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 ABSTRACT This article presents a system for controlling quadcopters with gestures, which are recognized by 
a model based on neural networks. A method based on a combined deep learning model is proposed that provides 
real-time recognition with minimal consumption of computing power. An implementation is presented that offers 
the possibility of controlling the quadcopter in two ways, via gestures or the keyboard. A functionality is also 
provided for adding new gestures for recognition using interactive code via the Jupyter Lab web application. A 
special mode is implemented that allows us to create a data set for a new test directly from the quadcopter camera 
to simplify data collection. The operation of the control and recognition module is demonstrated using an example 
in which a DJI Tello Edu drone is controlled. The results of tests under real conditions are presented. The developed 
software allows one to speed up the process of gesture recognition and facilitates the process of controlling the 
quadcopters. Several areas of improvement of the developed system and their possible technical implementation 
are proposed. 
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I. INTRODUCTION 
HE use of Gesture control has always been a popular 
research topic, but following the advent of neural networks 

(NNs) in the domain of computer vision systems, the 
implementation of these systems in various devices has begun 
to expand rapidly to include not only specialized devices for 
people with hearing impairment but also smartphones and other 
devices with built-in cameras. The control of UAVs (unmanned 
aerial vehicles) using hand gestures is one of such examples 
that has gained popularity in the consumer sector and has also 
attracted interest from the military sector. This article presents 
a system based on a self-created NN and models from the 
MediaPipe platform for controlling a quadcopter via gestures. 
The developed system combines such tasks as gesture 
recognition, gesture classification, processing, and execution of 
commands transmitted to the quadcopter. A prototype model 
for the visual gesture control of quadcopters is built using 
modern developments in the field of artificial intelligence and 
the MediaPipe NN platform from Google.  

Gesture recognition is an area of computer and language 
technologies and involves interpreting human gestures using 
mathematical algorithms [1, 2]. It is sometimes considered a 

sub-discipline of computer vision. Currently, users can use 
simple gestures to control and interact with devices without 
physically touching them, and most existing approaches are 
implemented using cameras and computer vision algorithms. 
Gesture control is essentially a natural interaction that does not 
rely on mechanical devices. An intelligent approach to human 
control of UAVs in real time was described in [3]. This 
approach uses a multi-mode command structure. Gesture 
recognition is implemented on the basis of machine learning. 
The main application areas are currently the automotive sector, 
consumer electronics, gaming, the military [3, 4], home 
automation (Internet of Things), and automated sign language 
translation. 

The ability to track human hand movements and identify 
which gestures they are performing can be achieved using 
various tools. Here, we consider computer vision-based 
models, which are based on the visual perception of an image 
by a computer and its subsequent interpretation. The most 
popular method of classical computer vision for gesture and 
motion recognition is segmentation. A method of gesture 
recognition based on NNs exploits the architecture of a 
convolutional NN and different sets of systems for its use [5, 6, 
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7]. A hand-machine interface device [8] providing information 
in real-time was described in detail. One of the works [9] 
proposed a method of hand tracking and gesture recognition for 
visual interfaces. Gesture recognition is performed by pre-
evaluating several defined gestures. A modern approach was 
described in [10]. The network gaming interface is designed 
around a digital assistant that uses language, gestures, and 
touch. The basis of a new type of interface for mobile 
computing systems was proposed in [11]. The concept of 
kinetic interfaces, in which movement was considered as the 
primary mode of input was highlighted. The system for 
recognition of gestures providing a way of non-verbal 
communication was described in [12]. The algorithm does not 
depend on user characteristics and, therefore does not require 
training of sample data. Instead, [13] proposed the method that 
provides effective drone control without lengthy training. 
Using the LeapMotion sensor, drone control via gestures was 
implemented in [14]. In work [15], a Natural User Interface 
(NUI) was developed for controlling drones using speech and 
hand gestures. Two fundamental solutions for positional 
tracking, marker, and non-marker methods were described in 
[16]. System indoor tracking with the base station and rotating 
laser and photodiode sensors on object tracking was presented 
in [17]. In [18], a method for estimating position was proposed 
using low-cost GPS and optical streams from UAV camera. 
Successful use and application of the supplement of reality was 
described in [19, 20], which includes combining several 
sensors, object tracking, and registration of real and virtual 
worlds. [21] developed methods for detecting and tracking 3D 
objects for various computer vision applications, including 
various fields such as robotics, driving, space, and the military. 
[22] described the training of an artificial neural network for 
the pose of an object using only synthetic single-channel edge-
enhanced images. The influence of localization accuracy [23] 
on the visual effect of overlaying augmented reality, optimizes 
the implementation of demonstration response in a virtual 
geographic environment. Providing navigation on a quadcopter 

by a person and using a set of glasses was considered in [24]. 
The proposed approach can be used in many situations, and 
also for people with disabilities. In work [25], UAVs support 
of users in their actions was described. In this context, the 
exchange of spatial information between the user and the UAV 
is facilitated by the three-dimensional localization of the UAV 
assistant. A data synthesis pipeline was developed to create a 
realistic multimodal dataset that includes both an exocentric 
view of the user and an egocentric submission of UAVs. 

The latest developments in this area include the so-called 
combination models, which are formed from combinations of 
different types of deep NNs. For example, a combination of 
neural model based on several convolutional deep NNs and a 
simple multi-layer neural model can be used for gesture 
recognition systems [26-29]. Convolutional NNs are 
responsible for finding the hand image in the input data and 
identifying key points, while a conventional NN classifies these 
as points in space that are specific to a particular gesture. This 
model can be easily adapted and retrained to recognize new 
gestures, and can be optimized to run on mobile devices, and is 
therefore used in the proposed system. 

II. SYSTEM ARCHITECTURE 
The development of the proposed system architecture is based 
on the following main principles: fault tolerance, flexibility of 
component replacement (i.e., the UAV can be replaced with 
another model, or new commands can be added to the NN), and 
image processing that does not take place on the UAV, which 
only executes commands (Fig. 1). Gestures are used to control 
an UAV, or rather a quadcopter, which is a type of multicopter. 
We used a DJI Tello Edu quadcopter, a special STEM version 
of a quadcopter from the Chinese company Ryze Robotics in 
cooperation with DJI, another Chinese company that is the 
market leader in drones. Tello Edu’s image processing is 
supported by the Intel Movidius Myriad processor, which 
allows for the execution of instructions written in Python and 
also supports low-level image processing and recognition tools. 

 

Figure 1. Schematic representation of the system architecture. 

 
The most important component of the gesture management 

system is, of course, the gesture recognition module. It consists 
of two parts: a comprehensive key point recognition model 
called MediaPipe Hands, and a NN classifier that recognizes 
gestures based on the key points found. The output is the 
ordinal index of the recognized gesture. This index is 

transmitted to the quadcopter control module, where, 
depending on the parameter settings, the control command is 
transmitted to the quadcopter. 

The quadcopter can also be controlled via a computer 
keyboard. This part of the control module is independent of the 
recognition module, and interacts only with the main program. 
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The main program initializes all of the modules, establishes 
communication with the quadcopter, and is responsible for data 
transfer between modules. For example, this module transmits 
the image from the quadcopter’s video stream to the gesture 
recognition module, and sends the index of the recognized 
gesture to the quadcopter control module. The proposed 
architecture provides several options for controlling the 
quadcopter, which increases flight safety, while the modularity 
of the architecture allows the user to change and customize 
quadcopter control parameters (such as speed or command 
type) and add new gestures without changing the main 
execution program. This is enough to make the necessary 
changes to the solution modules. 

III. IMPLEMENTATION 
The following technologies are used to implement the 
quadcopter gesture control system: 

 the Python SDK djitellopy library; 

 a module for recognizing hand key points; 
 the backend of the project, which connects and controls 

the quadcopter; 
 code for training an NN written using the TensorFlow 

framework; 
 code for optimization of the NN hyperparameters using 

the Tensorboard platform. 
In addition, to enable graphical visualization of gesture 

recognition, code is written to display the image from the 
quadcopter’s camera in a program window using the OpenCV 
Python library. This library is used to visualize the results from 
the NNs in real time, to process the image before feeding it to 
the NN input, and to display additional information on the 
video stream from the quadcopter. The battery status of the 
drone is displayed in the lower left corner, and the frame rate 
per second in the upper left. The key points of the hand are 
drawn on top of the image as a “white skeleton” (Fig. 2). 

 

Figure 2. Graphical visualization of interconnected key points used for gesture recognition. The name of the classified gesture is 
displayed in the corner of the black frame that surrounds the hand in the image. 

 
The code can be divided into three parts: the hand 

recognition module, the gesture classifier module and the 
quadcopter control module. However, the components of the 
system have a slightly more complex organizational structure, 
and detailed information can be found in the Codebase that is 
available on the GitHub repository 
(https://github.com/kinivi/tello-gesture-control). 

A. HAND RECOGNITION MODULE 
As already mentioned, the code consists of three parts, and the 
gesture recognition module was developed first. A combined 
architecture is used for gesture recognition, in which the 
MediaPipe Hands model is used to recognize key points of the 
hand and a self-developed NN is applied to classify gestures 
based on these points. Depending on the classified gesture, a 
certain command is transmitted to the quadcopter. 

The solution is implemented using MediaPipe, a framework 
for building cross-platform machine learning solutions. The 
proposed model and architecture yield real-time inference 
speed on mobile GPUs, with high prediction quality. A single-
pass deep learning-based detector model optimized for a real-

time mobile application similar to BlazeFace, which is also 
available in MediaPipe, is used to detect the initial hand 
positions. Hand detection is an extremely challenging task, as 
the model must work on different hand sizes with a large zoom 
range (∼20x) and needs to be able to detect even intertwined 
hands. The use of a palm detector solves these problems, and 
the hand landmark model is activated when the palm has been 
successfully detected by the detector in the image. After 
running palm detection over the entire image, a hand landmark 
model subsequently performs precise localization of 21 
keypoint coordinates in 3D, within the detected hand regions, 
using regression. The model learns a constant representation of 
the internal pose of the hand, and is robust even to partially 
visible hands and self-occlusion. The model has three outputs: 

 21 hand marks, (x, y) coordinates and relative depths; 
 a hand flag indicating the probability of the presence of 

a hand in the input image; 
 binary classification of the hand (left or right). 
To enable recovery from a tracking failure, there is another 

model result, which is analogous to calculating the probability 
of an event, that detects whether a hand is actually present in 
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the frame. If the score is below a given threshold, the detector 
is triggered and resets the tracking. Since the MediaPipe Hands 
model is ready to use, the process of connecting it using a 
Python script is quite simple: it is sufficient to import the hands 
class from the MediaPipe library and transfer the image as a 
vector. The output is the 3D coordinates of the key points of 
the hand, with (x, y, z) coordinates for each of 21 points. Two 
coordinates for points (x, y) in the 2D plane are used for gesture 
recognition. In order to process the results with an NN 
classifier, it is necessary to transform the data into a vector and 
normalize the data, which allows the coordinates to be one 
range, thereby speeding up the training of the model and 
increasing accuracy. 

The step-by-step process of converting and processing the 
results into a vector is as follows: 

 Point coordinates are converted from absolute to 
relative. Instead of indicating the coordinates within the 
entire image, they will determine the position of the 

hand relative to the hand. The reference point is the base 
point with index 0 (coordinates (0,0,0)). 

 The list of arrays of points is combined into a single 
consecutive array with a length of 42 elements. 

 This concatenated array is normalized based on the 
maximum number, according to formula (1), where x – 
input vector to the layer, [] – operation of taking the 
absolute value and z – output vector 

 
min( )

[max( ) min( )]

x x
z

x x





.  (1) 

 
The steps of the process are visualized in Fig.3 with a mock-

up data. The output is a 1x42 array that is ready for use by a 
classifier module. 

 

 

Figure 3. Step-by-step processing based on an example of real data. 

 

B. GESTURE CLASSIFIER MODULE 
The model of the gesture classifier is a multiperceptron with 
four fully connected layers, the input to which takes the form 
of a pre-processed vector of key points. A multilayer 
perceptron (MLP) is a type of artificial neural network (ANN), 
and consists of at least three layers of nodes: an input layer, one 

or more hidden layers, and an output layer. Three of the four 
hidden layers of our model have a rectified linear unit (ReLU) 
activation function, and the last one is Softmax. To implement 
this NN, the Tensorflow library was used together with the 
Keras application software tool. The schematic description of 
the model with the mathematical definition is given in Fig 4. 
Simplified structure visualization is given in Fig. 5. 

 

Figure 4. Schematic structure with mathematical definitions. 

 
Here, σ denotes the ReLU activation function, which 

promotes faster training and mitigates the vanishing gradient 
problem due to its linear, nonlinear nature and computational 
simplicity. The ReLU activation function can be defined 

mathematically as in (2), where x denotes input signal from the 
previous layer. 
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, if 0,
Re LU( )

0, otherwise.

x x
x

 


.  (2) 

 
Dropout (3) is a regularization technique in which some 

elements of the input are randomly set to zero during training, 
with probability pi. This is an effective technique that helps 
prevent overfitting and improves generalization in deep NNs 
by randomly dropping units during training, thereby 
encouraging more robust feature learning. 
 

1
Dropout( , ) ( ) .

1
x p M x x

p



   (3) 

 
In this equation, x is the input vector, p is the dropout 

probability, ⊙ denotes element-wise multiplication, and M(x) 
is a binary mask vector generated by sampling each element 
independently from a Bernoulli distribution with probability p. 
A scaling factor of 1/1−p is applied to maintain the expected 
value of the input during training. 

 

Figure 5. Simplified structure visualization of the classifier model 

 
The Adam optimizer and a cross-entropy loss function are 

used in the developed model. More than 1,500 pairs of data for 
eight classes of gestures were collected to train the model, 
which was carried out using the Google Colab platform. 

For greater accuracy, code was created using the 
Tensorboard data visualisation platform to select the best 

hyperparameters for model training. In Fig.6 the Tensorboard 
dashboard with the process of determining best possible set of 
parameters for our model is visualized. This helped in 
determining the optimal model parameters for the use in our 
case. 

 

 

Figure 6. View of the Tensorboard interface and results for the optimal hyperparameters. 

 
From Fig. 7, it can be seen that the accuracy of the model 

on the test dataset (30% of all data) was greater than 97% 
(precision must be > 97%) for each class. Due to the simple 
structure of the model, it is possible to obtain high accuracy 
with only a small number of examples of each class for training. 
There is no need to retrain the model for each gesture with 
different lighting, as MediaPipe takes care of all key point 
detection process. 

C. QUADCOPTER CONTROL MODULE 
When the gesture recognition stage is complete, the next step 
involves the implementation of the quadcopter control system 
based on the recognized gestures and receiving the image from 
the quadcopter’s camera. We used the DJI Tello Edu 
quadcopter as a UAV with an open SDK for its programming 
and control, and the djitellopy library was used in view of its 
convenience and the speed of development. 
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Figure 7: Gestures and corresponding quadcopter control commands 

 
This library is an ideal tool for our tasks, since the most 

difficult aspect of working with a quadcopter one is obtaining 
the image from the camera. A DJI Tello is controlled from a 
computer or phone via the WiFi protocol (IEEE 802) at a 
frequency of 2.4 GHz. The Tello SDK is connected to the 
quadcopter via a UDP WiFi port, allowing the user to control 
the quadcopter using text commands. Streaming applications 
often use UDP, as dropping packets is better than waiting for 
packets to be delayed due to retransmissions, which is not 
possible in a real-time system. For this reason, this protocol was 
chosen to control the quadcopter and transmit the image. Since 
communication with the quadcopter may not be stable over 
longer distances, and since the acquisition of real-time data is 

critical to the control of the quadcopter, the use of this protocol 
is reasonable. 

The djitellopy library handles all the work with the protocol 
involving receiving and sending data. After the successful 
execution of the program in the output console, a status 
message is received to indicate that the connection is 
established and the data stream from the camera has been 
received. When the image has been processed by the gesture 
recognition module, the class of the gesture (or its absence) is 
transmitted in the form of an index. For each gesture and 
corresponding index, a certain command is executed by the 
drone. The commands and the corresponding gestures are 
shown in Fig. 8. 

 

 

Figure 8. Gestures and corresponding quadcopter control commands. 

 
Since there may be noise and other problems when 

transmitting the image, the commands are recorded in a special 
buffer. If the buffer is filled with commands of the same type, 
the speed of the quadcopter is set in the given direction; this 
allows for increased fault tolerance, as well as making the 
movements of the quadcopter smoother. Due to the fact that 
gesture recognition occurs in real time, the use of a buffer does 
not create problems with latency, as it fills up very quickly. 

D. ADDING NEW GESTURES 
The last stage of the implementation was the addition of a 

functionality to enable the recording of new gestures. Since the 
solution itself is modular, to add a new gesture, the user only 
needs to retrain the NN (the gesture classifier). To simplify data 
collection, a special mode is implemented that allows a dataset 
for a new gesture to be created directly from the quadcopter’s 
camera. 

In this mode, when a number key from ”0” to ”9” is pressed, 
the key points that have been recognized by the MediaPipe 
Hands model are recorded in a tabular data file from the 
indexes according to the pressed key. In Fig.9 an example of 
the created file with the data can be seen. The coordinates of 
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the points have already been recorded in the form of a pre-
processed and normalized vector. In this mode, additional data 
can also be collected to improve the recognition of already 

insinuating gesture. An interactive code in Jupyter format was 
created to retrain the NN classifier on new data. 

 

 

Figure 9. File with key points in the form of a normalized vector. 

 
In this mode, when a number key from ”0” to ”9” is pressed, 

the key points that have been recognized by the MediaPipe 
Hands model are recorded in a tabular data file from the 
indexes according to the pressed key. On the Fig.9 can be seen 
an example of the created file with the data. The coordinates of 
the points have already been recorded in the form of a pre-
processed and normalised vector. In this mode, additional data 
can also be collected to improve the recognition of already 
insinuating gesture. An interactive code in Jupyter format was 
created to retrain the NN classifier on new data. More 
information provided in the Codebase is available on the 
GitHub repository (https://github.com/kinivi/tello-gesture-
control). 

IV. RESULTS AND ANALYSIS 
When the implementation of all components was complete, the 
system was tested and its full functionality in terms of 
quadcopter flight control was demonstrated. The recognition 
module performed gesture classification with ultra-high 

accuracy, both for the initially programmed gestures and after 
training on new ones. The key point recognition model based 
on the MediaPipe platform showed fast performance, even on 
a low-specification laptop with a dual-core Intel i5 processor 
with integrated graphics. It is worth noting here that until 
recently, such models could only be run on a multi-core PC 
with discrete graphics; that is, the performance of the 
recognition module fully justifies the chosen architecture. The 
classifier NN was quickly retrained to add new gestures. On 
average, it was sufficient to collect 30–70 examples to get 
accurate results in terms of recognizing a new gesture. 

The control module operated correctly, and the quadcopter 
smoothly executed commands with stable flight. We also tested 
indoor emergencies (such as a collision with a wall or loss of 
visual contact). In this case, the quadcopter quickly recognized 
the “STOP” command or rapidly switched to the keyboard 
control mode, which allowed it to avoid emergency situations. 
Fig. 10 demonstrates the screenshot of the visualization 
interface during the quadcopter operation. 

 

 

Figure 10. Demonstration of UAV gesture control. In the lower right corner, we can see video images from the smartphone 
camera used to record the quadcopter’s flight. 

 
The main drawbacks that could be improved are that the 

recognition system did not work satisfactorily in very low 
lighting or at a large distance from the hand. The first problem 
can be solved by using infrared cameras instead of 
conventional ones (as infrared cameras can work based on the 

light emitted by the heat of a person’s palms). Since the 
silhouette of the hand does not change, the key point detection 
model can be retrained on the new data without changing the 
architecture. 

The problem of long distances is less acute, but can be 
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solved by using a holistic model [30-34]. This model allows the 
system to recognize first the human body (key points of the 
skeleton), and then the key points of the hand from enlarged 
images of the area where the hands are located on the skeleton. 
This approach would theoretically allow for the recognition of 
gestures over long distances at which the image of the hand 
does not occupy most of the frame. 

The addition of a functionality for the recognition of 
moving gestures may also be a direction for future 
development, for example, by writing a letter in the air with a 
finger or other moving hand gestures. Since movements are an 
integral part of human cognitive perception, the ability to 
recognize such gestures would add intuitiveness and 
convenience to the control system. For this purpose, it can be 
possible to use a NN classifier based on the long short-term 
memory architecture, where the input is the stored history of 
key points for the last n frames, and the output is the gesture 
class. Since the buffer stores only a vector of point coordinates, 
the memory consumption will be negligible. Another 
disadvantage is that the system recognizes gestures of only one 
hand. Since the hand tracking model can work when multiple 
hands are in the frame and can recognize each one, multi-
gestures based on two hands can be used in the future. This will 
give more control over potentially difficult situations in flight. 
Codebase is available on the GitHub repository 
(https://github.com/kinivi/tello-gesture-control). 

V. CONCLUSIONS 
A gesture recognition system for quadcopter control was 
developed using the MediaPipe NN platform. Software for 
gesture recognition with high accuracy was developed using 
artificial intelligence, and the classified gesture commands 
were then used to control quadcopter. This software is based on 
platforms and tools from Google and DJI, and has the following 
technical characteristics: real-time gesture recognition and 
control of quadcopter, modularity of the solution for easy 
modification of recognition and control modules, the ability to 
add new gestures for recognition, the ability to control the 
quadcopter in two ways (via gestures or the keyboard), and a 
graphical interface for visualizing the gesture recognition 
process and displaying additional useful information. Since 
there is a strong trend toward the development of artificial 
intelligence in the field of computer vision and autonomous 
vehicles, the software developed here can serve as a basis for 
future gesture control programs for quadcopters both in the user 
sector and in the field of industrial UAVs. The potential of this 
program for use in the military sector is also considerable. 
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