC.2018.8712781.
P. Anki, A. Bustamam, H. S. Al-Ash, and D. Sarwinda, “Intelligent chatbot adapted from question and answer system using RNN-LSTM model,” in Journal of Physics: Conference Series, IOP Publishing, 2021, p. 012001. https://doi.org/10.1088/1742-6596/1844/1/012001.
N. A. Purwitasari and M. Soleh, “Implementasi Algoritma Artificial Neural Network Dalam Pembuatan Chatbot Menggunakan Pendekatan Natural Language Parocessing,” Jurnal IPTEK, vol. 6, no. 1, 2022, https://doi.org/10.31543/jii.v6i1.192.
S. K. Philip, H. Poonawala, and R. Anita, “Open world chatbot using neural networks in green cloud environment,” Journal of Green Engineering, vol. 10, no. 1, pp. 103–117, 2020.
F. Mustakim, F. Fauziah, and N. Hayati, “Algoritma Artificial Neural Network pada Text-based Chatbot Frequently Asked Question (FAQ) Web Kuliah Universitas Nasional,” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 5, no. 4, p. 438, 2021, https://doi.org/10.35870/jtik.v5i4.261.
Y. Windiatmoko, R. Rahmadi, and A. F. Hidayatullah, “Developing Facebook Chatbot Based on Deep Learning Using RASA Framework for University Enquiries,” IOP Conf Ser Mater Sci Eng, vol. 1077, no. 1, p. 012060, 2021, https://doi.org/10.1088/1757-899X/1077/1/012060.
F. Bagwan, R. Phalnikar, and S. Desai, “Artificially intelligent health chatbot using deep learning,” in 2021 2nd International Conference for Emerging Technology, INCET 2021, 2021. https://doi.org/10.1109/INCET51464.2021.9456195.
A. N. Aqil, B. Dirgantara, Istikmal, U. A. Ahmad, and R. R. Septiawan, “Robot Chat System (Chatbot) To Help Users ‘Homelab’ Based In Deep Learning,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 8, pp. 599–604, 2021, https://doi.org/10.14569/IJACSA.2021.0120870.
M. Dhyani and R. Kumar, “An intelligent Chatbot using deep learning with Bidirectional RNN and attention model,” in Materials Today: Proceedings, 2019, pp. 817–824. https://doi.org/10.1016/j.matpr.2020.05.450.
E. Kasthuri and S. Balaji, “Natural language processing and deep learning chatbot using long short term memory algorithm,” Mater Today Proc, 2021, https://doi.org/10.1016/j.matpr.2021.04.154.
D. Feblian and D. U. Daihani, “Implementasi Model Crisp-Dm Untuk Menentukan Sales Pipeline Pada Pt X,” Jurnal Teknik Industri, vol. 6, no. 1, pp. 1–12, 2017, https://doi.org/10.25105/jti.v6i1.1526. (in Indonesian)
R. Wirth and J. Hipp, “CRISP-DM: Towards a standard process model for data mining,” in Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining, Springer-Verlag London, UK, 2000.
P. Chapman et al., “The CRISP-DM user guide,” in 4th CRISP-DM SIG Workshop in Brussels in March, sn, 1999.
B. Bachmann, “CRISP-DM siap untuk Proyek Pembelajaran Mesin,” ICHI.PRO, 2021. https://ichi.pro/id/crisp-dm-siap-untuk-proyek-pembelajaran-mesin-46924957877610 (accessed Oct. 02, 2021).
D. S. Maylawati, H. Aulawi, and M. A. Ramdhani, “Flexibility of Indonesian text pre-processing library,” Indonesian Journal of Electrical Engineering and Computer Science, 2019, https://doi.org/10.11591/ijeecs.v13.i1.pp420-426.
S. Vijayarani, J. Ilamathi, and Ms. Nithya, “Preprocessing Techniques for Text Mining - An Overview,” International Journal of Computer Science & Communication Networks, vol. 5, no. 1, pp. 7–16, 2015. https://doi.org/10.5121/ijcga.2015.5105.
K. S. Nugroho, “Confusion Matrix untuk Evaluasi Model pada Supervised Learning,” Medium, 2019. [Online]. Available at: https://ksnugroho.medium.com/confusion-matrix-untuk-evaluasi-model-pada-unsupervised-machine-learning-bc4b1ae9ae3f.
N. Anisa, “Mengenal 3 Jenis Neural Network Pada Deep Learning,” Binus University, Apr. 21, 2022. [Online]. Available at:https://sis.binus.ac.id/2022/04/21/mengenal-3-jenis-neural-network-pada-deep-learning/.
S. MR and A. W. Davita, “4 Metode Deep Learning yang Digunakan dalam Data Science,” DQLab AI-Powered Learning, Sep. 17, 2022.
Digitalskola, “Deep Neural Networks: Subset Machine Learning Esensial,” DigitalSkola, Nov. 24, 2021. [Online]. Available at: https://blog.digitalskola.com/data-engineer/deep-neural-networks-subset-machine-learning-esensial/.
Q. Yang, Y. Zhang, W. Dai, and S. J. Pan, Transfer learning. Cambridge University Press, 2020. https://doi.org/10.1017/9781139061773.
S. Niu, Y. Liu, J. Wang, and H. Song, “A decade survey of transfer learning (2010–2020),” IEEE Transactions on Artificial Intelligence, vol. 1, no. 2, pp. 151–166, 2020. https://doi.org/10.1109/TAI.2021.3054609.
L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research on machine learning applications and trends: algorithms, methods, and techniques, IGI global, 2010, pp. 242–264. https://doi.org/10.4018/978-1-60566-766-9.ch011.
C. Lyman, “Apa itu Transfer Learning dalam AI?,” pintu.ac.id, Feb. 23, 2023. [Online]. Available at: https://pintu.co.id/blog/transfer-learning-adalah (accessed Jul. 11, 2023).
A. Maheshwari, “Report on Text Classification using CNN, RNN & HAN,” Medium.com, 2018. [Online]. Available at: https://medium.com/jatana/report-on-text-classification-using-cnn-rnn-han-f0e887214d5f.
X. Bai, “Text classification based on LSTM and attention,” Proceedings of the 2018 13th International Conference on Digital Information Management, ICDIM 2018, Institute of Electrical and Electronics Engineers Inc., Sep. 2018, pp. 29–32. https://doi.org/10.1109/ICDIM.2018.8847061.
J. Kim and N. Moon, “LSTM-Based Consumption Type Prediction Model,” in Lecture Notes in Electrical Engineering, Springer, Dec. 2020, pp. 564–567. https://doi.org/10.1007/978-981-13-9341-9_97.
D. Soutner and L. Müller, “Application of LSTM neural networks in language modelling,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, Berlin, Heidelberg, 2013, pp. 105–112. https://doi.org/10.1007/978-3-642-40585-3_14.
H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory recurrent neural network architectures for large scale acoustic modeling,” 2014. https://doi.org/10.21437/Interspeech.2014-80.
R. Ahmad, “Peradilan Agama di Indonesia,” YUDISIA: Jurnal Pemikiran Hukum dan Hukum Islam, vol. 6, no. 2, pp. 311–339, 2015.
A. I. Cahyani, “Peradilan Agama Sebagai Penegak Hukum Islam Di Indonesia,” Jurnal Al-Qadau: Peradilan Dan Hukum Keluarga Islam, vol. 6, no. 1, pp. 119–132, 2019. https://doi.org/10.24252/al-qadau.v6i1.9483.
A. Rosadi, Peradilan agama di Indonesia: dinamika pembentukan hukum. Bandung: Simbiosa Rekatama Media, 2015.
E. Yazan and M. F. Talu, “Comparison of the stochastic gradient descent based optimization techniques,” in 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), IEEE, 2017, pp. 1–5. https://doi.org/10.1109/IDAP.2017.8090299.
O. Shamir and T. Zhang, “Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes,” in International conference on machine learning, PMLR, 2013, pp. 71–79.
S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao, “Deep learning--based text classification: a comprehensive review,” ACM computing surveys (CSUR), vol. 54, no. 3, pp. 1–40, 2021, https://doi.org/10.1145/3439726.
H. Liang, X. Sun, Y. Sun, and Y. Gao, “Text feature extraction based on deep learning: a review,” EURASIP J Wirel Commun Netw, vol. 2017, no. 1, pp. 1–12, 2017, https://doi.org/10.1186/s13638-018-1056-y.
Downloads
Published
How to Cite
Issue
Section
License
International Journal of Computing is an open access journal. Authors who publish with this journal agree to the following terms:• Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
• Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
• Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.