

VOLUME 23(4), 2024 583

Date of publication DEC-31, 2024, date of current version NOV-05, 2024.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.23.4.3757

Gesture Recognition based on Deep
Learning for Quadcopters Flight Control

VOLODYMYR SAMOTYY1,3, NIKITA KISELOV2, ULIANA DZELENDZYAK3, OKSANA SHPAK3
1Department of Automatic Control and Information Technology, Faculty of Electrical and Computer Engineering,

Cracow University of Technology, 31155 Cracow, Poland
2Paris-Saclay Faculty of Sciences, Université Paris-Saclay, Orsay 91400, France

3Department of Computerised Automatic Systems, Institute of Computer Technologies, Automation, and Metrology,
Lviv Polytechnic National University, Lviv 79013, Ukraine

Corresponding author: Volodymyr Samotyy (e-mail: vsamotyy@pk.edu.pl).

 ABSTRACT This article presents a system for controlling quadcopters with gestures, which are recognized by
a model based on neural networks. A method based on a combined deep learning model is proposed that provides
real-time recognition with minimal consumption of computing power. An implementation is presented that offers
the possibility of controlling the quadcopter in two ways, via gestures or the keyboard. A functionality is also
provided for adding new gestures for recognition using interactive code via the Jupyter Lab web application. A
special mode is implemented that allows us to create a data set for a new test directly from the quadcopter camera
to simplify data collection. The operation of the control and recognition module is demonstrated using an example
in which a DJI Tello Edu drone is controlled. The results of tests under real conditions are presented. The developed
software allows one to speed up the process of gesture recognition and facilitates the process of controlling the
quadcopters. Several areas of improvement of the developed system and their possible technical implementation
are proposed.

 KEYWORDS Type gesture control; deep neural networks; computer vision; convolution neural network;
artificial intelligence; quadcopter; TensorFlow; Tensorboard.

I. INTRODUCTION
HE use of Gesture control has always been a popular
research topic, but following the advent of neural networks

(NNs) in the domain of computer vision systems, the
implementation of these systems in various devices has begun
to expand rapidly to include not only specialized devices for
people with hearing impairment but also smartphones and other
devices with built-in cameras. The control of UAVs (unmanned
aerial vehicles) using hand gestures is one of such examples
that has gained popularity in the consumer sector and has also
attracted interest from the military sector. This article presents
a system based on a self-created NN and models from the
MediaPipe platform for controlling a quadcopter via gestures.
The developed system combines such tasks as gesture
recognition, gesture classification, processing, and execution of
commands transmitted to the quadcopter. A prototype model
for the visual gesture control of quadcopters is built using
modern developments in the field of artificial intelligence and
the MediaPipe NN platform from Google.

Gesture recognition is an area of computer and language
technologies and involves interpreting human gestures using
mathematical algorithms [1, 2]. It is sometimes considered a

sub-discipline of computer vision. Currently, users can use
simple gestures to control and interact with devices without
physically touching them, and most existing approaches are
implemented using cameras and computer vision algorithms.
Gesture control is essentially a natural interaction that does not
rely on mechanical devices. An intelligent approach to human
control of UAVs in real time was described in [3]. This
approach uses a multi-mode command structure. Gesture
recognition is implemented on the basis of machine learning.
The main application areas are currently the automotive sector,
consumer electronics, gaming, the military [3, 4], home
automation (Internet of Things), and automated sign language
translation.

The ability to track human hand movements and identify
which gestures they are performing can be achieved using
various tools. Here, we consider computer vision-based
models, which are based on the visual perception of an image
by a computer and its subsequent interpretation. The most
popular method of classical computer vision for gesture and
motion recognition is segmentation. A method of gesture
recognition based on NNs exploits the architecture of a
convolutional NN and different sets of systems for its use [5, 6,

T

 Volodymyr Samotyy et al. / International Journal of Computing, 23(4) 2024, 583-591

584 VOLUME 23(4), 2024

7]. A hand-machine interface device [8] providing information
in real-time was described in detail. One of the works [9]
proposed a method of hand tracking and gesture recognition for
visual interfaces. Gesture recognition is performed by pre-
evaluating several defined gestures. A modern approach was
described in [10]. The network gaming interface is designed
around a digital assistant that uses language, gestures, and
touch. The basis of a new type of interface for mobile
computing systems was proposed in [11]. The concept of
kinetic interfaces, in which movement was considered as the
primary mode of input was highlighted. The system for
recognition of gestures providing a way of non-verbal
communication was described in [12]. The algorithm does not
depend on user characteristics and, therefore does not require
training of sample data. Instead, [13] proposed the method that
provides effective drone control without lengthy training.
Using the LeapMotion sensor, drone control via gestures was
implemented in [14]. In work [15], a Natural User Interface
(NUI) was developed for controlling drones using speech and
hand gestures. Two fundamental solutions for positional
tracking, marker, and non-marker methods were described in
[16]. System indoor tracking with the base station and rotating
laser and photodiode sensors on object tracking was presented
in [17]. In [18], a method for estimating position was proposed
using low-cost GPS and optical streams from UAV camera.
Successful use and application of the supplement of reality was
described in [19, 20], which includes combining several
sensors, object tracking, and registration of real and virtual
worlds. [21] developed methods for detecting and tracking 3D
objects for various computer vision applications, including
various fields such as robotics, driving, space, and the military.
[22] described the training of an artificial neural network for
the pose of an object using only synthetic single-channel edge-
enhanced images. The influence of localization accuracy [23]
on the visual effect of overlaying augmented reality, optimizes
the implementation of demonstration response in a virtual
geographic environment. Providing navigation on a quadcopter

by a person and using a set of glasses was considered in [24].
The proposed approach can be used in many situations, and
also for people with disabilities. In work [25], UAVs support
of users in their actions was described. In this context, the
exchange of spatial information between the user and the UAV
is facilitated by the three-dimensional localization of the UAV
assistant. A data synthesis pipeline was developed to create a
realistic multimodal dataset that includes both an exocentric
view of the user and an egocentric submission of UAVs.

The latest developments in this area include the so-called
combination models, which are formed from combinations of
different types of deep NNs. For example, a combination of
neural model based on several convolutional deep NNs and a
simple multi-layer neural model can be used for gesture
recognition systems [26-29]. Convolutional NNs are
responsible for finding the hand image in the input data and
identifying key points, while a conventional NN classifies these
as points in space that are specific to a particular gesture. This
model can be easily adapted and retrained to recognize new
gestures, and can be optimized to run on mobile devices, and is
therefore used in the proposed system.

II. SYSTEM ARCHITECTURE
The development of the proposed system architecture is based
on the following main principles: fault tolerance, flexibility of
component replacement (i.e., the UAV can be replaced with
another model, or new commands can be added to the NN), and
image processing that does not take place on the UAV, which
only executes commands (Fig. 1). Gestures are used to control
an UAV, or rather a quadcopter, which is a type of multicopter.
We used a DJI Tello Edu quadcopter, a special STEM version
of a quadcopter from the Chinese company Ryze Robotics in
cooperation with DJI, another Chinese company that is the
market leader in drones. Tello Edu’s image processing is
supported by the Intel Movidius Myriad processor, which
allows for the execution of instructions written in Python and
also supports low-level image processing and recognition tools.

Figure 1. Schematic representation of the system architecture.

The most important component of the gesture management

system is, of course, the gesture recognition module. It consists
of two parts: a comprehensive key point recognition model
called MediaPipe Hands, and a NN classifier that recognizes
gestures based on the key points found. The output is the
ordinal index of the recognized gesture. This index is

transmitted to the quadcopter control module, where,
depending on the parameter settings, the control command is
transmitted to the quadcopter.

The quadcopter can also be controlled via a computer
keyboard. This part of the control module is independent of the
recognition module, and interacts only with the main program.

Volodymyr Samotyy et al. / International Journal of Computing, 23(4) 2024, 583-591

VOLUME 23(4), 2024 585

The main program initializes all of the modules, establishes
communication with the quadcopter, and is responsible for data
transfer between modules. For example, this module transmits
the image from the quadcopter’s video stream to the gesture
recognition module, and sends the index of the recognized
gesture to the quadcopter control module. The proposed
architecture provides several options for controlling the
quadcopter, which increases flight safety, while the modularity
of the architecture allows the user to change and customize
quadcopter control parameters (such as speed or command
type) and add new gestures without changing the main
execution program. This is enough to make the necessary
changes to the solution modules.

III. IMPLEMENTATION
The following technologies are used to implement the
quadcopter gesture control system:

 the Python SDK djitellopy library;

 a module for recognizing hand key points;
 the backend of the project, which connects and controls

the quadcopter;
 code for training an NN written using the TensorFlow

framework;
 code for optimization of the NN hyperparameters using

the Tensorboard platform.
In addition, to enable graphical visualization of gesture

recognition, code is written to display the image from the
quadcopter’s camera in a program window using the OpenCV
Python library. This library is used to visualize the results from
the NNs in real time, to process the image before feeding it to
the NN input, and to display additional information on the
video stream from the quadcopter. The battery status of the
drone is displayed in the lower left corner, and the frame rate
per second in the upper left. The key points of the hand are
drawn on top of the image as a “white skeleton” (Fig. 2).

Figure 2. Graphical visualization of interconnected key points used for gesture recognition. The name of the classified gesture is
displayed in the corner of the black frame that surrounds the hand in the image.

The code can be divided into three parts: the hand

recognition module, the gesture classifier module and the
quadcopter control module. However, the components of the
system have a slightly more complex organizational structure,
and detailed information can be found in the Codebase that is
available on the GitHub repository
(https://github.com/kinivi/tello-gesture-control).

A. HAND RECOGNITION MODULE
As already mentioned, the code consists of three parts, and the
gesture recognition module was developed first. A combined
architecture is used for gesture recognition, in which the
MediaPipe Hands model is used to recognize key points of the
hand and a self-developed NN is applied to classify gestures
based on these points. Depending on the classified gesture, a
certain command is transmitted to the quadcopter.

The solution is implemented using MediaPipe, a framework
for building cross-platform machine learning solutions. The
proposed model and architecture yield real-time inference
speed on mobile GPUs, with high prediction quality. A single-
pass deep learning-based detector model optimized for a real-

time mobile application similar to BlazeFace, which is also
available in MediaPipe, is used to detect the initial hand
positions. Hand detection is an extremely challenging task, as
the model must work on different hand sizes with a large zoom
range (∼20x) and needs to be able to detect even intertwined
hands. The use of a palm detector solves these problems, and
the hand landmark model is activated when the palm has been
successfully detected by the detector in the image. After
running palm detection over the entire image, a hand landmark
model subsequently performs precise localization of 21
keypoint coordinates in 3D, within the detected hand regions,
using regression. The model learns a constant representation of
the internal pose of the hand, and is robust even to partially
visible hands and self-occlusion. The model has three outputs:

 21 hand marks, (x, y) coordinates and relative depths;
 a hand flag indicating the probability of the presence of

a hand in the input image;
 binary classification of the hand (left or right).
To enable recovery from a tracking failure, there is another

model result, which is analogous to calculating the probability
of an event, that detects whether a hand is actually present in

 Volodymyr Samotyy et al. / International Journal of Computing, 23(4) 2024, 583-591

586 VOLUME 23(4), 2024

the frame. If the score is below a given threshold, the detector
is triggered and resets the tracking. Since the MediaPipe Hands
model is ready to use, the process of connecting it using a
Python script is quite simple: it is sufficient to import the hands
class from the MediaPipe library and transfer the image as a
vector. The output is the 3D coordinates of the key points of
the hand, with (x, y, z) coordinates for each of 21 points. Two
coordinates for points (x, y) in the 2D plane are used for gesture
recognition. In order to process the results with an NN
classifier, it is necessary to transform the data into a vector and
normalize the data, which allows the coordinates to be one
range, thereby speeding up the training of the model and
increasing accuracy.

The step-by-step process of converting and processing the
results into a vector is as follows:

 Point coordinates are converted from absolute to
relative. Instead of indicating the coordinates within the
entire image, they will determine the position of the

hand relative to the hand. The reference point is the base
point with index 0 (coordinates (0,0,0)).

 The list of arrays of points is combined into a single
consecutive array with a length of 42 elements.

 This concatenated array is normalized based on the
maximum number, according to formula (1), where x –
input vector to the layer, [] – operation of taking the
absolute value and z – output vector

min()

[max() min()]

x x
z

x x





. (1)

The steps of the process are visualized in Fig.3 with a mock-

up data. The output is a 1x42 array that is ready for use by a
classifier module.

Figure 3. Step-by-step processing based on an example of real data.

B. GESTURE CLASSIFIER MODULE
The model of the gesture classifier is a multiperceptron with
four fully connected layers, the input to which takes the form
of a pre-processed vector of key points. A multilayer
perceptron (MLP) is a type of artificial neural network (ANN),
and consists of at least three layers of nodes: an input layer, one

or more hidden layers, and an output layer. Three of the four
hidden layers of our model have a rectified linear unit (ReLU)
activation function, and the last one is Softmax. To implement
this NN, the Tensorflow library was used together with the
Keras application software tool. The schematic description of
the model with the mathematical definition is given in Fig 4.
Simplified structure visualization is given in Fig. 5.

Figure 4. Schematic structure with mathematical definitions.

Here, σ denotes the ReLU activation function, which

promotes faster training and mitigates the vanishing gradient
problem due to its linear, nonlinear nature and computational
simplicity. The ReLU activation function can be defined

mathematically as in (2), where x denotes input signal from the
previous layer.

Volodymyr Samotyy et al. / International Journal of Computing, 23(4) 2024, 583-591

VOLUME 23(4), 2024 587

, if 0,
Re LU()

0, otherwise.

x x
x

 


. (2)

Dropout (3) is a regularization technique in which some

elements of the input are randomly set to zero during training,
with probability pi. This is an effective technique that helps
prevent overfitting and improves generalization in deep NNs
by randomly dropping units during training, thereby
encouraging more robust feature learning.

1
Dropout(,) () .

1
x p M x x

p



 (3)

In this equation, x is the input vector, p is the dropout

probability, ⊙ denotes element-wise multiplication, and M(x)
is a binary mask vector generated by sampling each element
independently from a Bernoulli distribution with probability p.
A scaling factor of 1/1−p is applied to maintain the expected
value of the input during training.

Figure 5. Simplified structure visualization of the classifier model

The Adam optimizer and a cross-entropy loss function are

used in the developed model. More than 1,500 pairs of data for
eight classes of gestures were collected to train the model,
which was carried out using the Google Colab platform.

For greater accuracy, code was created using the
Tensorboard data visualisation platform to select the best

hyperparameters for model training. In Fig.6 the Tensorboard
dashboard with the process of determining best possible set of
parameters for our model is visualized. This helped in
determining the optimal model parameters for the use in our
case.

Figure 6. View of the Tensorboard interface and results for the optimal hyperparameters.

From Fig. 7, it can be seen that the accuracy of the model

on the test dataset (30% of all data) was greater than 97%
(precision must be > 97%) for each class. Due to the simple
structure of the model, it is possible to obtain high accuracy
with only a small number of examples of each class for training.
There is no need to retrain the model for each gesture with
different lighting, as MediaPipe takes care of all key point
detection process.

C. QUADCOPTER CONTROL MODULE
When the gesture recognition stage is complete, the next step
involves the implementation of the quadcopter control system
based on the recognized gestures and receiving the image from
the quadcopter’s camera. We used the DJI Tello Edu
quadcopter as a UAV with an open SDK for its programming
and control, and the djitellopy library was used in view of its
convenience and the speed of development.

 Volodymyr Samotyy et al. / International Journal of Computing, 23(4) 2024, 583-591

588 VOLUME 23(4), 2024

Figure 7: Gestures and corresponding quadcopter control commands

This library is an ideal tool for our tasks, since the most

difficult aspect of working with a quadcopter one is obtaining
the image from the camera. A DJI Tello is controlled from a
computer or phone via the WiFi protocol (IEEE 802) at a
frequency of 2.4 GHz. The Tello SDK is connected to the
quadcopter via a UDP WiFi port, allowing the user to control
the quadcopter using text commands. Streaming applications
often use UDP, as dropping packets is better than waiting for
packets to be delayed due to retransmissions, which is not
possible in a real-time system. For this reason, this protocol was
chosen to control the quadcopter and transmit the image. Since
communication with the quadcopter may not be stable over
longer distances, and since the acquisition of real-time data is

critical to the control of the quadcopter, the use of this protocol
is reasonable.

The djitellopy library handles all the work with the protocol
involving receiving and sending data. After the successful
execution of the program in the output console, a status
message is received to indicate that the connection is
established and the data stream from the camera has been
received. When the image has been processed by the gesture
recognition module, the class of the gesture (or its absence) is
transmitted in the form of an index. For each gesture and
corresponding index, a certain command is executed by the
drone. The commands and the corresponding gestures are
shown in Fig. 8.

Figure 8. Gestures and corresponding quadcopter control commands.

Since there may be noise and other problems when

transmitting the image, the commands are recorded in a special
buffer. If the buffer is filled with commands of the same type,
the speed of the quadcopter is set in the given direction; this
allows for increased fault tolerance, as well as making the
movements of the quadcopter smoother. Due to the fact that
gesture recognition occurs in real time, the use of a buffer does
not create problems with latency, as it fills up very quickly.

D. ADDING NEW GESTURES
The last stage of the implementation was the addition of a

functionality to enable the recording of new gestures. Since the
solution itself is modular, to add a new gesture, the user only
needs to retrain the NN (the gesture classifier). To simplify data
collection, a special mode is implemented that allows a dataset
for a new gesture to be created directly from the quadcopter’s
camera.

In this mode, when a number key from ”0” to ”9” is pressed,
the key points that have been recognized by the MediaPipe
Hands model are recorded in a tabular data file from the
indexes according to the pressed key. In Fig.9 an example of
the created file with the data can be seen. The coordinates of

Volodymyr Samotyy et al. / International Journal of Computing, 23(4) 2024, 583-591

VOLUME 23(4), 2024 589

the points have already been recorded in the form of a pre-
processed and normalized vector. In this mode, additional data
can also be collected to improve the recognition of already

insinuating gesture. An interactive code in Jupyter format was
created to retrain the NN classifier on new data.

Figure 9. File with key points in the form of a normalized vector.

In this mode, when a number key from ”0” to ”9” is pressed,

the key points that have been recognized by the MediaPipe
Hands model are recorded in a tabular data file from the
indexes according to the pressed key. On the Fig.9 can be seen
an example of the created file with the data. The coordinates of
the points have already been recorded in the form of a pre-
processed and normalised vector. In this mode, additional data
can also be collected to improve the recognition of already
insinuating gesture. An interactive code in Jupyter format was
created to retrain the NN classifier on new data. More
information provided in the Codebase is available on the
GitHub repository (https://github.com/kinivi/tello-gesture-
control).

IV. RESULTS AND ANALYSIS
When the implementation of all components was complete, the
system was tested and its full functionality in terms of
quadcopter flight control was demonstrated. The recognition
module performed gesture classification with ultra-high

accuracy, both for the initially programmed gestures and after
training on new ones. The key point recognition model based
on the MediaPipe platform showed fast performance, even on
a low-specification laptop with a dual-core Intel i5 processor
with integrated graphics. It is worth noting here that until
recently, such models could only be run on a multi-core PC
with discrete graphics; that is, the performance of the
recognition module fully justifies the chosen architecture. The
classifier NN was quickly retrained to add new gestures. On
average, it was sufficient to collect 30–70 examples to get
accurate results in terms of recognizing a new gesture.

The control module operated correctly, and the quadcopter
smoothly executed commands with stable flight. We also tested
indoor emergencies (such as a collision with a wall or loss of
visual contact). In this case, the quadcopter quickly recognized
the “STOP” command or rapidly switched to the keyboard
control mode, which allowed it to avoid emergency situations.
Fig. 10 demonstrates the screenshot of the visualization
interface during the quadcopter operation.

Figure 10. Demonstration of UAV gesture control. In the lower right corner, we can see video images from the smartphone
camera used to record the quadcopter’s flight.

The main drawbacks that could be improved are that the

recognition system did not work satisfactorily in very low
lighting or at a large distance from the hand. The first problem
can be solved by using infrared cameras instead of
conventional ones (as infrared cameras can work based on the

light emitted by the heat of a person’s palms). Since the
silhouette of the hand does not change, the key point detection
model can be retrained on the new data without changing the
architecture.

The problem of long distances is less acute, but can be

 Volodymyr Samotyy et al. / International Journal of Computing, 23(4) 2024, 583-591

590 VOLUME 23(4), 2024

solved by using a holistic model [30-34]. This model allows the
system to recognize first the human body (key points of the
skeleton), and then the key points of the hand from enlarged
images of the area where the hands are located on the skeleton.
This approach would theoretically allow for the recognition of
gestures over long distances at which the image of the hand
does not occupy most of the frame.

The addition of a functionality for the recognition of
moving gestures may also be a direction for future
development, for example, by writing a letter in the air with a
finger or other moving hand gestures. Since movements are an
integral part of human cognitive perception, the ability to
recognize such gestures would add intuitiveness and
convenience to the control system. For this purpose, it can be
possible to use a NN classifier based on the long short-term
memory architecture, where the input is the stored history of
key points for the last n frames, and the output is the gesture
class. Since the buffer stores only a vector of point coordinates,
the memory consumption will be negligible. Another
disadvantage is that the system recognizes gestures of only one
hand. Since the hand tracking model can work when multiple
hands are in the frame and can recognize each one, multi-
gestures based on two hands can be used in the future. This will
give more control over potentially difficult situations in flight.
Codebase is available on the GitHub repository
(https://github.com/kinivi/tello-gesture-control).

V. CONCLUSIONS
A gesture recognition system for quadcopter control was
developed using the MediaPipe NN platform. Software for
gesture recognition with high accuracy was developed using
artificial intelligence, and the classified gesture commands
were then used to control quadcopter. This software is based on
platforms and tools from Google and DJI, and has the following
technical characteristics: real-time gesture recognition and
control of quadcopter, modularity of the solution for easy
modification of recognition and control modules, the ability to
add new gestures for recognition, the ability to control the
quadcopter in two ways (via gestures or the keyboard), and a
graphical interface for visualizing the gesture recognition
process and displaying additional useful information. Since
there is a strong trend toward the development of artificial
intelligence in the field of computer vision and autonomous
vehicles, the software developed here can serve as a basis for
future gesture control programs for quadcopters both in the user
sector and in the field of industrial UAVs. The potential of this
program for use in the military sector is also considerable.

References

[1] J. Kobylarz, J. J. Bird, D. R. Faria, E. Parente Ribeiro, A., Ekárt, “Thumbs
up, thumbs down: Non-verbal human-robot interaction through real-time
EMG classification via inductive and supervised transductive transfer
learning,” Journal of Ambient Intelligence and Humanized Computing,
vol. 11, pp. 6021-6031, 2020. https://doi.org/10.1007/s12652-020-
01852-z.

[2] G. Kiss, “External manipulation of autonomous vehicles,” Proceedings
of the IEEE SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computing, Scalable Computing &
Communications, Cloud & Big Data Computing, Internet of People and
Smart City Innovation, Leicester, UK, 19–23 August 2019, pp. 248-252.
https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-
SCI.2019.00085.

[3] T. Müezzinoğlu, M. Karaköse, “An intelligent human – Unmanned aerial
vehicle interaction approach in real time based on machine learning using

wearable gloves,” Sensors, vol. 21, issue 5, 1766, 2021.
https://doi.org/10.3390/s21051766.

[4] PatSeer. Patent Landscape Report Hand Gesture Recognition PatSeer
Pro. Available online: (accessed 2 November 2017).

[5] V. I. Pavlovic, R. Sharma, T. S. Huang, “Visual interpretation of hand
gestures for human-computer interaction: A review,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 19, issue 7, pp. 677–
695, 1997. https://doi.org/10.1109/34.598226.

[6] R. P. Sharma, G. K. Verma, “Human computer interaction using hand
gesture,” Procedia Computer Science, vol. 54, pp. 721-727, 2015.
https://doi.org/10.1016/j.procs.2015.06.085.

[7] M. Z. Islam, M. S. Hossain, R. Ul Islam, K. Andersson, “Static hand
gesture recognition using convolutional neural network with data
augmentation,” Proceedings of the 2019 Joint 8th International
Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd
International Conference on Imaging, Vision & Pattern Recognition
(icIVPR), Spokane, WA, USA, 30 May – 02 June 2019.
https://doi.org/10.1109/ICIEV.2019.8858563.

[8] T. G. Zimmerman, J. Lanier, C. Blanchard, S. Bryson, Y. Harvill,
“A Hand Gesture Interface Device,” ACM SIGCHI Bulletin, vol. 18,
no. 4, pp. 189-192, 1986. https://doi.org/10.1145/1165387.275628.

[9] Y. Liu, Y. Jia, “A robust hand tracking and gesture recognition method
for wearable visual interfaces and its applications,” Proceedings of the
Third International Conference on Image and Graphics (ICIG'04), Hong
Kong, China, 18-20 December 2004, pp. 472-475.
https://doi.org/10.1109/ICIG.2004.24.

[10] K.-B. Lee, J.-H. Kim, K.-S. Hong, “An implementation of multi-modal
game interface based on PDAS,” Proceedings of the 5th ACIS
International Conference on Software Engineering Research,
Management & Applications (SERA 2007), Busan, Korea, 20-22 August
2007, pp. 759-768. https://doi.org/10.1109/SERA.2007.48.

[11] V. Pallotta, P. Bruegger, B. Hirsbrunner, “Kinetic user interfaces:
Physical embodied interaction with mobile pervasive computing
systems,” Advances in Ubiquitous Computing: Future Paradigms and
Directions, IGI Publishing, 2008, 28 p. doi: 10.4018/978-1-59904-840-
6.ch008.

[12] M. Panwar, P. S. Mehra, “Hand gesture recognition for human computer
interaction,” Proceedings of the International Conference on Image
Information Processing, Shimla, India, 03-05 November 2011. pp. 1-7,
https://doi.org/10.1109/ICIIP.2011.6108940.

[13] D. Tezza, M. Andujar, “The state-of-the-art of human–drone interaction:
A survey,” IEEE Access, vol. 7, pp. 167438–167454, 2019.
https://doi.org/10.1109/ACCESS.2019.2953900.

[14] R. A. Suárez Fernández, J. L. Sanchez-Lopez, C. Sampedro, H. Bavle,
M. Molina and P. Campoy, “Natural user interfaces for human-drone
multi-modal interaction,” Proceedings of the 2016 International
Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA,
USA, 2016, pp. 1013-1022,
https://doi.org/10.1109/ICUAS.2016.7502665.

[15] R. Herrmann, L. Schmidt, “Design and evaluation of a natural user
interface for piloting an unmanned aerial vehicle,” i-com, vol. 17, issue
1, 2018, pp. 15–24. https://doi.org/10.1515/icom-2018-0001.

[16] S. P. Kleinschmidt, C. S. Wieghardt, B. Wagner, “Tracking solutions for
mobile robots: Evaluating positional tracking using dual-axis rotating
laser sweeps,” Proceedings of the 14th International Conference on
Informatics in Control, Automation and Robotics, ICINCO 2017, Madrid,
Spain, 26–28 July 2017, pp. 155–164.
https://doi.org/10.5220/0006473201550164.

[17] S. Islam, B. Ionescu, C. Gadea, D. Ionescu, “Indoor positional tracking
using dual-axis rotating laser sweeps,” Proceedings of the IEEE
International Instrumentation and Measurement Technology Conference,
Taipei, Taiwan, 23–26 May 2016, pp. 1–6.
https://doi.org/10.1109/I2MTC.2016.7520559.

[18] L. Arreola, A. Montes de Oca, A. Flores, J. Sanchez, G. Flores,
“Improvement in the UAV position estimation with low-cost GPS, INS
and vision-based system: Application to a quadrotor UAV,” Proceedings
of the 2018 International Conference on Unmanned Aircraft Systems
(ICUAS), Dallas, TX, USA, 12–15 June 2018, pp. 1248–1254.
https://doi.org/10.1109/ICUAS.2018.8453349.

[19] W. A. Hoff, K. Nguyen, T. Lyon, “Computer-vision-based registration
techniques for augmented reality,” Proceedings of the Intelligent Robots
and Computer Vision XV: Algorithms, Techniques, Active Vision, and
Materials Handling, Photonics East'96, Boston, MA, United States, vol.
2904, pp. 538–548, 1996. https://doi.org/10.1117/12.256311.

[20] S. S. Deshmukh, C. M. Joshi, R. S. Patel, Y. B. Gurav, “3D object
tracking and manipulation in augmented reality,” International Research
Journal of Engineering and Technology, vol. 5, issue 1, pp. 287–289,
2018.

Volodymyr Samotyy et al. / International Journal of Computing, 23(4) 2024, 583-591

VOLUME 23(4), 2024 591

[21] E. Shreyas, M. H. Sheth and Mohana, “3D object detection and tracking
methods using deep learning for computer vision applications,”
Proceedings of the 2021 International Conference on Recent Trends on
Electronics, Information, Communication & Technology (RTEICT),
Bangalore, India, 2021, pp. 735-738,
https://doi.org/10.1109/RTEICT52294.2021.9573964.

[22] J. Rambach, C. Deng, A. Pagani, D. Stricker, “Learning 6DoF object
poses from synthetic single channel images,” Proceedings of the 2018
IEEE International Symposium on Mixed and Augmented Reality Adjunct
(ISMAR-Adjunct), Munich, Germany, 16–20 October, 2018, pp. 164–
169. https://doi.org/10.1109/ISMAR-Adjunct.2018.00058.

[23] J. Li, C. Wang, X. Kang, Q. Zhao, “Camera localization for augmented
reality and indoor positioning: A vision-based 3D feature database
approach,” International Journal of Digital Earth, vol. 13, issue 6, pp.
727–741, 2020. https://doi.org/10.1080/17538947.2018.1564379.

[24] L. Yuan, C. Reardon, G. Warnell, G. Loianno, “Human gaze-driven
spatial tasking of an autonomous MAV,” IEEE Robotics and Automation
Letters, vol. 4, issue 2, pp. 1343–1350, 2019.
https://doi.org/10.1109/LRA.2019.2895419.

[25] G. Albanis, N. Zioulis, A. Dimou, D. Zarpalas, P. Daras, “Dronepose:
Photorealistic Uav-assistant dataset synthesis for 3D pose estimation via
a smooth silhouette loss,” Proceedings of the Workshop on Computer
Vision – ECCV 2020: Glasgow, UK, 23–28 August, 2020, pp. 663–681.
https://doi.org/10.1007/978-3-030-66096-3_44.

[26] F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka, G. Sung, C. L.
Chang, M. Grundmann, “Mediapipe Hands: On-Device Real-Time Hand
Tracking”, arXiv, 2006. https://doi.org/10.48550/arXiv.2006.10214.

[27] K. Yang, B. Wei, Q. Wang, X. Ren, Y. Xu, H. Liu, “A 3-D depth
information based human motion pose tracking algorithms,” Sensors &
Transducers, vol. 174, issue 7, 2014, pp. 253-260.

[28] H. Fesenko, V. Kharchenko, A. Sachenko, R. Hiromoto and V. Kochan,
“An Internet of drone-based multi-version post-severe accident
monitoring system: Structures and reliability,” In book Dependable IoT
for Human and Industry - Modeling, Architecting, Implementation.
Editors: V. Kharchenko, A. L. Kor and A. Rucinski, River Publishers,
2018, pp. 197-218. https://doi.org/10.1201/9781003337843-12.

[29] I. Zhukov, B. Dolintse, S. Balakin, “Enhancing data processing methods
to improve UAV positioning accuracy,” International Journal of Image,
Graphics and Signal Processing (IJIGSP), vol. 16, no. 3, pp. 100-110,
2024. https://doi.org/10.5815/ijigsp.2024.03.08.

[30] O. Fedorovych, et al., “Military logistics planning models for enemy
targets attack by a swarm of combat drones,” Radioelectronic and
Computer Systems, vol. 2024, no. 1, pp. 207-216, 2024.
https://doi.org/10.32620/reks.2024.1.16.

[31] M. K. Kabir, A. N. Binte Kabir, J. H. Rony, J. Uddin, “Drone detection
from video streams using image processing techniques and YOLOv7,”
International Journal of Image, Graphics and Signal Processing
(IJIGSP), vol. 16, no. 2, pp. 83-95, 2024.
https://doi.org/10.5815/ijigsp.2024.02.07.

[32] I. Paliy, A. Sachenko, V. Koval and Y. Kurylyak, “Approach to face
recognition using neural networks,” Proceedings of the 2005 IEEE
Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications (IDAACS), Sofia, Bulgaria, 2005, pp. 112-
115, https://doi.org/10.1109/IDAACS.2005.282951.

[33] O. Fedorovich, et al., “Modeling waves of a strike drones swarm for a
massive attack on enemy targets,” Radioelectronic and Computer
Systems, vol. 2024, no. 2, pp. 203-212, 2024.
https://doi.org/10.32620/reks.2024.2.16.

[34] Y. Sun, H. Fesenko, V. Kharchenko, L. Zhong, I. Kliushnikov, O.
Illiashenko, O. Morozova, A. Sachenko, “UAV and IoT-based systems

for the monitoring of industrial facilities using digital twins:
Methodology, reliability models, and application,” Sensors, vol. 22,
6444, 2022. https://doi.org/10.3390/s22176444.

VOLODYMYR SAMOTYY received a M.S. in
Automation from Lviv Polytechnic National
University, Ukraine in 1984, a Ph.D. in 1990,
and a D.S. in computers, systems and
networks, elements and devices of
computers and control systems in 1997. He
has been Professor since 2001. He is
currently a Full Professor at the Department
of Automation and Information

Technologies, Cracow University of Technology, Poland, and the
Department of Computerized Automatic Systems at Lviv
Polytechnic National University, Ukraine. His research interests
include evolutionary models, numerical methods, information
security, and digital signal processing. ORCID: 0000-0003-2344-
2576.

ULYANA DZELENDZYAK received a M.S.
in Applied Mathematics from Lviv
Polytechnic National University, Ukraine
in 1989, a PhD in 2006. Since 2009 he has
been an Associate Professor of the
Department of Computerized Automatic
Systems at Lviv Polytechnic National
University, Ukraine. Her research
interests include evolutionary models,
numerical methods, and digital signal

processing. ORCID: 0000-0003-0529-8582.

NIKITA KISELOV received a B.S in Internet of
Things from Lviv Polytechnic National
University, Ukraine in 2021, an M.S in Artificial
Intelligence from University Paris-Saclay,
France in 2023. His research interests include
computer engineering, artificial intelligence,
natural language processing and computer
vision.
ORCID: 0000-0003-0297-7811.

OKSANA SHPAK received a M.S. in Quality
Management from Lviv Polytechnic National
University, Ukraine in 2001, and a PhD in 2013.
Since 2020 he has been an Assistant
Professor of the Department of Computerized
Automatic Systems at Lviv Polytechnic
National University, Ukraine. Her research
interest quality control, diesel and biodiesel
and digital signal processing. ORCID: 0000-

0002-2093-9029.

