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ABSTRACT In recent developments, there has been a noteworthy demonstration of the effectiveness of
generating high-quality images of diffusion models. This success is further enhanced when these models
are combined with a technique that allows for a strategic balance between image diversity and fidelity.
Addressing the challenge of text-conditional image synthesis, we extensively explore the utility of diffusion
models along with two distinct guiding approaches: CLIP (Contrastive Language-Image Pretraining)
guidance and classifier-free guidance. Through a comprehensive analysis, we uncover intriguing insights.
The classifier-free guidance method consistently emerges as a standout performer, producing images with
remarkable photorealism. This method showed a PSNR of 183.66 dB and an SSIM of 99.99%, indicating
efficient photorealism and structural similarity to ground reality images. It presents a unique approach that
combines diffusion models with classifier-free guidance for text-conditional image synthesis, focusing on
photorealism and alignment with captions. Therefore, it can be useful for human evaluators to proficiently
maintain both visual realism and associated captions.

KEYWORDS Text-Conditional; Diffusion Models; Photorealistic Images; CLIP; Classifier-Free Guid-
ance; GANs (Generative Adversarial Networks); Transformer-Based Neural Network; Latent Code

Encoding; Inpainting; Perceptual Loss.

. INTRODUCTION

N the contemporary communication and visual expres-
Ision landscape, images have transcended mere visual
aids to become intricate vehicles for conveying complex
messages and emotions. However, the creation of images
has traditionally demanded a combination of artistic skill,
technical prowess, and significant time investment. The
advent of modern text-conditional image models has re-
defined this paradigm, offering the tantalizing prospect of
generating images from textual descriptions. This innovation
democratizes visual content creation and paves the way
for a new era of seamless integration between language
and imagery. Nevertheless, pursuing photorealism in such
generated images has remained an elusive challenge. In
response to this challenge, researchers have ventured into
uncharted territories to imbue text-conditional image models
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with the coveted attribute of photorealism within a class-
conditional framework. Two distinct pathways have emerged
as beacons of progress in this pursuit. The work of Dhariwal
Nichol (2021) [1] introduced a fusion of diffusion models
and classifier guidance, leading to a symbiotic relationship
between generative algorithms and pre-trained classifiers.
In a parallel narrative, Ho Salimans (2022) [2] defied
convention by proposing a classifier-free guidance approach,
showcasing the potential for generating photorealistic im-
ages without explicit reliance on a separately trained clas-
sifier. This research propels innovation trajectory further,
introducing a groundbreaking model redefining image syn-
thesis boundaries. Distinguished by its autonomous capacity
to produce photorealistic images without the crutch of a
classifier, this model is a testament to the amalgamation of
state-of-the-art technologies and sophisticated architectural
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design. The resulting images rival and surpass the photore-
alism of samples produced by DALL-E [3], a pioneering
text-to-image synthesis model. Impressively, in 87% of
comparisons, the proposed model’s images are deemed more
photorealistic, and in 69% of cases, they align more closely
with accompanying captions. The journey to develop and
refine this innovative model necessitates a robust foundation.
Drawing from the vast expanse of the internet, an extensive
dataset of text-image pairs was curated. Stringent curation
protocols were enforced to curtail the inclusion of sensi-
tive or harmful content. The resulting dataset, comprising
a staggering 67 million text-image pairs, was seamlessly
integrated with an established dataset that underpinned the
training of CLIP models [4]. This fusion, culminating in
an enriched dataset of approximately 137 million pairings,
is the cornerstone of the model’s training and underpins
its remarkable achievements.The convergence of generative
prowess, architectural ingenuity, and ethical consideration
forms the bedrock upon which this investigation unfolds,
offering a glimpse into the future of human-computer co-
creation and redefining the boundaries of visual expression.

Il. STATE OF THE ART

Image synthesis has garnered substantial attention in com-
puter vision in recent years. Diverse generative models
have emerged as formidable tools for crafting high-quality
images, encompassing prominent techniques such as Gener-
ative Adversarial Networks (GANSs) [5]. Variational Autoen-
coders (VAEs) is a stochastic variational inference method
for efficiently handling large datasets with continuous latent
variables and intractable posterior distributions [6]]. Autore-
gressive models by A”aron van den Oord et al. [7]] present
a deep neural network for modeling natural images by
predicting pixel values sequentially, addressing expressive-
ness, tractability, and scalability. It achieves superior log-
likelihood scores compared to prior methods, serving as a
benchmark on ImageNet and generating high-quality, co-
herent image samples. However, these models bear inherent
limitations when generating images with profound semantic
meaning.

One of the early pioneers in this arena was Reed et
al. [8], who harnessed the potential of GANs to give
life to images from textual prompts. It is a novel deep
architecture and GAN approach to synthesizing realistic
images from text descriptions, bridging the gap between
text and image modeling. The model effectively generates
credible bird and flower images based on detailed tex-
tual descriptions. Since then, a panorama of text-to-image
generation methodologies has unfolded, encompassing no-
table contributions such as Stacked Generative Adversarial
Networks (StackGAN) to generate high-quality 256x256
images from text descriptions. The approach decomposes
the problem into two stages, effectively refining primitive
shapes and adding realistic details [9], Attentional Genera-
tive Adversarial Network (AttnGANan) [[10] for fine-grained
text-to-image generation. It uses attention mechanisms to
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refine image details based on relevant text words, achieving
significant performance improvements over prior methods,
and a novel framework called MirrorGAN [11] is presented
for text-to-image generation that focuses on ensuring visual
realism and semantic consistency. Another approach in
which an innovative avenue through their blended diffusion
is introduced by Avrahami et al. [[12], which is a novel
scheme for generating images from textual descriptions.
Their methodology entails a diffusion process that constructs
an initial image, subsequently refined through a meticulous
image blending process. An analogous concept was pursued
by Bau et al. [13|] in their "Paint by Word" approach,
empowering users to manipulate and edit images utilizing
natural language descriptors seamlessly.

Recent strides in this domain have birthed the "clip-
guided diffusion model," an ingenious proposition pio-
neered by Nalisnick et al. [[14]. This approach excels in
its computational efficiency vis-a-vis traditional GAN-based
methods and proficiency in enabling meticulous control over
the generated image through textual input. The pioneering
work of Brock et al. [15] birthed a colossal GAN training
methodology that substantially elevates the quality of gen-
erated images. This advancement has been integrated into
several text-to-image generation frameworks, including the
innovative StackGAN and MirrorGAN [9], [11] paradigms.

The research paper [16] investigates the application of
large-scale language-image models, specifically text-guided
diffusion models, for image editing. It highlights significant
advancements in image generation, emphasizing the ability
to create photorealistic images in various domains. The
research paper [17]] presents a novel approach to editing
real images using text inputs utilizing advanced diffusion
models. This method enables significant image alterations
based solely on textual descriptions.

The paper [18]] [19] comprehensively reviews the ad-
vancements in Generative Adversarial Networks, a pivotal
concept in artificial intelligence and deep learning. It delves
into the foundational principles of GANs, charts their evolu-
tion, and discusses various enhancements and applications,
including image generation and data augmentation. As a
survey, it synthesizes a broad spectrum of research and
developments, providing insights into GAN technology’s
latest trends and potential future directions.

The paper [20] presents an innovative approach to gen-
erating realistic X-ray images for security purposes. The
images are essential for training and evaluating security
screening systems. This work significantly contributes to
security imaging, offering a new tool for enhancing security
systems and improving training protocols.

The paper by researchers from Rutgers University and
Snap Inc. introduces "SINE," [21] a novel approach to
editing single images using text-to-image diffusion models.
The paper emphasizes leveraging large-scale pre-trained dif-
fusion models for real image editing, a significant advance-
ment in Al-driven image manipulation. SINE’s methodology
involves adapting text-to-image diffusion models to maintain
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resolution and quality while editing real images.

The research paper "Learning to See by Moving" [22]
[23] by Agrawal, Carreira, and Malik proposes a novel
approach to feature learning in computer vision, shifting
away from the conventional reliance on hand-labeled images
for training neural networks. Instead, it explores egomo-
tion—awareness of one’s own movement—as an alternative
supervisory signal. This approach is inspired by biological
organisms that develop visual perception primarily for nav-
igation and interaction within their environment.

The research paper [24] by Lucic et al. presents a
significant advancement in deep generative models, partic-
ularly focusing on conditional generative adversarial net-
works (GANSs) for natural image synthesis. The work stands
out for its ability to generate high-quality, diverse images
at high resolution with a substantially reduced reliance
on labeled data. By integrating self- and semi-supervised
learning methods, the authors successfully challenge the
conventional heavy dependence on vast labeled datasets in
image generation. Their approach matches and surpasses the
performance of the state-of-the-art BigGAN model on the
ImageNet dataset, achieving this feat with only 10% to 20%
of the labels typically required. This breakthrough signifies
a major leap in inefficient and resource-effective image
generation, marking a notable shift towards more accessible
and scalable generative modeling in machine learning.

A. ADVANCEMENTS OF THE PROPOSED SYSTEM

The proposed system heralds a new era of advancement
by fusing cutting-edge methods to transcend the constraints
of existing paradigms. Where conventional models falter
in semantically meaningful image generation, the proposed
system navigates a unique trajectory guided by textual
descriptions. Key differentiators lie in the innovative inte-
gration of the blended diffusion approach and the Stack-
GAN architecture, ushering forth a model that excels in
computational efficiency and granular control. Fusing these
techniques empowers the system to transcend the limitations
that have historically hindered the domain. By seamlessly
converging the expressiveness of natural language with
the intricacies of image generation, the proposed system
emerges as a torchbearer of transformative potential. This
model’s profound capacity for precise image manipula-
tion and seamless integration of textual cues engenders a
paradigm shift in creative expression. The user’s ability
to orchestrate intricate visual narratives through language
becomes not only a reality but an immersive experience. The
proposed system’s unique synthesis of techniques bridges
the chasm between textual guidance and image synthesis,
transcending the boundaries of prior methodologies. While
prior works laid the groundwork, the proposed system erects
a bridge that transcends the limitations of each individual
approach. This synthesis results in a harmonious union,
catapulting the realm of image synthesis into a new era
characterized by unprecedented fidelity, efficiency, and ex-
pressive potential.
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lll. PROBLEM STATEMENT AND OBJECTIVES

A. PROBLEM STATEMENT

The challenge of generating photorealistic images from
textual prompts poses a formidable obstacle at the intersec-
tion of natural language processing and computer vision.
Traditional text-to-image models encounter shortcomings in
their ability to produce images that are both coherent and
true to life. This limitation becomes particularly pronounced
when tackling complex and abstract ideas, hindering the
seamless integration of language and visual representation.

B. OBJECTIVE

The primary objective of the Guided Language-Image Dif-
fusion Enhancement (GLIDE) [25] model is to transcend
the shortcomings entrenched within prevailing text-to-image
models. This pursuit is achieved by strategically deploying
a diffusion-based generative model designed to harness
textual descriptions’ complexities and transform them into
an ensemble of high-quality, photorealistic images. Impor-
tantly, the GLIDE model embodies innovation in its capacity
to generate images and its potential for interactive image
refinement. By affording users the unique ability to modify
and enhance generated images meticulously following their
specific requisites, the GLIDE model pioneers an era of
dynamic and collaborative image creation that amalgamates
human ingenuity with computational prowess.

IV. PROPOSED METHODOLOGY AND ALGORITHM

This method describes the diffusion models to meticulously
craft images that adhere to the conditions specified in the
text and exude photorealistic qualities. The methodology
central to this work bridges the gap between textual prompts
and their corresponding visual representations through text-
conditional image synthesis. At its core, the process employs
diffusion models, recognized for their ability to propagate
and integrate information, ensuring that the synthesized im-
ages accurately mirror the textual cues. Unlike many exist-
ing systems that leverage classifiers to guide the generation
process, this approach stands out because of the adoption
of a classifier-free guidance mechanism. This innovative
direction ensures the images produced are coherent with
the textual conditions and attain a photorealistic quality.
This combined effect between textual understanding and
diffusion modeling facilitates the creation of images that
capture the essence of the described scene or object with
remarkable accuracy. The entire methodology is described
below in Figure 1 and Figure 2.

As depicted in Figure 1, the text encoding to image up-
sampling process consists of the following steps.

Stepl: Encoding the Text: - Utilize a transformer-based
neural network to convert the input text prompt into a latent
representation, yielding a fixed-length latent code. Append
this latent code to the initial noise generated for a 64x64
image resolution. Step2: The Input to the model: - Present
the Multi-Scale Gradient Descent (MSGD) with two inputs:
i. A low-resolution conditioning image. ii. A random noise
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tensor, designated as the primary input for the generator
network.

Step3: The Multi-Scale Diffusion (MSD) [26] Process: -
MSD takes the input noise tensor through a series of diffu-
sion steps. The tensor’s data is spread out in this progression,
retaining the foundational image structure. Starting from the
broadest scale, MSD fine-tunes the image, moving towards
more refined scales.

Step4: Conditioning at Various Scales: - During each
diffusion stage, the generator network works with a mix of
the diffused noise tensor and a feature map derived from the
conditioning image at that scale. This combination ensures
the generator produces detailed images that align with the
provided reference.

Step5: Progressive UpSampling: - Post every diffusion
step, upsample the output tensor to match the forthcoming
scale. Repeat the diffusion and conditioning processes at this
new scale. This iterative process empowers the generator
network to enhance the image with finer details at each scale
increment.

Step6: Final Output Generation: - By scaling up the last
diffusion step’s output tensor to its original dimensions,
MSGD crafts its final, high-quality visual output.

As depicted in Figure 2, the explanation below describes
checking whether the generated image in process 1 is real
or fake. Also, in Figure 2, the neural network structure
encompasses both a generator and a discriminator network.
When presented with random noise as input, the generator
network generates a data sample, subsequently fed into the
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discriminator network alongside actual data samples. Subse-
quently, the discriminator network endeavors to distinguish
between genuine and spurious inputs. This process, termed
adversarial training, involves the simultaneous refinement of
both networks. While the discriminator network enhances
its ability to distinguish authentic and counterfeit data, the
generator network progressively improves its capacity to
generate remarkably lifelike data samples, adept at deceiving
the discriminator. Therefore, the approach explained above
delves into the intricacies of this method, highlighting its
potential and efficacy in generating lifelike synthesized
images from textual prompts.

Algorithm 1 Text-to-Image Generation with Guided Diffu-
sion
Require: Input_Text: Text prompt
Ensure: Generated_Image: Generated image
1: Latent_Code = TextEncoder(Input_Text)
2: for each scale s do
3 Add Gaussian Noise € to Image_s
4:  Image_s = Image_s + €
5
6

Image_s = Apply_Diffusion_Steps(Image_s)
Reduced_Noise_Image_s =
tional_Noise_Reduction(Image_s,

Condi-
Latent_Code)

7. Denoised_Image_s = De-
noise(Reduced_Noise_Image_s)
8: end for
9: Generated_Image = Synthe-
sis_Network(Denoised_Image, Latent_Code)
10: Perceptual_Loss = Calcu-
late_Perceptual_Loss(Generated_Image, Refer-

ence_Image)

11: Optimize(Synthesis_Network_Params) to minimize Per-
ceptual_Loss

12: Modified_Latent_Code =
ify_Latent_Code(Latent_Code)

13: Edited_Image = Synthesis_Network(Denoised_Image,
Modified_Latent_Code)

14: return Generated_Image

Mod-

The algorithm follows a systematic flow to achieve
its goal of generating photorealistic images from textual
prompts. The process commences by encoding the provided
textual prompt into a latent code using a text encoder
network, typically a transformer-based model. This code
serves as the foundation for subsequent image generation.

The core of the algorithm revolves around the multi-
scale guided diffusion process. At each scale, the algorithm
introduces controlled noise to the image, gradually diffusing
it through a series of transformation steps while retaining
high-level features. This is followed by a conditional noise
reduction step, where noise reduction is guided by the latent
code using an attention mechanism. The final denoising
operation results in the desired image at that scale.
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With the guided diffusion process completed, the synthe-
sis network takes over. It combines the outcomes of the
diffusion process and the latent code to generate a new
image that aligns with the given text prompt. The generator
model, a synthesis network, leverages the attributes of the
latent code to produce a high-quality image.

Fine-tuning refines the generated image through a per-
ceptual loss function, which measures its similarity to a
reference image aligned with the text prompt. This enhances
the accuracy and quality of the final output.

Finally, the algorithm accommodates image editing, al-
lowing users to modify the latent code for attribute changes,
style variations, or other adjustments. The synthesis network
then regenerates the image according to the modified latent
code, yielding an edited version of the original image.

V. RESULT ANALYSIS AND DISCUSSION

In our qualitative analysis, we observe that the images gen-
erated by GLIDE (filtered) often exhibit a partially realistic
appearance. However, the model’s relatively modest size
constrains its ability to associate attributes with objects and
accomplish complex compositional tasks. This limitation
also affects GLIDE’s breadth of knowledge, especially in
contexts involving humans. This is because the dataset used
for training GLIDE (filtered) underwent preprocessing to
remove images of people. Additionally, compared to models
of similar dimensions trained on our internal dataset, GLIDE
encounters challenges in effectively combining multiple
objects in intricate ways. This challenge arises from the
specific characteristics of the dataset used for GLIDE’s
training (filtered). It’s important to note that we haven’t con-
ducted direct quantitative testing for GLIDE (filtered). This
is particularly noteworthy as many evaluation prompts used
heavily involve generating images containing people, which
could potentially introduce bias against GLIDE (filtered)
in our reported evaluations. However, we acknowledge
that there are various methods for assessing performance,
and these will be comprehensively discussed in the results
section. The results are obtained by submitting the text input
to the algorithm, and the sampled output for a specific input
is presented below.

A. ILLUSTRATION OF THE PROPOSED ALGORITHM
THROUGH THE FOLLOWING EXAMPLE:
Prompt Description: "A peaceful river with a bridge."

Text Transformation: A specialized encoder translates
the provided text into a latent representation.

Guided Diffusion Across Scales: Starting with a ran-
domized noise pattern, guided diffusion incorporates the
latent representation using a diffusion model. This pro-
cess unfolds iteratively, traversing multiple scales that are
progressively more refined. Each iteration involves adding
Gaussian noise, diffusing this noise, selectively reducing
noise in sections identified by the latent code, and culmi-
nating in a denoising step to finalize the image at that scale.
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Image Creation: Drawing from the outcomes of the
diffusion steps and the latent code, the synthesis mechanism,
typically a generator network, crafts a detailed image in line
with the text description. The result is a finely generated
representation.

Image Refinement: The initially synthesized image is
refined by gauging it against a benchmark image corre-
sponding to the textual prompt, using a perceptual loss
metric. The goal is to fine tune the network parameters to
reduce discrepancies between the synthesized and reference
images.

Adaptive Editing: Images can be edited precisely by
tweaking the latent representation and reusing the synthesis
network. For example, changing the river’s state from peace-
ful to aggressive would involve modifying the latent code
to reflect this change and regenerating the image, allowing
various edits to the generated output.

Image generated by proposed

Input: Prompt Model

A peaceful river
with a bridge

3 "

Image generated by proposed

Input: Prompt Model

An  aggressive
river with a
bridge

Table 1. Generated image based on the input prompt.

Analysis of Quality Parameters: A high PSNR score
means less distortion and noise in the generated image,
which closely resembles the reference image regarding pixel
precision. This indicates that using the Guided Diffusion
algorithm, the Text-to-Image Generation effectively elimi-
nates differences to produce a crisp and detailed image. A
high PSNR score indicates that the algorithm may produce
quantitatively and visually attractive images appropriate for
high-precision applications.

Measured against the reference image in brightness, con-
trast, and structural integrity, the high SSIM value provides
additional quality assurance. It shows that the generated
image faithfully captures the original image’s structural
characteristics and perceptual qualities. Also, it accurately
represents the visual components, such as the trees, bridge,
and scene arrangement. The algorithm’s ability to preserve
structural and perceptual characteristics is demonstrated by
the high SSIM value, which guarantees that the created
image is visually cohesive and correct to the original de-
scription.
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Similarly, different kinds of text prompts are given to the
system, and the results obtained in the image format are
depicted in Table 2.

Image generated by pro-

Input: Prompt posed Model

A colorful garden
with butterflies

A field of blooming
sunflowers

A majestic mountain
range at sunset

A snowy forest with a
cabin

A towering lighthouse
on a rocky coast

A vibrant rainbow
over a waterfall

Table 2. Generated image based on the input prompt.

B. DISCUSSION ON RESULTS

We’ve employed two distinct image categories within
this context: "gt_images" and "gen_images." The former,
"gt_images," comprises authentic images sourced from
Google, utilizing the same prompt for generating images
through the model. Conversely, the latter, "gen_images,"
denotes images generated by the model. To comprehen-
sively assess the efficacy of our proposed methodology,
we employed a set of 50 randomly chosen prompts and
procured corresponding images from the Chrome platform.
Subsequently, a meticulous evaluation unfolded wherein the
generated images were subjected to a stringent comparison
against ground truth images, facilitated by the Fréchet
Inception Distance (FID) metric. This evaluation’s outcomes
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compellingly advocate for our approach’s superiority over
prevailing text-to-image generation techniques, as evident
from the FID scores.

C. THE PROPOSED MODEL EFFICIENCY:
The proposed model efficiency is calculated by using the
following indicators:

1) The “Peak Signal-to-Noise Ratio (PSNR)” and

2) The “Structural Similarity Index (SSIM)”.

The first efficiency indicator is the Peak signal-to-noise
ratio (PSNR) [27]. This metric is determined by contrasting
the highest pixel intensity against the mean squared error
(MSE) of the two images in consideration. A superior PSNR
value signifies a nearer match between the generated image
and its corresponding textual description. The quantitative
measure of the ratio between the noise signal power to the
original signal’s maximum power is termed as the Peak
Signal to Noise Ratio (PSNR). If gt_image is the real
image, and denoted by gr and gen_image is the generated
image denoted by gg, then the PSNR can be calculated as
follows:

The mean square error (MSE) is defined by

MSE = mean ((gr — gg)2) (Eq 1)

If MSE = 0, no noise is present in the image, else

PSNR = 20 - log;, <m> (Eq 2)

MSE

where m; = 255.0.

Structural Similarity Index (SSIM) : This evaluates
the similarity in structure between two images by examining
their luminance, contrast, and structural attributes. An SSIM
score nearing 1 denotes a strong likeness of the generated
image to its reference or ground truth. article amsmath

The Structural Similarity Index (SSIM) between two
images, gr (reference image) and gg (generated image), is
given by:

(QNgTHgg + Cl)(209T»99 + Cs)
(12, 4+ p2,+ C1) (02, + 02, + Cs)
(Eq 3)

SSIM(gr, gg) =

where:

C1 = (K1 -mi)?, Oy = (Ks-my)?

ftgr s the mean intensity of the reference image gr.

[tgg 1s the mean intensity of the generated image gg.

o2, is the variance of the reference image gr.

0gg 18 the variance of the generated image gg.

Ogr.gg 15 the covariance of gr and gg.

K, and K are constants, typically K; = 0.01 and K5 =
0.03.

m,; is the dynamic range of the pixel values (usually 255
for 8-bit images). article amsmath

The Mean SSIM index over a specific window size W is
given by:
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1
MSSIM = —
M y

SSIM(g7;, 99;) (Eq 4)

M=

Il
—

where:

- M is the number of windows in the image. -
SSIM(grj, gg;) is the SSIM index calculated for the j-th
window of the reference image gr; and the generated image

99;-

Table 3. Model efficiency scores

SNo | Parameter
1 PSNR
2 SSIM

Obtained Average Score
183.66
0.9999

Furthermore, the structural integrity of our model was
rigorously gauged through applying the Structural Similarity
Index (SSIM). Impressively, our model garnered a com-
mendable SSIM score of 0.999, as depicted in Table 3,
underscoring its remarkable precision in generating images
from arbitrary textual prompts. The quality of the generated
images attests to their excellence, with a coherent semantic
alignment to the provided input text. Notably, our proposed
approach shines in its generative prowess and computational
efficiency, setting it apart from GAN-based counterparts.

This efficiency is poised to significantly streamline the
image synthesis process, augmenting the viability of our
approach for practical applications in real-world scenarios.

The detailed efficiency scores of the proposed model
obtained during implementation in Google Colab are rep-
resented in Table 3.

D. PROPOSED MODEL LIMITATIONS:

Despite extensive filtering of the pre-training dataset,
GLIDE (filtered) remains susceptible to biases that extend
beyond those observed in images featuring individuals. In
this investigation, we delve into several instances of these
biases, illuminating their presence:

In response to requests for generating toys tailored for
both genders, GLIDE (filtered) exhibits variations in its
outputs. When prompted to generate imagery depicting
"a religious place," the model tends to generate images
portraying churches predominantly. Notably, the influence
of classifier-free guidance amplifies this inclination. Beyond
its capacity to generate swastikas and confederate flags,
GLIDE (filtered) may exhibit an increased propensity to
produce images that bear semblance to hate symbols. Re-
grettably, the filtration process aimed at hate symbols was
predominantly focused on These two emblematic cases are
due to the limited availability of pertinent images in our
dataset. Alarmingly, this has led to a noticeable decline
in the model’s proficiency in handling a broader array of
symbols.

VI. CONCLUSION AND FUTURE SCOPE
The proposed diffusion model has showcased remarkable
potential in text-to-image synthesis, yielding exceptional
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visual outputs from textual descriptions. Recent strides in
this domain have significantly elevated image quality, with
the advent of innovative techniques such as two-stage dif-
fusion, diversity regularization, and progressive refinement,
all aimed at bolstering the prowess of the diffusion model.
However, while progress has been substantial, challenges
persist on the horizon. A pivotal hurdle involves the creation
of an expansive spectrum of lifelike visuals capable of faith-
fully representing the provided textual narratives. Addition-
ally, the model’s scalability remains a paramount concern,
particularly concerning high-resolution images that can lead
to unwieldy image sizes and an extensive proliferation of
model parameters. It demonstrates outstanding improvement
in the quality of the image with an average of 183.66 dB
and an SSIM of 99.99%, showing its efficacy in resulting
in photorealistic images from textual captions.

This research work in the future holds great promise for
text-to-image synthesis using the diffusion model. Future
attempts may include developing unique approaches for
producing a greater range of realistic and diversified visuals.
Addressing the scalability problem requires investigation,
with efforts to fulfill high-resolution demands efficiently.
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