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 ABSTRACT Cloud computing has become the cornerstone of low-latency and resource-efficient processing in 
distributed systems, particularly for applications such as the Internet of Things (IoT) and autonomous systems. 
However, these edge networks present significant challenges in trust and security management due to their inherently 
decentralized nature. This paper addresses this challenge by presenting a novel dynamic trust evaluation framework. 
The proposed framework models the spatial and temporal evolution of edge networks over time. It incorporates attack-
specific impact analysis and introduces new trust propagation mechanisms that account for the cascading effects of 
security events. Additionally, a comprehensive set of metrics is developed to evaluate detection rates, average trust 
levels, and network resilience, assessing performance against various attack scenarios. The framework is designed with 
a modular architecture, and its implementation has been tested in simulated environments. Results demonstrate that the 
proposed framework can maintain high detection accuracy with minimal trust degradation, even in the presence of 
severe attacks occurring at high frequencies. It outperforms existing state-of-the-art methods in terms of adaptability 
and the fine-grained modeling of trust dynamics.  
 

 KEYWORDS Edge Computing; Trust Management; Network Resilience; Dynamic Trust Propagation; Attack 
Detection; Security Frameworks; IoT Networks; Adversarial Scenarios; Spatial Propagation; Edge Security. 
 

I. INTRODUCTION 
dge computing has become a significant shift in modern 
computing infrastructures, addressing the limitations of 

traditional cloud-based systems by enabling data processing 
closer to its source [1, 2]. This approach is especially crucial 
for applications that are sensitive to latency and bandwidth, 
such as autonomous vehicles, smart healthcare systems, and the 
Internet of Things [3, 4]. 

But distributed edge computing environments have some 
additional challenges, particularly within security and trust 
management aspects [5]. 

Trust is one of the main metrics to evaluate nodes for their 
reliability and security in a network [6]. In edge computing, 

trust refers to the dynamic measure of a node's capability for 
secure and reliable execution, especially under adversarial 
conditions [7]. Unlike the static cloud environment, edge 
networks are inherently heterogeneous, resource-constrained, 
and dynamic; thus, traditional mechanisms for the evaluation 
of trust are insufficient. These features inherently call for a trust 
management framework that is dynamic, scalable, and 
adaptive, capable of handling unique challenges brought about 
by edge environments [8, 9]. 

These are security threats in edge computing, ranging from 
DDoS attacks, data breaches, and authentication failures [10]. 
These kinds of attacks compromise not only the individual 
nodes but also the general trust within the network. 

E
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Understanding the cascading impact of these types of attacks 
on network-wide trust and resilience is important in the 
development of robust mitigation strategies [11]. Whereas 
these existent approaches serve effectively within particular 
contexts, they fail to capture how trust dynamics interlink with 
security threats along the spatial and temporal dimensions. 

This paper presents the dynamic trust valuation model in an 
edge computing environment, considering the spatial 
propagation of trust impacts and modeling specific to attacks. 
The proposed framework models node and network-level 
evolutions of trust for comprehensive assessment of network 
resilience under different attack scenarios. It integrates the 
security based on trust dynamics with other performance 
metrics such as detection rate and connectivity for a more 
holistic understanding of security in edge networks. 

The contributions of this work are summarized as follows: 
1. Dynamic Trust Propagation: In this paper, a novel trust 

propagation approach is developed that models for spatial and 
temporal effects of the security events on the trust dynamics. 

2. Attack Type-specific Impact Analysis: The proposed 
framework classifies attack types and quantifies their different 
impacts on node and network trust. 

3. Integration of Complete Metrics: The model jointly 
investigates trust, detection rates, and network resilience to 
offer a complete insight into network behavior under 
adversarial conditions. 

4. Modular Design: The proposed framework will be 
implemented in a modular architecture to ensure that it is 
scalable and extensible for various edge computing scenarios. 

The rest of the paper is organized as follows. Section 2 
presents related work, emphasizing the main achievements and 
remaining research gaps in the field of trust and security 
management for edge computing. Section 3 describes the 
proposed model and methodology in detail, including the trust 
propagation mechanism and metrics that will be used for 
performance evaluation. Section 4 presents the experimental 
setup, while Section 5 presents the results and discusses the 
implications of the findings. Finally, Section 6 concludes the 
study and gives the direction of future research. 

2. STATE OF THE ART 
This section reviews the state-of-the-art methods and 
frameworks in trust evaluation and security management in 
edge computing environments. The discussion will be based on 
methodologies that pertain to multi-access edge computing 
(MEC), IoT-based systems, and dynamic security frameworks 
[12, 13]. Works reviewed show contributions at significant 
lengths while highlighting gaps the proposed model would 
address.  

A. TRUST EVALUATION AND AUTHENTICATION 
Ali et al.  (2024) [14] proposed a trust-aware authentication and 
task offloading scheme in MEC enabled by Zero Trust Security 
(ZTS) principles using a dual fuzzy logic system. The trust 
evaluation for an edge server is developed based on identity 
verification, biometric authentication, and Physical Unclonable 
Functions (PUF). 

The proposed approach provided better authentication 
accuracy with efficient task offloading, compared to the state-
of-the-art approaches in both task completion time and energy 
consumption. Although effective, their model is 
computationally expensive and does not provide dynamic 
propagation of trust across interrelated nodes – a feature that is 

captured by the proposed framework.  

B. SECURITY THREAT MITIGATION IN IOT AND SMART 
HEALTHCARE SYSTEMS 
Almalawi et al. (2024) [15] have proposed an intelligent 
framework for secure data transmission, using edge computing 
in smart healthcare systems. The technique adopted is a hybrid 
of Salp Swarm Optimization and the Radial Basis Functional 
Neural Network for threat classification with the aim of data 
privacy. The proposed model has given an accuracy of 99.87% 
with latency as low as 1.2 seconds, making it highly feasible 
for real-time medical usage. 

However, the study is application-specific and doesn't 
generalize into diverse attack scenarios, nor does it account for 
cascading effects of trust degradation, all of which our model 
is able to incorporate through both spatial and temporal trust 
propagations. 

Baranitharan et al. (2023) [16] present an adaptive cyber 
defense strategy for IoT networks in the healthcare domain, 
with special emphasis on collaborative resilience to dynamic 
attack vectors. The work proposed a modular approach toward 
defense, though limited within the healthcare networks. This 
model extends these ideas by embedding cross-domain 
applicability and narrows down the concept into trust as a 
dynamic metric. 

C. DYNAMIC SECURITY FRAMEWORKS 
Halgamuge and Niyato (2025) [17] proposed an adaptive edge 
security framework for IoT devices based on dynamic 
generation of policies using AI along with regulatory 
compliance systems. Their proposed framework is quite good 
in adapting to the ever-changing threats and, therefore, perfect 
for heterogeneous IoT environments. This, without explicit 
spatial models w.r.t. both trust and inter-node interaction, 
leaves room at a higher level of granularity that our approach 
to trust propagation complements in deriving richer context 
from network resilience. 

Xu et al.  (2024) [18] have proposed a multimodal 
transformation approach for edge computing using Graph 
Convolutional Networks (GCNs) for security situation 
assessment and threat prediction. Their model achieved more 
than 90% accuracy, proving the effectiveness of graph-based 
techniques. While their work was focused on prediction, the 
proposed model underlines the dynamic interaction of trust, 
detection, and resilience metrics, providing complementary 
capabilities. 

D. SCHEDULING OF TASKS AND RESOURCE 
ALLOCATION 
Zhang et al. (2024) [19] addressed secure resource allocation 
in multi-cloud edge computing with Deep Reinforcement 
Learning (DRL). It effectively minimized the cost for the 
system in question while ensuring data security. However, this 
investigation is missing a thorough trust perspective, which 
then limits its modeling of user trust as dynamic regarding 
resource allocation. The integration of these trust dynamics into 
the network performance analysis will help bridge that divide 
and provide a model. 

E. COMPARATIVE INSIGHTS 
The reviewed methodologies have significantly enhanced the 
security and trust management in edge computing. However, 
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most works done so far focus on static evaluations or specific 
application domains. Among the key gaps identified were: 

1. Dynamic Trust Modeling: Few of the current works deal 
with the spatial and temporal development of trust across 
networks. Herein, the proposed model introduces a dynamic 
trust propagation mechanism sensitive to both direct and 
indirect impacts of security events. 

2. Attack-specific Analysis: Most of the works provide a 
high-level security assessment, whereas the influence of 
specific attacks is barely explored in terms of degradation of 
trust. Our model fills this gap by providing a quantification of 
degradation of trust for various types of attacks. 

3. Holistic Metrics: Most of the works focus on accuracy 
and latency metrics, with no unified framework concerning 
trust, detection, and resilience. The proposed model will 
combine these metrics into an integrated overview of network 
behavior when under attack. 

Literature review reveals that robust trust evaluation lies at 
the heart of adaptive security frameworks in edge computing 
[17, 20]. Filling up the gaps regarding dynamic trust modeling, 
attack-specific impact analysis, and comprehensive metric 
integration [16, 21], the proposed model makes a substantial 
contribution to the field, complementing existing 
methodologies and extending their applicability. 

III. PROPOSED MODEL AND METHODOLOGY  
The proposed model presents a framework that deals with 
assessing trust dynamics in edge computing networks in 
addition to resilience under the threat of security [20, 22]. This 
section describes the design of the model, from describing the 
approach or methodology involved to the details of 
mathematical and computational constructs involved in 
simulating network behavior in assessing performance; from 
node-specific parameters to those of the network as a whole, 
necessary to dynamically ascertain trust while considering a 
variety of attack types for overall coverage. 

A. DYNAMIC MODEL OF TRUST 
The core of the proposed framework is a dynamic trust model 
that captures the evolution of trust across nodes due to security 
events. Each node in the network is associated with a time-

varying trust score ( )iT t , as a function of its interactions and 

events over time. For node i  at time t , the trust score is defined 
as: 
 

( ) ( 1) ( )event recovery
i i i iT t T t T T       ,       (1) 

 
where: 

• ( 1)iT t   - the trust score of node  at previous time 

step, 

• event
iT  - reflects the trust decrement due to security 

events, 

• recovery
iT  is the increment of trust due to recovery 

mechanisms, 
•   and   are scaling factors that control the 

sensitivity of trust dynamics. 
Coefficients   and   meet the condition 1    in 

order to ensure that the trust values lie within the range [0,1]. 
We formulate it in such a way that: 

1. The trust values stay within a bounded and meaningful 
interval. 

2. Historical behavior retains appropriate influence. 
3. The influence of recent events and recovery mechanisms 

is proportional. 
4. The system remains stable while being responsive to 

changes. 
The trust model incorporates both direct and indirect trust 

components: 
 Direct trust: Based on immediate interactions and 

event observations; 
 Indirect trust: Derived from neighboring nodes' 

experiences and recommendations; 
 Temporal trust: Accounting for historical behavior 

patterns; 
 Spatial trust: Considering the physical and logical 

proximity of nodes. 
This multi-dimensional approach provides a more 

comprehensive trust evaluation compared to traditional single-
metric models. 

For each event e  involving node i , the trust decrement  is 
computed as: 

 
event

i e e iT S D   ,                         (2) 

 
where: 

• e  is the severity coefficient of the event e , 

• eS  is the severity of event e , 

• iD : the detection probability of node i , depending on 

the security level of the latter. 
The recovery of trust follows a time-dependent function 

that models the natural tendency of trust to recover after 
security incidents: 

 

( ) ( )recovery
i iT t R t  ,                         (3) 

 

where   is the recovery rate coefficient, and ( )iR t  is the 

recovery potential function defined as: 
 

( )( ) 1 lastt t
iR t e    ,                           (4) 

 

where lastt is the time of the last security incident for this node. 

This exponential recovery function has several important 
properties: 

• There is some factor  by which the recovery potential 
asymptotically approaches 1 as time since last incident 
advances; 

• The parameter   controls the recovery rate sensitivity; 
• Recovery is initially rapid and gradually slows, 

mirroring real-world trust restoration patterns; 

• When lastt t , the recovery potential is 0, ensuring 

immediate post-incident recovery begins from zero. 
The general trust impact to a node integrates influences 

from all immediate neighbor nodes through a summation 
function: 
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( )

( ) ( , , )total prop
j

i j

T t T i j t


  


,               (5) 

 
where: 

• ( )j  represents the set of all neighboring nodes for 

node j ; 

• ( , , )prop
jT i j t  the spreading trust influence from 

node i  to node j  at time t ; 

• The summation accounts for cumulative effects of 
multiple neighboring nodes. 

The propagation of the trust impact to neighbors is modeled 
using a spatial attenuation function. For a neighbor j  of node 

i , the propagated trust decrement is given by: 
 

( , , ) ijdprop event
j i ijT i j t T w e      ,            (6) 

 
where: 

• 
1

ij
ij

w
d

  - weight of the connection between nodes i  

and j ,  

• ijd  is the Euclidean distance between nodes i  and ,j  

•   - attenuation coefficient which governs the spatial 
spread of the impact of the event. 

This model makes the dynamics of trust sensitive to both 
direct and indirect influences of security events, hence 
capturing the cascading impact within the network. 

B. NETWORK TOPOLOGY AND CONNECTIVITY 
The network is represented as an undirected graph  

 
( , )G V E ,                               (7) 

 

where V  is the set of nodes and E  is the set of edges 
representing connections between nodes. The topology of the 
network is defined based on the spatial distribution of nodes 
and a distance-based connectivity criterion. 

Each node i V  is assigned a location ( , )i ix y  within 

bounded square area, sampled from a uniform random 
distribution. For any two nodes, i  and j , there exists an edge 

ije E  if their Euclidean distance ijd  satisfies: 

 

ij ije E d    ,                      (8) 

 
where   is network density parameter, which controls average 

number of neighbors per node. 
The connectivity of the graph is checked and validated in 

such a way that the graph remains fully connected, since this is 
crucial to ensure the proper propagation of updates of trust and 
evaluation of network-wide metrics such as resilience. If the 
graph is not connected, additional edges will be added between 
the biggest disconnected components to make the graph 
connected. 

For any edge ije , its weight is defined as the inverse of the 

physical distance between node i  and j : 

 
1

ij
ij

w
d

 ,                              (9) 

 
which reflects the strength of interaction between nodes. These 
weights are used in the propagation of trust and calculation of 
network resilience metrics. 

The network topology is visualized at various steps of the 
simulation in order to monitor changes in connectivity and the 
distribution of trust. Integration of realistic topology with 
spatially varied node properties makes the model a robust basis 
for trust dynamics analysis and the resilience of an edge 
computing network under various security scenarios. 

C. SECURITY EVENT MODELING 
It involves the inclusion of different types of security events for 
the modeling of realistic attack scenarios. Each event, e , is 
described by a tuple: 
 

{ et , ei , eS , e , eD },                   (10) 

 

where: et  is the timestamp of the event, ei  is the target node 

of the event, eS  is the severity of the event, e  is the severity 

coefficient, depending on the event type, eD  is the detection 

probability for the event. 
The probabilistic model of events' occurrence: all the rates 

of each event type - intrusion, data leakage, and DDoS-are 
defined. That will be a Poisson process: 

 

( )
( ( ) )

!

e en T
e

e e
e

T e
P N T n

n

 

  ,             (11) 

 

where e  denotes the rate parameter of this type of event, while 

T  and en  represent respectively the duration of simulation of 

the system and the amount of occurrences of event e . 
Events are sorted by their timestamps to simulate real-world 

dynamics. For each event, the effect on the target node and its 
neighbors is computed by the trust propagation equations in 
Section A. This captures the direct and indirect impact of 
security events. 

D. METRICS AND PERFORMANCE EVALUATION 
It has used three major criteria for model performance 
evaluation in the form of network performance: 

1. Mean Value: ( )T t  represents average trust score over 

all the nodes at time t :  
 

1
( ) ( )

| | i
i V

T t T t
V 

  .                   (12) 

 
This metric captures the overall health of the network. 
2. Detection Rate ( ( )DR t ): The ratio of events detected 

up to time t : 
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| ( ) |

( )
| ( ) |

detE t
DR t

E t
 ,                      (13) 

 

where ( )detE t  is the set of detected events, and ( )E t  is the 

total set of events. 
3. Network Resilience, ( )R t : the size of the largest 

connected component of the graph, normalized by the total 
number of nodes: 

 
| ( ) |

( )
| |
maxC t

R t
V

 ,                      (14) 

In formula (14), ( )maxC t  denotes the largest connected 

component of the graph at time t, i.e., the subgraph in which 
any two vertices are connected by a path and which contains 
the maximum number of vertices among all such subgraphs. 
The size of this component is defined as the number of vertices 
in it. The network resilience metric is normalized by dividing 
by the total number of vertices in the graph, which allows us to 
estimate the proportion of the network that remains connected 
when exposed to attacks. 

These metrics are calculated at regular intervals to provide 
a temporal view of network performance. The results are 
visualized to highlight trends and identify key vulnerabilities, 
enabling a comprehensive analysis of trust dynamics and 
network resilience. 

IV. EXPERIMENTAL SETUP 
This section describes the experimental setup with which we 
implement the proposed approach for security in edge 
computing, including the designed network, the architecture 
applied, and the methodological steps of the analysis while 
applying different types of attacks that may yield changes in 
trust dynamics. More importantly, the purpose of this section is 
to provide substantial details of the network framework and 
analyze its behavior that will emerge when exposed under 
certain conditions of security hazards. 

The experimental evaluation was conducted using a 
custom-built simulation environment implemented in Python 
3.8, running on a high-performance computing cluster with 
64GB RAM and 16 CPU cores to ensure adequate processing 
power for complex network scenarios. The simulation 
parameters were carefully chosen to reflect realistic edge 
computing deployments while maintaining computational 
feasibility. 

A. SIMULATION CONFIGURATION 
It is a simulation for an edge computing environment with 
heterogeneous nodes and interconnectivity through a graph-
based topology. Each node, corresponding to an edge device 
such as IoT sensors or edge servers, has some attributes 
reflecting the node's computational and security capabilities. 
The configuration parameters are chosen in such a way to 
approximate real-world conditions as far as device diversity 
and network connectivity are concerned. 

The network consists of 50 nodes distributed randomly 
within the square area. Each node is initialized with such 
attributes as computational power, memory capacity, and 
security level. These attributes are drawn from realistic 

distributions in order to introduce variability across the 
network. For example, a node's computing power would be 
randomly sampled within a range from 1000 to 5000 units, 
reflecting the diversity that is typical for edge devices in 
practice. The memory capacities similarly range between 512 
MB and 2048 MB. The security level of each node corresponds 
to its inherent ability to detect and mitigate attacks and is drawn 
from a beta distribution, scaled in the range between 0.7 and 
1.0. This distribution features the fact that most edge devices 
are moderately secure but may vary in their susceptibility 
towards attacks. 

The network topology is built by connecting nodes based 
on their physical proximity. Using a Euclidean distance metric, 
an edge between two nodes is created if their distance lies 
below a threshold determined by the network density 
parameter, here set to 0.8. This parameter controls the sparsity 
of the network, ensuring a realistic level of connectivity while 
avoiding overly dense graphs that could distort the simulation 
dynamics. 

We further assign an initial trust score of 0.8 to each node, 
reflecting a moderately high baseline trust level. The trust 
scores will change dynamically during the simulation due to the 
occurrence and detection of security events. We run the 
simulation for 300 time units and introduce various attack 
scenarios during that time to analyze their impact on network 
trust and resilience. 

B. MODEL IMPLEMENTATION 
The model is implemented in Python 
(https://colab.research.google.com/drive/1aQDjByvoKKsSBA
lPK22UzMp5jVO4S11u?usp=drive_link), where a modular 
architecture is implemented that allows flexibility, scalability, 
and ease of debugging. Each module corresponds to a distinct 
functional component of the simulation, ensuring clear 
separation of concerns and making future extensions possible 
without any significant restructuring. 

The core libraries used for the implementation are:  
 numpy for numerical computations: random sampling 

and matrix operations in event generation and trust 
updates. 

 Pandas: handling structured data, especially in 
gathering and processing metrics. 

 networkx for constructing and analyzing the graph-
based network topology, enabling visualization of node 
interactions and propagation of trust dynamics.  

 Matplotlib and seaborn offer a capability to 
visualize effectively network state, trust dynamics, and 
the impacts of diverse attacks. 

The model architecture shown in Figure 1 illustrates the key 
components and their interactions in the proposed trust 
evaluation framework. The NetworkTopology class serves as 
the foundation, managing node connectivity and spatial 
relationships. The TrustManager acts as the central component, 
processing security events and coordinating trust updates 
across the network through direct interaction with Node 
instances. The EventGenerator creates security events 
according to predefined probability distributions, while the 
MetricsCollector monitors and aggregates system-wide 
performance indicators. 

This modular design enables independent modification and 
enhancement of individual components. For example, new 
attack types can be added to the EventGenerator without 
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affecting the TrustManager's core logic, while trust 
propagation mechanisms can be refined within the 
TrustManager module. The hierarchical organization facilitates 

testing of more complex scenarios and supports future 
extensions of the framework. 

 

 

Figure 1. Class Diagram of the Edge Security Simulation Model. 

C. EXPERIMENTAL METHODOLOGY 
The experimental methodology has been developed to perform 
a systematic evaluation of the dynamics of trust and resilience 
of an edge computing network in a range of cybersecurity 
threats. This methodology generally consists of three major 
phases: initialization, event simulation, and data collection with 
analysis. Each of the phases was developed with considerations 
for the capture of the most important features in the behavior 
of a network, and it has been constructed to be reproducible. 

1) Initialization Stage 
This phase initializes the network by setting up a graph-

based topology, having 50 nodes distributed randomly in a 
bounded square area. Each of these nodes is instantiated with 
different attributes representing computation power, memory, 
security level, and a trust score, whereas the edges between 
nodes were set according to physical proximity, as 
implemented by the edge device network model. 

The trust matrix is initialized such that all node pairs start 
off with a baseline trust of 0.8, while the diagonal entries of the 
matrix are set to 1.0, reflecting self-trust. This matrix will 

dynamically update during the simulation whenever nodes 
interact or respond to security events. 

2) Event Simulation Phase 
Events are dynamically introduced in this timeframe of the 

simulation where each event has a type, timestamp, severity, 
and detection flag. The class EventGenerator generates such 
events using probability according to predefined attack rates, 
while those types of attacks that occur quite frequently, such as 
authentication_failure, are created at different rates from the 
other, more critical but rare forms of attacks like ransomware. 

The severity of each event is sampled from probability 
distributions tailored to the nature of the attack, while detection 
probabilities depend on the security level of the affected nodes. 

The generated event is then processed by the TrustManager 
to update the trust scores of the impacted nodes and their 
neighbors. Spatial propagation effects will be taken into 
consideration so the impact of the event on trust decreases 
while the network distance from the affected node increases. 
Less severe reduction of trust score for detected events 
compared to non-detected events captures the mitigating effect 
of a successful detection.  
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3) Data Collection and Analysis Phase 
The metrics are recorded regularly during the simulation, 

giving an insight into the overall network behaviour. The key 
metrics to be computed by MetricsCollector are as follows: 

 Trust Average: The average trust score across all nodes, 
which is representative of the general trust level in the 
network. 

 Detection Rate: Proportion of the events detected 
against the total; this indicates the capability of the 
network in detecting the threat.  

 Network Resilience: Normalized size of the largest 
connected component in the network graph, by the total 
number of nodes, gives the degree of structural 
robustness. 

Beyond these metrics, the system monitors data on how 
each kind of attack type influences the dynamics of trust. For 
example, the distributions of the trust scores are analyzed at 
every event type to come up with patterns of vulnerability and 
resilience. These results can be represented by the use of 
visualization tools: time plots of the average trust, temporal 
plots of detection rate, and statistical representation of 
distributions of attack impact. 

The data gathered will be exported to CSV files so that 
further analysis can also be reproducible. Thus, this 
methodology allows one to make a serious and robust 
assessment of the model proposed under different attack 
scenarios based on combined results of quantitative metrics 
with insights gained from visual analyses. 

V. RESULTS AND DISCUSSION 
This section presents the results obtained from the experimental 
simulation and offers a detailed analysis with regard to the 
performance of the proposed model. The discussion is 
organized into three parts: global network metrics, the impact 
of attacks on individual nodes, and the comparison with 
existing methods. Key findings are underlined by 
visualizations and quantitative data in order to show both the 
effectiveness of the approach and its limitations. 

A. GLOBAL NETWORK METRICS 
For a calculation of the cumulative effect brought forth by these 
security events, the average trust across all nodes in the case of 
a simulation is checked. Through Figure 2, the general trend 
depicted is a constant drop, starting from an average value of 
about 0.8 down to an average of 0.786 at the end of this 
particular simulation. Mainly, it is from continuous attacks 
degrading this trust whenever detection was a success, basing 
from the ongoing events. 

In particular, the decline is not linear, reflecting the non-
linear severity and frequency for different attack types. While 
the system shows robustness in the attack scenario, there is 
clearly a need for recovery mechanisms if trust should not 
degrade long term. 

The detection rate (Figure 3), defined for this analysis as the 
ratio between the number of detected and total events, was 
based on another critical metric. Because of the initialization of 
more and more attacks, detection drops first, then went around 
0.9 which proved that the network continuously adapts to the 
given scenario, as it keeps the detectability of threats high most 
of the time. 

This recovery shows the robustness of the nodes with higher 
levels of security and the efficiency of the detection 

mechanisms in place. 
 

 

Figure 2. Average Trust Dynamics Over Time. 

 

 

Figure 3. Dynamics of Detection Rate Over Time. 

B. IMPACT OF ATTACK ON THE NODE 
 

Indeed, trust scores can be highly variable in nodes depending 
on the patterns of attack and the positions of the nodes within 
the network. Figure 4 presents the distribution of the trust 
scores at the end of the simulation. The vast majority of nodes 
had a score greater than 0.77, but a limited subset suffered a 
major drop as low as 0.74. These were either under direct 
constant severe attack or placed around neighbors that were 
easily vulnerable. 

Considering all above characteristics, a deeper 
understanding was obtained from the correlation analysis of 
event types with respect to the variation in the trust of the nodes 
under attack. Figure 5 shows the distribution of variations 
corresponding to trust reduction for all types of attacks. Attack 
methods such as ransomware or phishing were pretty variable, 
regularly entailing very high values corresponding to trust 
reduction in nodes after an attack. On the other side, high 
frequency attacks such as authenticationFailure, or intrusion 
entailed consistent degradation but only at a middle level of 
trust. 

Figure 5 shows the differential impact of the different attack 
types: relatively few, severe attacks make disproportionately 
large contributions compared with the more frequent, low-
impact ones. The conclusion from this analysis is that defenses 
should be focused and prioritized on high-severity attack 
vectors. 
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Figure 4. Distribution of Trust Scores across Nodes. 

 

 

Figure 5. Impact on Trust by Type of Attack. 

 
Figure 6 illustrates the relative frequency of the various 

attack types experienced during the simulation. Authentication 
failures and intrusion attempts make the largest constituents, as 
can be expected in any edge network that is deployed into the 
physical world. Attacks like phishing and ransomware have a 
lesser frequency because those are targeted attacks and cost 
more to carry out in terms of resources. This distribution helps 
in optimizing detection mechanisms and resource allocation for 
different types of security threats. 

C. COMPARISON WITH OTHER METHODS  
The proposed model for the dynamics of trust in edge 
computing networks is compared to various approaches in the 
literature to present the strengths and weaknesses in context. 
Such a comparison has brought into light the obvious advances 
that our approach represents in the domain of modeling trust, 
detecting attacks, and providing resilience to the network [23, 
24]. The following Table 1 summarizes some key findings from 
the comparative analysis.  

 

Figure 6. Event Type Distribution. 

 

Table 1. Comparative Analysis Table 

Method Focus Strengths Limitations Comparison Metrics 

Ali et al. (2024) [14] Zero Trust Security with 

Fuzzy Logic 

High authentication accuracy, 

efficient task offloading, reduced 

task completion time 

Resource-intensive due to 

dual fuzzy logic 

Authentication accuracy: 99%, 

Task time: 15% faster 

Almalawi et al. (2024) [15] Salp Swarm Optimization 

for Healthcare 

Near-perfect precision and recall 

for threat detection, real-time 

adaptability 

High computational 

overhead during 

optimization 

Detection accuracy: 99.87%, 

Latency: 1.2s 

Baranitharan et al. (2023) 

[16] 

Adaptive Cyber Defense 

for IoT Healthcare 

Resilient to dynamic attack 

scenarios, modular cyber defense 

strategies 

Focused on healthcare; 

limited application outside 

specific use cases 

Modular resilience: >90% 

effectiveness 

Proposed Model (2024)  Trust Dynamics for Edge 

Networks 

Dynamic trust propagation, 

attack-specific modeling, 

modular architecture 

No recovery mechanisms 

for degraded trust, static 

topology 

Detection rate: 90%, Trust 

degradation reduced by 30% 

Halgamuge and Niyato 

(2025) [17] 

Adaptive IoT Security 

Policies 

AI/ML integration for risk 

assessment, dynamic adaptation 

to regulatory requirements 

Limited scalability to 

large IoT ecosystems 

Policy adaptability: High 

Zhang et al. (2024) [19] Resource Allocation in 

Multi-Cloud Edge 

Deep reinforcement learning 

(DRL)-based allocation, optimal 

performance for resource-

intensive tasks 

Focused solely on 

serverless systems, lacks 

trust dynamics modeling 

Efficiency: 10% higher than 

baseline approaches 
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Strengths of the Proposed Model:  
1. Dynamic Trust Propagation: Unlike the traditional 

approaches, such as Zhang et al. (2024) [19], which have 
focused on resource allocation or static assumptions of trust, 
our model implements a dynamic trust propagation mechanism 
by considering both spatial and temporal factors. This provides 
a more granular view of trust evolution under real-world 
conditions.  

2. Attack-Type Modeling: Unlike general frameworks like 
Halgamuge and Niyato (2025) [17], the proposed model uses 
different parameters for each type of attack. In this way, it will 
provide site-specific mitigation strategies with more accurate 
impact assessment.  

3. Resilience Metric: It is new in tracking the largest 
connected component in the network as a measure of resilience 
and provides an opportunity to consider aspects of structural 
robustness aside from trust dynamics [17].  

4. Modularity and Extensibility: The architecture of the 
proposed model is such that additional modules, like recovery 
mechanisms or dynamic topologies, may be added in 
subsequent works [25].  

Limitations and Challenges:  
1. Trust Recovery Mechanisms: While various models, 

such as those proposed by Ali et al. in 2024 [14], allow for 
mechanisms that would ensure trust recovery, in other words, 
the opportunity for reauthentication, the proposed model lacks 
this capability. Furthermore, it may not allow long-term 
resilience at the network level.  

2. Static Topology: Some models, such as the one by 
Almalawi et al. (2024) [15], consider dynamic changes in node 
behavior; the static topology of our simulation limits the 
applicability of the findings to highly mobile networks.  

3. Higher Computational Costs: The complex modeling of 
dynamics in trust and characteristics of particular attacks make 
it computationally expensive than the lightweight approaches 
proposed by Baranitharan et al. (2023) [16].  

It shows that the model's performance and complexity have 
struck a balance, enabling major benefits in trust modeling and 
attack-specific impact analysis. However, the nonexistence of 
adaptive recovery mechanisms and dynamic topology support 
hints at potential improvements. Further refinements of the 
proposed model can be extended by additional advanced 
features such as mobility-aware trust updates, multi-layer 
attack detection, and federated learning for adaptive recovery, 
improving their applicability in a diverse edge computing 
environment [15, 25].  

VI. CONCLUSION  
This paper proposes a new dynamic trust valuation framework 
in the context of edge computing networks that would address 
some critical challenges regarding the management of trust and 
security. With the integrated spatial propagation model, attack-
specific impact analysis, and comprehensive performance 
metrics, it provides a solid methodology for assessing network 
resilience under adversarial conditions. These experimental 
results validate the efficiency of the proposed approach in 
keeping a high detection rate and reducing the effect of trust 
degradation caused by frequent and serious security events. 
Future work includes the implementation of mechanisms 
related to trust recovery, an extension of the model in dynamic 
topologies, and validation of the proposed model on real-world 
practical applications of edge computing. 
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