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 ABSTRACT The study highlights the operational characteristics of wireless sensor networks (WSNs). It 
describes genetic operators and parameters that serve as the foundation for the genetic algorithm's functionality. 
The optimal values for population size and the number of generations required for data routing in WSNs were 
determined. The mathematical framework and application aspects of distance metrics such as Euclidean, 
Chebyshev, Manhattan, and Minkowski were analyzed. A block diagram of the proposed genetic algorithm for 
data transmission between sensor nodes is presented. The effectiveness of the developed genetic algorithm was 
investigated for route formation using different distance metrics in a network with nodes characterized by three 
operational radii. Experimental results indicate that, for finding the shortest route with minimal computational 
time in a network of 25 sensor nodes, the optimal genetic algorithm parameters are 150 generations and a 
population size of 300. Simulation results demonstrate the superiority of the proposed solution over the greedy 
algorithm in terms of route length. 

 KEYWORDS routing; genetic algorithm; wireless sensor network; greedy algorithm; Euclidean metric; 
Chebyshev metric; Manhattan metric; Minkowski metric. 
 

I. INTRODUCTION 
The use of wireless sensor networks (WSNs) is rapidly 
expanding across multiple domains, including environmental 
monitoring, smart cities, transportation logistics, and medical 
diagnostics [1-11]. These networks rely on a large number of 
sensor nodes that collect, process, and transmit data while 
operating under significant resource constraints, such as 
limited battery power, reduced memory capacity, and 
potentially intermittent connectivity. In many scenarios, 
sensors may also be deployed in environments where they can 
change their location or lose functionality because of 
mechanical failures or external factors, underscoring the need 
for robust and adaptive design strategies. 

Among the challenges that arise when deploying WSNs, 
routing remains a key factor influencing overall efficiency and 
reliability. The routing process involves selecting an optimal 
path that meets specific performance requirements while 
minimizing resource consumption. Decisions about routing 
depend on metrics that characterize the quality of possible 
routes by considering parameters such as distance, energy 
consumption, or link quality indicators. These metrics, in turn, 
guide the algorithm in identifying paths that satisfy criteria for 

latency and energy usage. Moreover, the distributed and 
potentially dynamic nature of WSNs necessitates algorithms 
capable of operating with incomplete or time-varying network 
information, further emphasizing the need for more robust and 
adaptable routing solutions. 

II. RELATED WORK  
Determining the shortest route in WSNs depends on the 
distance between two nodes, making the choice of distance 
metrics a critical factor [12-14]. The Euclidean distance is the 
most commonly used metric, but other metrics such as 
Manhattan, Chebyshev, Minkowski, and Hamming distances 
are also employed, each with its unique characteristics. 
Therefore, the choice of distance metrics plays a significant 
role in optimizing data routing. 

In our prior research, the focus was on enhancing the 
reliability of routers by improving their performance and 
robustness against failures. In contrast, this paper focuses on 
optimizing routing paths in WSNs using genetic algorithms to 
enhance network-wide efficiency, minimize energy 
consumption, and adapt to changes in topology. Solving 
combinatorial problems in modern networks can be 
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challenging for classical optimization methods due to the high 
dimensionality of the solution space, dynamic conditions, 
nonlinearity of objective functions, and multi-criteria 
requirements [15, 16]. 

Genetic algorithms (GAs) are powerful tools for solving 
complex problems, leveraging the principles of natural 
evolution to find effective solutions amidst a vast number of 
possibilities [17-23]. These algorithms are also notable for 
their adaptability to dynamic conditions in the studied 
environment and their capability for multi-criteria 
optimization [24-26].  

In [27] authors explore the application of GAs to enhance 
routing efficiency in WSNs. Through simulations, they 
compare the performance of GAs with traditional algorithms 
like Dijkstra's and AODV, demonstrating that GAs can 
effectively adapt to network changes and improve overall 
performance.  

Hamidouche et al., in [28] propose GA-based approaches 
for clustering and routing aimed at prolonging sensor lifetime 
and enhancing quality of service. Their extensive simulations 
indicate that the proposed algorithms outperform existing 
ones in terms of energy consumption and data delivery to the 
base station.  

Authors in [29] utilize GAs for cluster head election and 
inter-cluster multi-hopping. Their protocol considers factors 
like residual energy and distance to the base station, resulting 
in improved energy efficiency and network lifetime compared 
to existing algorithms.  

In [29] the authors propose a GA-based routing algorithm 
that selects appropriate cluster heads based on distance to the 
base station and remaining energy. The algorithm employs 
GAs to find optimal transmission paths, achieving load 
balance and reduced energy consumption.  

The study [30] addresses the challenges of uniform cluster 
formation and optimal routing path discovery. The proposed 
GA-based protocol minimizes network energy consumption 
and balances load by considering distance metrics in the 
routing process.  

The paper [31] introduces GAEER protocol that selects 
cluster heads based on residual energy, distance factors, 
network residual energy, and node density. This approach 
enhances energy efficiency and extends network lifetime.  

In this paper, we focus on commonly used distance 
metrics, including Euclidean, Manhattan, Chebyshev, and 
Minkowski, which are widely utilized in WSN routing due to 
their straightforward implementation and suitability for the 
studied scenarios. While alternative metrics such as 
Mahalanobis, cosine, and Jaccard offer significant value in 
specific applications, they often entail additional 
computational overhead. These metrics are primarily 
employed in contexts such as clustering, similarity analysis, 
and multidimensional data evaluation. Given the practical 
constraints of WSNs, such as the limited computational 
resources and the emphasis on energy efficiency, this study 
omits the Mahalanobis, cosine, and Jaccard metrics to 
maintain focus on metrics most applicable to the resource-
constrained environment of WSN routing. 

 

II. SYSTEM MODEL  
A.  FUNDAMENTALS OF WIRELESS SENSOR 
NETWORKS 
WSNs consist of autonomous sensor nodes deployed over 
areas of various sizes or in hard-to-reach locations. These 
nodes operate in a distributed manner without centralized 
control, ensuring high scalability. This feature allows for the 
easy addition of new nodes or the removal of existing ones, 
which is essential for networks requiring adaptation to 
environmental conditions. 

The dynamic topology of WSNs necessitates the use of 
adaptive routing algorithms capable of rapidly responding to 
changes in network structure and ensuring reliable data 
transmission. 

The number of nodes in a WSN depends on the specific 
task, with multiple nodes often sufficient to monitor an entire 
area. To evaluate this monitoring capability, the concept of 
coverage degree is used, referring to the number of nodes 
actively covering a given area. If a portion of the region lacks 
coverage, it is referred to as a "void." Areas where the sensing 
ranges of two or more nodes overlap or cover the same 
physical region constitute sensor overlap zones (Figure 1). 
Such overlap can offer the following advantages: 

 Data collected from overlapping zones allows for 
additional verification of accuracy and reliability, as 
multiple nodes contribute to data acquisition. 

 If one node fails, another node can cover the same 
area, helping to mitigate the negative impact on 
network performance. 

 Overlapping zones enable multiple data routing paths, 
which is particularly critical when dealing with 
overloaded or malfunctioning nodes. 

However, to maximize the network's lifetime, it is 
necessary to minimize the number of nodes fully covering the 
monitored area. 

Each sensor node can be characterized by two radii [25]: 
the sensing radius sensR and the communication radius comR  

(Figure 1). The sensing radius sensR  represents the maximum 

distance at which a node can detect an object or measure 
specific parameters. The communication radius comR defines 

the maximum distance at which a node can transmit and 
receive data from other nodes or a base station.  

It is important to note that comR  depends on several 

factors, including the power of the radio transmitter, the 
frequency range, the presence of interference, and the 
communication protocols used. In most cases, com sensR R . 

 

 

Figure 1. Radius of the node range in WSN 
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Sensor nodes (SNs) may have varying radii of operation 
due to a range of technical, operational, and economic factors. 
The technical specifications of SNs, such as transmitter 
power, receiver sensitivity, and the type of antennas used, 
directly influence their operational range. 

For instance, nodes with higher transmitter power can 
cover greater distances, as stronger signals can overcome 
more obstacles and environmental losses. Similarly, nodes 
with high receiver sensitivity can detect weaker signals from 
farther away, increasing their effective range. 

Operational factors also play a significant role. Different 
materials can absorb or reflect radio signals, reducing the 
nodes' operational range. For example, in urban areas with 
high building density, the operational range may be limited 
due to numerous obstacles. Dynamic environmental changes, 
such as the movement of people, vehicles, or variations in 
weather conditions, can also affect the propagation of radio 
signals and, consequently, the nodes' effective range. 

Functional requirements within a single WSN can lead to 
the use of nodes with different operational ranges. For 
example, some nodes may serve as central nodes or gateways, 
requiring a larger operational range to communicate with 
other nodes that have shorter ranges. 

B.  DESCRIPTION OF THE GENETIC ALGORITHMS  
Genetic algorithms (GAs) are widely studied and applied in 
various fields due to their ability to efficiently solve complex 
optimization problems. In the context of WSNs, where 
traditional optimization methods face several constraints, the 
use of GAs is particularly relevant. 

In WSNs, network information is often incomplete or 
inaccurate due to limited sensor capabilities, dynamic 
topology, and environmental factors. GAs can effectively 
operate under conditions of incomplete information due to 
their evolutionary nature, which enables them to adapt to new 
data during the solution search process. These algorithms 
utilize a population-based approach to generate multiple 
potential solutions, maintaining high efficiency even with 
partial knowledge about the network's state. 

In GAs, each route is represented as a chromosome, where 
the genes correspond to the sequence of nodes used for data 
transmission. By employing selection, crossover, and 
mutation operators, GAs generate new routes and evaluate 
their performance using a fitness function that considers one 
or more required parameters. 

The functioning of GAs can be described through four 
main stages. The process begins with the initialization of a 
population, representing a set of individuals as possible 
solutions to the problem. This initial population ensures 
diversity, allowing the exploration of a broad range of 
potential solutions and setting the foundation for the 
evolutionary process, where genetic operators will be applied 
to these individuals. 

The selection phase involves choosing individuals from 
the current population to form the next generation. Each 
individual is evaluated and assigned a fitness score reflecting 
its quality. Once all individuals are assessed, a selection 

operator identifies the best candidates, maintaining diversity 
within the population to prevent premature convergence to 
local optima and increasing the likelihood of finding the 
globally optimal solution. 

The crossover phase simulates the natural process of 
genetic recombination, promoting evolution by combining 
traits from high-quality parent solutions. This stage creates 
new individuals by mixing attributes of the parents, which 
helps avoid stagnation in local optima by broadening the 
exploration of the solution space. 

The mutation phase introduces random changes to the 
genetic traits of potential solutions, fostering diversity in the 
population. This diversity is critical for enabling an effective 
search for the optimal solution and ensuring the algorithm 
does not become trapped in suboptimal regions of the solution 
space. 

С.  DISTANCE METRICS  
Distance metrics are fundamental components of data routing 
algorithms in WSNs, as they determine the efficiency of data 
transmission and the utilization of relevant resources.  

A metric is a numerical function that defines the distance 
(or length of movement) between each pair of considered 
points. It adheres to the following axioms: 

1. Two points with zero distance between them are 
identical. 

2. The distance between two points remains the same 
regardless of the direction. 

3. The distance between two points is always positive. 
In the context of routing, metrics are used to determine the 

optimal route for data transmission. This study focuses on 
identifying the shortest data route, analyzing the functional 
characteristics of the primary distance metrics [39]. 

The Euclidean distance Ed represents the straight-line 

distance between two points in Euclidean space. In two-
dimensional space, the distance between two points with 
coordinates 1 1( , ),x y and 2 2( , )x y  can be calculated as: 

 
2 2

2 1 2 1( ) ( ) .Ed x x y y       (1) 

 
In higher-dimensional space, the Euclidean distance is 

defined as: 
 

1
2( ) ,

i

E i i
n

d x y


       (2) 

 
where n  represents the dimensionality of the space. 

In network topology, nodes can be represented as points in 
geometric space. The Euclidean distance between these points 
can serve as a metric for selecting specific routes. In WSNs, 
minimizing Ed  reduces energy consumption, as shorter 

distances generally require less energy for data transmission. 
However, Ed  does not account for physical obstacles or other 

network constraints (e.g., technical or resource limitations) 
that may influence the actual route length. Data normalization 
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is also required before applying this metric. Thus, Euclidean 
distance is a simple and effective tool for designing 
communication networks and evaluating routes in WSNs. 

The Manhattan distance MTd , also known as the taxicab 

metric, measures the distance between two points in a space 
where movement is restricted to vertical or horizontal 
directions. The Manhattan distance calculates the sum of the 
absolute differences in their Cartesian coordinates. For two 
points with coordinates 1 1( , )x y  and 2 2( , )x y , it is defined as: 

 

2 1 2 1 .MTd x x y y        (3) 
 

In n -dimensional space, the Manhattan distance is 
calculated as: 

 

1

.
n

MT i i
i

d x y


     (4) 

 

Unlike the Euclidean metric, MTd   performs well in higher 

dimensions but is less intuitive. It is particularly useful for 
routing in grid-like network topologies where nodes are 
interconnected with neighboring nodes. 

The Chebyshev distance CHd , also called the chessboard 

distance or maximum metric, applies in scenarios where two 
objects differ by one coordinate dimension, meaning the 
distance between two points is the greatest difference in their 
coordinates along any dimension. The term "chessboard 
distance" originates from the minimal number of moves 
required for a king to traverse from one square to another in 
any direction, including diagonals. For two points with 
coordinates 1 1( , ),x y  and 2 2( , )x y , CHd  is defined as: 

 

2 1 2 1max( , ).CHd x x y y      (5) 
 

Compared to the Manhattan distance, the Chebyshev 
distance is shorter. This metric is well-suited for networks 
where nodes can move in all directions, including diagonals. 

The Minkowski distance Md  generalizes metrics such as 

Manhattan, Euclidean, and Chebyshev distances. This metric, 
also referred to as the 𝑝-norm vector, includes a parameter p  

that allows for different distance measurements. For two 
points 1 2( , ,..., )nX x x x  and 1 2( , ,..., )nY y y y  is defined as: 

 

1

,
n

p
p

M i i
i

d x y


    (6) 

 

Special cases include 1p   (Manhattan metric), 2p   

(Euclidean metric), and p    (Chebyshev metric). When 

1p  , the result is not a valid metric as it violates the triangle 

inequality. The Minkowski distance is widely used because of 
its flexibility in adapting to distance calculations based on 
various criteria.    

III. WORKFLOW OF THE PROPOSED GENETIC 
ALGORITHM 
To configure the operation of the genetic algorithm (GA), four 
main parameters were used. Population size N  represents the 
total number of individuals forming the population. Each 
individual in the population is represented as a chromosome. 
Thus, this parameter specifies the number of individuals the 
GA will evaluate simultaneously to solve the problem. The 
selection of population size depends on the complexity of the 
problem and the available computational resources. The value 
is determined experimentally. A larger population size enables 
a more thorough exploration of the search space, increasing 
the likelihood of finding the globally optimal solution. 

Second parameter is the number of generations G , which 
defines the number of iterations during which the evolution of 
individuals in the population occurs. The choice of this value 
depends on the complexity of the problem, the volume of 
input data, the computational resources, and the desired 
accuracy of the solution. A greater number of generations 
allows the algorithm to find more optimal solutions. 

Third parameter is the crossover probability crossp , which 

indicates how often genetic material is exchanged between 
chromosomes in the population. A crossover probability of 0 
means that the new generation will be created solely by 
copying individuals from the current generation, except for 
those altered by mutation (if mutation is applied). 

Finally, the mutation probability mutp  specifies the 

proportion of chromosomes in a generation that should 
undergo mutation. 

To design an effective GA tailored to the specifics of 
WSNs, appropriate genetic operators were selected, and a 
fitness function was formulated to evaluate the adaptability of 
each individual (route). This was based on an analysis of 
several studies [25, 26, 32, 33]. Adaptive ranges for crossover 
and mutation probabilities [38] were utilized, such as 

_ [0.5;0.8]cross adaptp   and mut_ [0.05;0.2]adaptp  . The block 

diagram of the proposed GA for solving the data routing 
problem is presented in Figure 2.  

The fitness of an individual ( )iF r  is calculated as 

 

 
 

1

1

1
,

, 1
ili

i
j

F r

r j j







  (7) 

 
where il  – is the length of the individual, corresponding to the 

number of genes; ir – represents the individual, which 

corresponds to the route for data transmission; ( , 1)j j   is the 

weight of the edge between two neighboring vertices.  
 
 
 
 
 
 



Yaroslav Pyrih et al. / International Journal of Computing, 23(4) 2024, 715-725  

VOLUME 23(4), 2024 719 

 

Figure 2. A flow-diagram of the developed genetic algorithm. 

According to equation (7), the fitness of an individual is 
inversely proportional to the weight of the route. It is 
important to note that the weight can represent various factors, 
such as distance, the energy reserve of nodes, or the signal-to-
noise ratio, depending on the application. 

To validate the functionality of the GA presented in Figure 
2, modeling was performed using a custom-developed 
software implemented in Python with the DEAP library. For 
the simulation, 25 nodes were randomly distributed over a 
100×100 m plane (Figure 3). To account for the use of sensor 
nodes (SNs) with varying operational ranges during the 
modeling process, it was assumed that the network included 
SNs with three different ranges, as illustrated in Figure 3. 

 

Figure 3. Radiuses of sensor node range  

 
If a node is located farther from another node than the 

specified radii allow, data transmission becomes impossible. 
To account for such cases, a penalty of 1000 meters is 
introduced for the distance. This encourages the genetic 
algorithm (GA) to prioritize the search for the shortest routes.  

IV. NUMERICAL RESULTS 
A.  RESULTS OF THE DEVELOPED GENETIC 
ALGORITHM FOR DATA TRANSMISSION ROUTE 
OPTIMIZATION USING DIFFERENT DISTANCE METRICS 
The simulation of the routing process between nodes 4 and 20 
was conducted based on the application of the developed 
genetic algorithm (GA). Tables 1–4 present the results of 
route search (distance/time) between the source node (node 4) 
and the destination node (node 20) for the considered distance 
metrics. The time complexity was evaluated using the 
mathematical framework outlined in [26].  

Table 1. Results of Route Search (Distance/Time) for 
Nodes 4 to 20 Using the GA with the Euclidean Metric 

Number of 
Generations 

Population Size 
300 400 500 600 

50 1000 / 8.3 1000 / 10.1 1000 / 12.1 1000 / 14.4 

100 125 / 14.1 125 / 18.2 125 / 22.3 125 / 26.5 

150 121 / 20.2 121 / 26.3 121 / 32.4 121 / 38.7 

200 121 / 26.2 121 / 34.5 121 / 42.8 121 / 50.7 

250 121 / 32.4 121 / 42.4 121 / 52.6 121 / 63.0 

300 121 / 38.8 121 / 50.8 121 / 63.1 121 / 75.2 

350 121 / 45.9 121 / 58.9 121 / 73.0 121 / 87.8 

400 121 / 50.8 121 / 66.9 121 / 85.2 121 / 99.3 

450 121 / 57.0 121 / 75.1 121 / 93.4 121 / 111.6 

500 121 / 62.8 121 / 83.1 121 / 103.2 121 / 125.3 

550 121 / 68.8 121 / 91.5 121 / 113.9 121 / 137.1 

600 121 / 74.8 121 / 99.4 121 / 124.2 121 / 149.2 

 

 

Start

  Creating an initial population of individuals 

Assessment of the fitness of each individual

Setr 

Selection of individuals by using a tournament 
operator

Crossing individuals by applying an ordered 
operator using the value of the adaptive crossing 

probability  

Mutation of individuals by applying the mixing 
operator using the value of the adaptive mutation 

probability

Assessment of the fitness of new individuals

Is the set amount of G achieved?

Yes

No

Selecting the individual with the best fitness value

End

F(r)i=1/෍ri(j,j+1)

li-1

j=1

 

 G , N,
 pcross_ad apt = [0.5; 0.8], 
pmut_adap t = [0.05; 0.2], 
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Table 2. Results of Route Search (Distance/Time) for 
Nodes 4 to 20 Using the GA with the Manhattan Metric 

Number of 
Generations 

Population Size 
300 400 500 600 

50 1000 / 8.2 1000 / 10.3 1000 / 12.4 1000 / 14.2 

100 1000 / 14.4 1000 / 18.2 1000 / 22.3 1000 / 26.3 

150 165 / 20.3 165 / 26.2 165 / 32.3 165 / 38.5 

200 165 / 26.6 165 / 34.5 165 / 42.5 165 / 51.3 

250 165 / 32.4 165 / 42.6 165 / 52.6 165 / 63.0 

300 165 / 38.7 165 / 50.9 165 / 62.9 165 / 75.1 

350 165 / 44.8 165 / 58.9 165 / 73.0 165 / 87.3 

400 165 / 50.7 165 / 67.1 165 / 83.1 165 / 99.9 

450 165 / 57.0 165 / 76.0 165 / 93.3 165 / 111.7 

500 165 / 62.9 165 / 83.5 165 / 103.9 165 / 124.1 

550 165 / 69.1 165 / 91.4 165 / 113.7 165 / 140.2 

600 165 / 75.4 165 / 99.4 165 / 124.0 165 / 150.1 

Table 3. Results of Route Search (Distance/Time) for 
Nodes 4 to 20 Using the GA with the Chebyshev Metric 

Number of 
Generations 

Population Size 
300 400 500 600 

50 1000 / 8.1 1000 / 10.1 1000 / 12.1 1000 / 14.3 

100 111 / 14.3 111 / 18.3 111 / 22.2 111 / 26.4 

150 107 / 20.6 107 / 26.4 107 / 32.2 107 / 39.1 

200 107 / 27.3 107 / 34.4 107 / 42.5 107 / 51.6 

250 107 / 32.8 107 / 42.7 107 / 53.5 107 / 63.5 

300 107 / 38.4 107 / 51.0 107 / 63.4 107 / 75.3 

350 107 / 44.7 107 / 59.8 107 / 73.7 107 / 87.6 

400 107 / 51.3 107 / 67.2 107 / 84.1 107 / 99.5 

450 107 / 57.5 107 / 75.2 107 / 94.0 107 / 111.8 

500 107/ 63.0 107 /83.4 107/105.4 107/ 124.0 

550 107/ 69.8 107 /91.5 107/114.6 107/ 136.3 

600 107/ 75.7 107/ 100.5 107/124.7 107/ 150.4 

Table 4. Results of Route Search (Distance/Time) for 
Nodes 4 to 20 Using the GA with the Minkowski Metric 

Number of 
Generations 

Population Size 
300 400 500 600 

50 1000 / 8.1 1000 / 10.5 1000 / 12.2 1000 / 14.4 

100 116 / 14.2 116 / 18.3 116 / 22.4 116 / 26.5 

150 113 / 20.6 113 / 26.5 113 / 32.5 113 / 39.2 

200 113 / 26.4 113 / 35.0 113 / 42.5 113 / 51.2 

250 113 / 32.5 113 / 42.8 113 / 53.1 113 / 63.2 

300 113 / 39.0 113 / 51.0 113 / 63.5 113 / 75.9 

350 113 / 45.0 113 / 59.2 113 / 72.9 113 / 87.9 

400 113 / 50.9 113 / 67.4 113 / 83.7 113 / 99.9 

450 113 / 58.1 113 / 75.8 113 / 93.8 113 / 113.1 

500 113 / 63.2 113 / 84.2 113 / 105.6 113 / 124.8 

550 113 / 69.8 113 / 92.3 113 / 113.8 113 / 137.6 

600 113 / 75.6 113 / 100.7 113 / 124.3 113 / 149.9 

 
The experimental data presented in Tables 1–4 

demonstrate that the optimal parameter values for the genetic 
algorithm (GA), which achieve the shortest route with 
minimal computational time, are dependent on the specific 
distance metric applied. These results underscore the critical 
need to adapt the algorithm's parameters to the unique 
characteristics of the chosen metric, ensuring efficient and 
reliable routing optimization. 

A comprehensive analysis of the routes generated by the 
GA includes examining the sequence of nodes that form each 
identified path. This detailed evaluation provides valuable 
insights into the algorithm’s capacity to adapt to varying 
network topologies and dynamic conditions.  

Figures 4–7 illustrate the distance matrices and the 
corresponding routes generated using the Euclidean, 
Manhattan, Chebyshev, and Minkowski metrics, highlighting 
how different metrics influence route formation and the 
algorithm's decision-making process. 

  
 

 
a)       b) 

Figure 4. Distance Matrix – a) and Generated Route – b) for the Euclidean Metric. 
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a)       b) 

Figure 5. Distance Matrix – a) and Generated Route – b) for the Manhattan Metric. 

 
a)       b) 

Figure 6. Distance Matrix – a) and Generated Route – b) for the Chebyshev Metric. 

 
a)       b) 

Figure 7. Distance Matrix – a) and Generated Route – b) for the Minkowski Metric. 

The experimental findings further validate that, for the 
given scenario, the most effective configuration of the GA 

involves setting the number of generations to 150 and the 
population size to 300.  
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This specific configuration achieves an optimal balance 
between computational efficiency and route optimization, 
enabling the algorithm to deliver high-performance results 
while maintaining manageable computational overhead. These 
outcomes demonstrate the robustness and adaptability of the 
proposed approach to addressing the routing challenges 
inherent in wireless sensor networks. 

B.  RESULTS OF THE GREEDY ALGORITHM FOR DATA 
TRANSMISSION ROUTE OPTIMIZATION USING 
DIFFERENT DISTANCE METRICS 
To evaluate the efficiency of the presented genetic algorithm 
(GA), it was compared with a greedy algorithm, a classical 
heuristic approach [34-37]. The choice of the greedy 
algorithm was motivated by its simplicity of implementation 
and high processing speed. In this algorithm, each node makes 
decisions about the next step based on the minimum distance 
to the next available node. This reduces the algorithm's 
complexity and decreases computational resource usage. 

The greedy algorithm operates based on local search, 

meaning nodes do not possess information about the global 
structure of the network or all possible routes. Instead, they 
work with limited information, which reduces the 
computational burden. 

The localized decision-making nature of this algorithm 
enables quick responses to network changes, such as node 
failures or additions. There is no need for a complete 
reconfiguration of the data transmission route. Each node can 
independently make new decisions based on updated 
information about its neighbors, positively impacting the 
overall reliability of the network. 

One of the main advantages of the greedy algorithm is its 
scalability, making it suitable for use in large networks. 
Consequently, this type of algorithm is rationally applicable 
for data routing in networks with dynamically changing 
topology, particularly in WSNs. 

Distance matrices and routes constructed using the greedy 
algorithm for the considered distance metrics are presented in 
Figures 8–11. 

 

 
a)       b) 

Figure 8. Distance Matrix – a) and Generated Route – b) for the Euclidean Metric. 

 
a)       b) 

Figure 9. Distance Matrix – a) and Generated Route – b) for the Manhattan Metric. 
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a)       b) 

Figure 10. Distance Matrix – a) and Generated Route – b) for the Manhattan Metric. 

 
a)       b) 

Figure 11. Distance Matrix – a) and Generated Route – b) for the Manhattan Metric. 

 

С.  COMPARISON OF SIMULATION RESULTS FOR THE 
GENETIC AND GREEDY ALGORITHMS 
To provide a clearer comparison of the performance of the 
discussed algorithms, the simulation results are summarized 
in Table 5. 

Table 5. Comparison of Routes Generated by the 
Developed Genetic Algorithm and the Classical Greedy 

Algorithm 

Algorithm Metric Generated Route Route 
Length 

Genetic Euclidean [4, 8, 12, 17, 21, 20] 121 

Greedy Euclidean 
[4, 9, 14, 19, 18, 13, 12, 
17, 16, 11, 10, 15, 20] 210 

Genetic Manhattan [4, 8, 12, 16, 21, 20] 165 

Greedy Manhattan [4, 9, 14, 19, 18, 13, 12, 
17, 16, 11, 10, 15, 20] 243 

Genetic Chebyshev [4, 9, 13, 17, 21, 20] 107 

Greedy Chebyshev [4, 9, 14, 19, 13, 12, 17, 
16, 11, 5, 10, 15, 20] 209 

Genetic Minkowski [4, 8, 12, 17, 21, 20] 113 

Greedy Minkowski [4, 9, 14, 19, 18, 13, 12, 
17, 16, 11, 10, 15, 20] 

207 

Based on the results presented in Table 5, it is evident that 
the developed GA enables the identification of shorter routes 
while utilizing significantly fewer nodes compared to the 
greedy algorithm for the considered distance metrics. 
Specifically, for the Euclidean metric, the proposed genetic 
algorithm (GA) produced a route that was 42.38% shorter 
compared to the route generated by the greedy algorithm. For 
the Manhattan metric, the proposed GA achieved a route that 
was 32.1% shorter. Similarly, for the Chebyshev metric, the 
improvement in route length was 48.8%, and for the 
Minkowski metric, the reduction was 45.41%. These 
significant improvements across all metrics highlight the 
efficiency and effectiveness of the proposed GA in optimizing 
routing paths in wireless sensor networks. 

Thus, the developed algorithm is recommended for 
enhancing the efficiency of data routing in wireless sensor 
networks (WSNs) when employing various distance metrics. 

In addition to evolutionary algorithms, various other 
optimization techniques, such as gradient-based methods, 
least squares approaches, and dynamic programming, are 
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commonly used to address optimization tasks. Gradient-based 
methods are effective for problems with smooth and 
differentiable objective functions, enabling rapid convergence 
to local optima. Least squares techniques are particularly 
effective in scenarios involving data fitting and regression, 
where minimizing the sum of squared errors is crucial. 
Dynamic programming is well-suited for problems with 
overlapping subproblems and optimal substructure, providing 
exact solutions in cases where the computational complexity 
is manageable. While this work focuses on evolutionary 
algorithms due to their adaptability to the nonlinearity, multi-
modality, and high-dimensionality often present in wireless 
sensor network routing, the inclusion of these alternative 
methods in future analyses could provide a more 
comprehensive exploration of optimization strategies for 
routing and related problems. 

V. CONCLUSIONS 
This study examines the operational characteristics of wireless 
sensor networks (WSNs). It describes the genetic operators 
and key parameters essential for the functioning of a genetic 
algorithm. The application of various distance metrics is 
analyzed, and their mathematical foundations are presented. A 
block diagram of the proposed genetic algorithm for data 
routing in WSNs with varying node radii is included. 

The effectiveness of the developed algorithm is evaluated 
in comparison with a greedy algorithm for routing between 
two nodes in a wireless sensor network, using distance 
metrics such as Euclidean, Manhattan, Chebyshev, and 
Minkowski. Experimental results indicate that, for the case 
considered, the optimal parameters for the genetic algorithm 
to determine the shortest route with minimal computational 
time are 150 generations and a population size of 300. 

The simulation results clearly demonstrate the superiority 
of the proposed genetic algorithm (GA) over the greedy 
algorithm in terms of route length optimization. Specifically, 
the GA achieved substantial reductions in route length, 
including a 42.38% decrease for the Euclidean metric, a 
32.1% reduction for the Manhattan metric, a 48.8% 
improvement for the Chebyshev metric, and a 45.41% 
reduction for the Minkowski metric. These results underscore 
the efficiency and adaptability of the GA in optimizing 
routing paths across various distance metrics in wireless 
sensor networks. 

Future research could explore additional distance metrics, 
hybrid optimization techniques, scalability to larger networks, 
and the impact of real-world environmental factors to further 
enhance the efficiency and applicability of the proposed 
algorithm. 
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