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 ABSTRACT In distributed systems, achieving a consensus among nodes is crucial for ensuring data integrity and 
operational synchronization. A prevalent obstacle in this context is the instability of network connections, which can 
significantly undermine system performance and reliability. This article delves into a sophisticated strategy for refining 
consensus algorithms, aiming to introduce adaptability and fortify resilience against the unpredictability of network 
conditions. It describes and proposes a new method that modifies traditional consensus mechanisms to better withstand 
the challenges posed by unstable network environments. The essence of the method is to solve the consensus problem 
by dynamically adjusting the network parameters to match the real-time connection better. Further analysis of the 
system operation during the time of correct functioning allows us to detect failures with the help of a timeout, which 
signals the loss of communication with a node with which it is not possible to exchange messages. This approach makes 
it possible to improve the system's conclusion about the malfunction of a particular node and avoid possible false 
conclusions about its malfunction. Adjusting the delay value can help maintain stable system performance under 
variable network conditions.  
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I. INTRODUCTION 
N the dynamic landscape of distributed computing, the 
ability of nodes within a network to reach consensus is 

fundamental to the integrity and efficiency of distributed 
systems. These systems underpin a variety of critical 
applications, from blockchain technologies to distributed 
databases, where the consistency of shared data is paramount. 
However, the inherent challenge of maintaining this 
consistency becomes pronounced in the face of unstable 
network connections – a common and yet significantly 
impactful issue that can lead to data inconsistencies, decreased 
system performance, and reduced reliability [1, 2, 15]. 

The susceptibility of distributed systems to network 
instabilities calls for innovative solutions that can enhance the 
resilience of consensus mechanisms. Traditional consensus 
algorithms, while effective under stable conditions, often fall 
short when confronted with the erratic nature of real-world 
network environments. This limitation underscores the need for 
a new approach that not only recognizes the variable nature of 
network connectivity but also adapts to it, ensuring 
uninterrupted system performance and data integrity. 

This article addresses this pressing need by introducing a 
novel modification to existing consensus algorithms, aimed at 
bolstering their robustness against network instability. By 
reimagining consensus mechanisms with a focus on 
adaptability, the proposed method offers a promising solution 

to one of the most persistent challenges in distributed 
computing. The essence of this approach lies in its dynamic 
adjustment of consensus parameters in response to the 
fluctuating conditions of the network, thereby maintaining a 
consistent and reliable consensus process. 

In presenting this innovative method, the article aims to 
contribute to the broader discourse on distributed system 
design, offering a theoretical foundation that can guide future 
research and development. The introduction of this adaptive 
consensus algorithm not only marks a significant step forward 
in the quest for more resilient distributed systems but also sets 
the stage for empirical investigations that will further elucidate 
its practical implications and potential benefits. 

A.  PROBLEM STATEMENT 
In the intricate ecosystem of distributed systems, where 
consensus algorithms are fundamental in maintaining the 
coherence and reliability of the network, unstable connections 
pose a significant threat. The operational efficiency and the 
very essence of distributed consensus, that is, the ability to 
achieve agreement on a single data value among nodes is at risk 
when faced with the erratic nature of network connectivity. 
Instances of latency variability and temporary disconnections 
can precipitate a cascade of operational challenges, including 
increased transaction times, throughput bottlenecks, and, most 
critically, the potential for the loss of consensus. 

I
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Achieving consensus in clusters involves various methods, 
each designed to ensure data consistency and reliability across 
distributed nodes. The primary classifications of consensus 
methods include leader-based, leaderless, quorum-based, 
Byzantine fault-tolerant (BFT) [3-5], proof-based, hierarchical, 
and hybrid approaches. Leader-based methods, such as Raft 
and Paxos, rely on electing a leader to coordinate decisions and 
manage the replication of data. Leaderless methods, like gossip 
protocols and some blockchain systems, do not have a central 
leader, instead relying on decentralized coordination among 
nodes. Quorum-based methods use subsets of nodes to approve 
decisions, ensuring consistency by requiring agreement from a 
majority or quorum. Byzantine fault-tolerant algorithms, such 
as Practical Byzantine Fault Tolerance (PBFT), are designed to 
withstand nodes that may behave maliciously or arbitrarily. 
Proof-based methods, like Proof of Work (PoW) and Proof of 
Stake (PoS) [6-10], are commonly used in blockchain systems 
to achieve consensus without centralized control. Hierarchical 
methods, such as LEACH, focus on energy efficiency by 
organizing nodes into clusters with designated leaders. Hybrid 
methods combine elements from different consensus 
approaches to leverage their strengths and mitigate 
weaknesses, such as Algorand's combination of cryptographic 
sortition with Byzantine agreement. 

Among these consensus methods, leader-based protocols 
like Raft [11], Paxos (specifically Multi-Paxos), and 
ZooKeeper's Zab protocol [12-15] incorporate the notion of a 
leader and rely on delays to detect failures. In these systems, a 
leader is elected to coordinate actions and ensure consistency, 
while followers use timeouts to detect the absence of leader 
heartbeats, which indicates potential failures. If a leader fails to 
send heartbeats within a specified timeout period, followers 
assume the leader is unreachable and initiate a new election. 
This timeout mechanism effectively uses delays to maintain 
system availability and quickly adapt to changing conditions. 
By leveraging leader election and delay detection, these 
protocols focus on ensuring robust and efficient operation in 
distributed environments. 

The central issue that this article addresses is the 
vulnerability of leader-based consensus algorithms to network 
instability, which can be ubiquitous in real-world applications 
due to various factors, such as hardware failures, bandwidth 
fluctuations, and dynamic network topologies [16-19]. Despite 
the robust design of consensus protocols like Raft, the reality 
of network unpredictability necessitates a better understanding 
of its impact on system performance and the critical thresholds 
where system efficiency begins to degrade significantly. 

This work aims to dissect the problem of constant leader 
reelection induced by network delays in distributed systems 
running consensus algorithms like Raft. This condition is not 
merely a performance concern but a systemic threat that can 
disrupt the entire consensus process, leading to a state of 
confusion within the cluster and undermining the fidelity of the 
distributed ledger or database. 

The problematic nature of this issue is multifaceted: 
 the sensitivity of consensus algorithms to the precise 

timing of heartbeat messages for leader election and the 
consequential risk of frequent, unnecessary 
reconfigurations in the face of network instability; 

 the need for a delicate balance in timeout settings to 
differentiate between actual leader failures and transient 
network delays, which is not well-defined in the face of 
varying network conditions; 

 the implications of frequent leader re-elections, which 
include not only performance degradation but also the 
heightened risk of 'split-brain' scenarios and data 
inconsistencies. 

In addressing these challenges, the article proposes to 
explore new methods and modifications to consensus 
algorithms that bolster resilience against unstable network 
conditions. The goal is to offer a novel approach that can 
maintain the integrity and consistency of distributed systems, 
thereby ensuring their operational efficiency and reliability in 
an unpredictable network landscape. 

II.  SELECTING THE BEST LEADER IN DISTRIBUTED 
NETWORK 
Before implementing any modifications to consensus 
algorithms, it is crucial to discern the optimal configuration for 
peak system performance when running such protocols. 

In the domain of leader-based consensus algorithms, such 
as Raft, the ideal scenario is straightforward: the most robust 
cluster is one where the leader maintains the most reliable 
network connections with its followers. This implies minimal 
delay between the leader and its followers. Recalling the 
operational principles of the Raft algorithm, it becomes 
apparent that Raft is not designed to identify the most optimal 
leader within the cluster; instead, its primary objective is to 
manage system failures and ensure the cluster's collective 
operation, without specific consideration for efficiency. 

Nevertheless, algorithms like Raft are not inherently 
equipped to address real-world challenges, such as those 
mentioned previously, where network instabilities lead to a 
"frozen" state of the cluster due to constant leader reelection 
triggered by a few problematic network links. 

In the domain of distributed computing, the election of an 
optimal leader within a cluster is paramount for ensuring 
efficient data management and system functionality. This 
necessitates a comprehensive analysis of attributes and 
conditions conducive to the selection of the most suitable 
leader among the nodes [20-22]. 

In the discourse on distributed systems, particularly those 
reliant on consensus algorithms, the issue of identifying the 
most optimal leader at any given juncture emerges as pivotal 
[23-25]. This inquiry is inherently temporal, contingent upon 
the prevailing network stability, which is subject to fluctuations 
over time. Consequently, an assertion regarding the superior 
suitability of a node as a leader can only be accurately made 
within the context of a specific temporal snapshot, given the 
rapid evolution of network conditions. 

The table below shows potential network technologies 
where a cluster running a consensus algorithm can be deployed, 
along with possible instability factors that could significantly 
impact network performance at specific point in time and, 
consequently, the execution of the consensus algorithm. 

 
 



 Stanislav Zhuravel et al. / International Journal of Computing, 23(4) 2024, 574-582 

576 VOLUME 23(4), 2024 

Table 1. Network technologies and instability factors 

Technology Description Instability factors 
MPLS/IP Efficient routing for 

enterprise networks 
Latency variability, 

bandwidth fluctuations 
BLE Low-power, short-range 

wireless technology 
Interference, limited 

range 
WSN Networks of spatially 

distributed sensors 
Environmental 

interference, energy 
constraints 

5G High-speed mobile 
network technology 

Cell handover issues, 
network congestion 

SAT-Links Satellite communication 
links for remote areas 

Weather interference, 
signal delay 

Mesh Networks with multiple 
data paths for robustness 

Dynamic topology 
changes, node failures 

 
Latency in network technologies can vary significantly 

based on the use case, environmental factors, and 
infrastructure. While transmission latency might be low for 
high-speed links, other factors like propagation and processing 
latencies can contribute significantly to the overall delay. 
Understanding these aspects helps in designing better 
communication infrastructures and distributed systems. 

To elucidate this concept, a comparative analysis of two 
nodes within a hypothetical network cluster, designated as node 
4 (the incumbent leader) and node 1 (a potential candidate for 
leadership), is presented in Figure 1.  

Assuming node 1 is aiming for leadership, determining its 
suitability compared to node 4 involves assessing the network 
latency to all other nodes within the cluster. This process is 
simplified to a comparative analysis of the delays encountered 
in communications originating from both nodes to their peers 
across the network. This approach underscores the fluidity of 
leadership efficacy in distributed systems, where the optimal 
leader is not a static designation but rather a reflection of the 
network current operational landscape. Through this lens, 
methodologies for leader selection that are both adaptive and 
reflective of the underlying network dynamics can be 
discerned. 

The optimal leader is thus determined not solely by its 
status or capabilities but by the aggregate efficiency it brings to 
the network communication. 

 

 

Figure 1. Cluster latency map for leader election 

To mathematically formalize this notion, one could denote 
),1( jL  as the latency between node i  and node j .  For a 

given node 1 vying for leadership, its total latency 1T  can be 

expressed as the sum of latencies between node 1 and all other 
1n  nodes in the network: 
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Similarly, the current leader node 4 has a corresponding 

total latency 4T : 
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In this context, node 1 would be a more suitable leader if 

1T  is less than 4T , indicating that node 1 has a lower overall 

latency in communicating with the rest of the network: 
 

41_____1_ TTifsuitablemoreisNode  . (3) 

 
According to the methodology, the node with the lower 

total latency is more suitable leader. Comparing 1T  and  

4T is as follows: 

 

)676()835( 41 msTmsT  .                   (4) 

 
Thus, node 4, with a total latency of 676ms, is more suitable 

as a leader than node 1 with a total latency of 835ms, based on 
the given configuration. 

This evaluation assumes that overall lower latency 
correlates directly with better performance and suitability for 
leadership. However, this simplistic methodology overlooks 
scenarios wherein a single connection experiences significantly 
higher latency than the others, which plays a critical role in the 
comprehensive evaluation. 

Let us enhance the reliability of connections from Node 1 
to other nodes, except one link that exhibits significantly higher 
latency (refer to Figure 2). 

 

 

Figure 2. Cluster latency map with anomalous link 

Utilizing the methodology above to identify the most 
suitable leader might initially suggest Node 4 as the preferable 
candidate. However, this assessment would be incorrect. The 
actual performance of the cluster depends fundamentally on the 
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majority consensus within the cluster. The leader-based 
consensus algorithm requires a majority of nodes to progress. 
This means that for any given cluster of n nodes, there is a need 

for the majority of 12 n  nodes to be operational and able to 

communicate to make progress. More specifically majority can 
be expressed as: 
 

1
2






n

M ,  (5) 

 
where, brackets denote the floor function, which rounds down 
to the nearest whole number. This ensures that the majority is 
always more than half of the total number of nodes. 

Hence, the determination of the most appropriate leader 
requires consideration of the majority principle within the 
cluster, which led to the definition of the new approach. 

The new methodology defines a strategy for identifying the 
optimal leader in a network by considering the majority rule 
within a cluster. It emphasizes the selection of a node that 
utilizes the fastest communication channels within the cluster. 
The first step is to determine the smallest number of nodes 
required to form a majority that will govern decision-making. 
Subsequently, nodes are ordered by their communication 
speed, from the most to the least efficient. Within this 
prioritized group, the strategy involves calculating the average 
speed, determining the median, or identifying the single 
slowest link. Through this assessment, the node that is best 
positioned to take on the leadership role is selected, to expedite 
decision-making and enhance the overall efficiency of the 
cluster. 

In mathematical terms, identifying the best leader within a 
cluster involves several steps that can be outlined as follows: 

1. Calculate majority ( M ): The majority, M , is 
determined for the cluster. If the total number of nodes 
in the cluster is n, then M  is calculated by formula 5. 

2. Sort latencies: Let  nlllL ,...,, 21  represent the set 

of latencies from one node to all other nodes in the 
cluster. The latencies in L  are then sorted in ascending 

order to obtain  )()2()1( ,...,, nsorted lllL  , where 

)()2()1( ... nlll    

3.  Select first M  latencies: From the sorted set sortedL , 

the first M  latencies are selected, forming a subset 

 )()2()1( ,...,, MM lllL  . 

4.  Calculate metric to define the best leader: Use 
average, median or identify the slowest link within the 
quorum (majority). 

Let us describe these metrics mathematically. The average 
is given by: 
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The median is defined as the middle value of ML  when 

M  is odd, or the average of the two middle values when M   
is even: 
 

 oddisMiflM M __
2

1






      

or 

  evenisMif

ll

M
MM

__
2

2

1

2






 







 

 .  (7) 

 
The slowest link within the majority is defined by: 

 

 MM lllL ,...,max)max( 21 .   (8) 

 
These values serve as a metric to evaluate the suitability of 

a node for leadership, based on its latency performance relative 
to the majority of nodes in the cluster. 

When selecting an optimal metric for leader election, the 
leader's impact on the system overall throughput must be 
carefully considered. In environments where rapid decision-
making is critical, such as in real-time systems where any delay 
in node communication could lead to significant consequences, 
focusing on the slowest link might be the most prudent 
approach. This metric is particularly telling as it encapsulates 
the performance threshold for the entire quorum; the system 
cannot progress faster than its slowest participating node. 
Therefore, the slowest link essentially sets the pace for the 
majority decision-making process. To ensure that the chosen 
metric aligns with the system demands and operational reality, 
it is imperative to base the decision on empirical evidence from 
real-world experiments, which provide a tangible measure of 
the system under typical operational loads and conditions.  

While each metric offers potential benefits for leader 
election, the priority for immediate and efficient decision-
making in critical environments guides the selection towards 
the slowest link metric for the present. This parameter is crucial 
as it sets the operational tempo for the entire quorum, with the 
system speed being inherently linked to the pace of its slowest 
node, ensuring that decisions are reached only once the entire 
majority has completed its tasks. 

In light of these considerations, the approach to leader 
selection in distributed systems is reimagined through a 
quorum-based algorithm that prioritizes the stability of the 
network slowest link, ensuring the elected leader is the one 
most capable of maintaining system integrity during periods of 
latency variation. The algorithm, detailed below (Figure 3), 
introduces a methodical process that not only evaluates the total 
latency from a prospective leader to other nodes but also 
considers the maximum latency affecting the majority of the 
cluster. By doing so, it accounts for the critical path of 
communication which is essential for consistent and reliable 
decision-making. The pseudo-code representation of this novel 
leader selection process encapsulates a method that is both 
empirical and adaptive, serving as a blueprint for building 
resilient distributed systems in the face of fluctuating network 
conditions. 

The methodology for optimal leader selection is in place; 
however, the specific mechanisms within the cluster to 
effectively enact this selection remain undefined. It is 
necessary to detail the procedures that will smoothly 
incorporate leader selection into the existing fabric of the 
cluster's operational protocol. 
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Figure 3. Quorum-based leader selection algorithm 

A. SELECTION PROCESS 
In typical leader-based consensus algorithms like Raft, leader 
reelection is initiated when a follower node fails to receive 
regular "heartbeat" messages from the current leader within a 
predetermined timeout period, indicating a potential leader 
failure. The follower then transitions to a candidate state, 
increments its term count, and seeks votes from other nodes in 
the cluster. To become the new leader, the candidate must 
secure a majority of the votes from the cluster. Once elected, it 
begins transmitting new heartbeats to assert control and ensure 
log consistency across the cluster. This mechanism allows the 
system to swiftly recover from leader failures, enhancing its 
resilience and ensuring uninterrupted operation. The 
predefined timeout for these heartbeat messages is set 
randomly within a specific range, such as 100 to 300 
milliseconds, to ensure that at least one node will time out 
sooner than others, facilitating a smooth transition to a new 
leader and effectively giving one node a head start. 

The problem arises because the selection of the new leader 
is effectively random, as the timeout for heartbeat messages is 
set randomly, inadvertently giving one node an advantage. This 
approach, which uses a timeout for leader selection, simplifies 
the Raft algorithm, making it straightforward to implement. 
Therefore, it is beneficial to retain the concept of timeouts. To 
refine this process, it would be more strategic to adjust the 
system so that the most suitable node has a shorter timeout, 
allowing it to take the lead more quickly than the others. 

As mentioned earlier, this simple random process also often 
leads to frequent leader reelections due to network delays. 

Let us focus on establishing a process to determine the 
correct timeout for nodes within the cluster. This will aid in 
choosing the right leader if an election is imminent and prevent 
unnecessary elections from starting. 

Given that the algorithm is distributed and there is no leader 
to oversee the process of selecting a new leader (because the 
leader is deemed unreachable at the time of selection), it is 
crucial for each node to independently determine its timeout. 

The challenge is that each node must base its decision on its 
knowledge and ensure it will be elected if its capabilities are 
the most suitable for the cluster's needs. 

Another challenge is that each node's knowledge is 
restricted and does not reflect the overall state of the cluster. 
Independently, a node can measure its response times to other 
nodes, an essential factor for selecting the best leader. 
Therefore, the initial step is to establish a process where all 
nodes assess their delays to all other nodes. This measurement 
is crucial for evaluating their suitability for the role of leader. 

Let us define the first step more specifically, each node iN  

periodically assesses the delay ),( jiDk  relative to every other 

node jN  using a schedule determined by an administrator-

defined interval t . This delay measurement is performed at 

times tktk   for each consecutive interval ,...3,2,1k  

The setup ensures that nodes consistently and systematically 
measure and update their inter-node delay metrics according to 
the periodicity set by t , facilitating efficient network 
monitoring and management. It is crucial that the administrator 
carefully selects the interval t  based on the cluster's 
computational capabilities and the current state of the network. 
Since generating ping messages, although computationally 
inexpensive, consumes CPU resources and increases network 
traffic, t  should be optimized to balance the frequency of 
measurements with the potential impact on system 
performance. An overly frequent assessment could 
unnecessarily burden the network, while infrequent 
measurements might not capture significant changes in node 
latency in a timely manner. Therefore, t  must be judiciously 
chosen to ensure efficient network monitoring without 
compromising the overall functionality and responsiveness of 
the cluster. A beneficial aspect of this approach is that for 
relatively stable networks, the timeout t  can be set to longer 
intervals, ensuring that evaluations are not triggered too 
frequently. Additionally, this process can be further refined by 
assigning a unique offset to each node's timing, preventing 
simultaneous evaluations across all nodes and thereby reducing 
the risk of overwhelming the network at any single point in 
time. 

Having defined the evaluation process, let us outline the 
concept for determining timeout. As a reminder, our goal is for 
each node to calculate a timeout based on delays to other nodes. 
This timeout should be brief enough to give the node a head 
start in the election process if it is best suited for leadership 
within the cluster. Additionally, this process must occur 
without direct communication with other nodes to maintain the 
effectiveness and simplicity crucial for distributed systems.  

At the same time, this timeout should be flexible enough to 
cover temporary fluctuations of network (meaning some link 
experience temporary problems) and at the same time, it should 
be fixed to some value to make sure it will not be waiting for 
the failed node. 

To express the process of defining the timeout value in a 
consensus algorithm under variable network conditions, it is 
evident that while this timeout should incorporate the delay of 

the slowest link in the majority, symbolized as )max( ML , it 

should not merely be set to this value. This approach is 
inadequate because an accurately calculated timeout must also 
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be capped at a certain maximum maxT  to ensure the system 

reconfiguration in case of actual node failure, and not just due 
to transient delays. This cap is ideally set by an administrator 
who understands the specific utilization requirements and 
constraints of the system. 

The formula for setting the adaptive timeout T  can thus be 
expressed as follows: 
 

max*
100

)max(
T

L
T M 






 .   (9) 

 
To address the issue of potential simultaneous timeouts 

across multiple nodes in the cluster when the network delays 
are uniformly distributed, it is indeed crucial to introduce 
randomness to the timeout setting as suggested by the Raft 
consensus protocol. This randomness helps in reducing the 
likelihood of all nodes initiating leader elections 
simultaneously due to experiencing timeouts at the same 
moment. We can modify the formula to incorporate a random 
component while maintaining the fundamental principles of the 
original setup. 
 

max*
100

),()max(
T

barandL
T iM 






 

 , (10) 

 
where ),( barand  generates a random number between a and  

b (a and b provided by administrator). 
Let us identify the potential drawbacks of this approach. 
Firstly, using a simple constant such as 100 definitely will 

not work here, especially if network delays increase 
substantially, causing the result of multiplication to increase 
considerably. 

Now, consider the next scenario involving a 5-node cluster 
(refer to Figure 4, where other nodes are assumed but not 
displayed). It is assumed that Node 2 is better suited to be a 
leader, given its latency, the maximum latency within the 

quorum is less than that of node 3: 32 )max()max( MM LL  . 

Considering network delays, there is a possibility that node 3 
may reach its timeout before the message from node 2 arrives, 
prompting node 3 to initiate a new election. Although node 2 
has a better potential to win the election, this scenario 
highlights the need for further improvement. 

 

Figure 4. Cluster communication delay visualization: node-to-
node latency mapping 

Without further ado, let us present the solutions to those 
problems and refine the formula for the timeout. 

Firstly, the process by which nodes transmit heartbeat 
messages needs modification. These messages should include 
information about delays experienced by the leader to each 
node and also convey the current maximum latency 

)max( ML  value. Additionally, each node receiving a 

heartbeat should measure the delay from the sending node to 
itself. 

With this updated process, each node can gather 
comprehensive information about the current state of the 
cluster, enabling more informed decision-making in case of 
disruptions. It is acknowledged that during the early stages of 
execution, nodes may not yet receive this information. 
However, this is acceptable as the cluster's state is not at risk at 
this time; the information is primarily needed for process 
tuning and adjustment. 

Initially, each node has access to the maximum latency 

values of the other nodes, )max( ML  represented as the set 

 : 
 

 121 )max(,...,)max(,)max(  nMMM LLL . (11) 

 
Each node can then independently assess whether it is the 

most suitable candidate for the role of leader using the 
condition: 

 

max( ) min( )M iL   .  (12) 

 
Should a node determine that it is not the optimal choice for 

leadership, it is imperative that it calculates its waiting time so 
that delays do not negatively influence the election process. 
Thus, the node will compute its waiting time using the formula: 

 

   cdlccbcccdlbcme
iM

i TTTbarandTT
L
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


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













 ,min),(1,
)max(

)max(
max maxmax ,  (13) 

 
where: 

iML )max(   represents the delay of the slowest link within 

the majority of candidate i; 
),( barand - a function to introduce randomness within a 

range (a and b provided by the administrator); 

me  represents a value ranging from 0 to 1, which specifies 

the fraction of maxT  to be used as the minimum value of iT ; 

maxT  is the maximum timeout value set by the 

administrator; 

c  is the maximum timeout limit set to counteract         

communication delays within the cluster (specified by the 
administrator); 



 Stanislav Zhuravel et al. / International Journal of Computing, 23(4) 2024, 574-582 

580 VOLUME 23(4), 2024 

dlbcT   denotes the timeout from the assumed dead leader to 

the best candidate; 

bcccT   represents the timeout from the best candidate to the 

current candidate; 

dlccT   stands for the timeout from the dead leader to the 

current candidate. 
A node that presumes itself to be the optimal leader will not 

utilize the second part of the formula; therefore, the 
comprehensive formula that addresses both scenarios is as 
follows:
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Figure 5. Follower heartbeat and timeout configuration 

process 

The node calculation process is outlined in pseudocode 
below (Figure 5). This procedure specifies that each node 
responds to a 'follower heartbeat', enabling the measurement of 
the delay from the node to itself. In certain scenarios, it may be 
feasible to simplify this process by assuming that the delay 
from the node is equivalent to the delay to the node, which 
holds true in most configurations. 

III. EXPERIMENTAL RESULTS 
Let us try to use the algorithm to calculate the leader election 
timeout for a cluster configuration [26]. Assume a cluster of 
five nodes (see Figure 6), node 1 is considered to be a leader 
with the following parameters defined:  
 

maxT  =300, a=1, b=10, c =50, me =0.4 

 

Figure 6. Five-node cluster 

Network delays within the cluster are shown in Figure 7. 

 

Figure 7. Network delays within the cluster 

Table 2. Network delays within the cluster 

- Node 1 Node 2 Node 3 Node 4 Node 5 
Node 1 - 164 212 108 196 
Node 2 130 - 165 300 195 
Node 3 196 184 - 131 117 
Node 4 138 101 131 - 150 
Node 5 175 161 103 143 - 

 
Assuming the cluster has been operational for an extended 

period and all nodes are well-informed of the cluster state 
through the 'follower heartbeat' process, each node will use the 
defined algorithm to calculate the timeout if the leader (node 1) 
experiences a sudden failure. 

Considering the issues defined earlier, the timeouts, as 
calculated by the designated algorithm, should be: 

 adaptive to the current network delays within the 
cluster; 

 optimally short for the most suited node to react quicker 
than others; 
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 sufficiently long to accommodate the current state of the 
network, yet short enough to initiate a timeout promptly 
if the leader is deemed unresponsive; 

 staggered to prevent simultaneous timeouts among the 
nodes and avoid the split-brain scenario within the 
cluster. 

Firstly, to ascertain which node is best equipped to assume 
leadership, we will employ formulas 7 and 8 to compute the 
𝑚𝑎𝑥𝐿௠ values for each node. These calculations will help 
identify the node with the optimal characteristics for leadership 
based on current network conditions and node responsiveness, 
results of calculations are presented in Table 3. 

Table 3. Cluster delay properties according to proposed 
algorithm 

Node {𝒍𝟏, 𝒍𝟐, … 𝒍𝐍ି𝟏} 𝐬𝐨𝐫𝐭({𝒍𝟏, 𝒍𝟐, … 𝒍𝑴}) 𝒎𝒂𝒙(𝑳𝑴) 
1 {164, 212, 108, 196} {108, 164, 196} 196 
2 {130, 165, 300, 195} {165, 195, 300} 300 
3 {196, 184, 131, 117} {117, 131, 184} 184 
4 {138, 101, 131, 150} {101, 131, 150} 150 
5 {171, 161, 103, 143} {103, 143, 161} 161 

As it can be observed, node 4 has the minimum value of 

)max( ML = 150 and should be considered the best candidate 

to assume leadership of the cluster. Therefore, the algorithm 
should yield a value that complies with the before mentioned 
assumptions. 

Let us use formula 14 to calculate the timeouts for each 
node in the cluster, the results and main intermediate 
computation results are shown in Table 4. 

Table 4. Final and main intermediate computation results 

Node 𝒎𝒂𝒙(𝜣) 𝑻𝒅𝒍𝒃𝒄 𝑻𝒃𝒄𝒄𝒄 𝑻𝒅𝒍𝒄𝒄 𝑹𝒂𝒏𝒅(𝒂, 𝒃) 𝑻 
1 

300 108 

138 0 7 253 
2 101 164 8 353 
3 131 212 3 214 
4 0 108 4 154 
5 150 196 1 212 

 
As observed, node 4 has a timeout value of 154 

milliseconds. When compared to the delay between the current 
leader (node 1) and the best candidate (node 4), which is 108 
milliseconds, the timeout value perfectly aligns with the 
requirements. It is adaptive, closely approximating 108 
milliseconds, and is optimally short, allowing to react more 
quickly than others and trigger reelection swiftly in case of 
abnormalities in network delays. Additionally, it is sufficiently 
long to accommodate the current state of the network, which 
helps prevent unnecessary reelections due to fluctuations in the 
network. Overall, the timeouts are staggered to prevent 
simultaneous timeouts among the nodes, thus enhancing 
system stability. 

Although the experiment yields strong results, additional 
testing and modeling are essential to further validate the new 
approach. Rigorous experimentation will ensure that the 
algorithm performs as expected under various network 
conditions and scenarios, ultimately confirming its reliability 
and efficiency in real-world applications. 

VI. CONCLUSIONS 
This article has explored a sophisticated strategy for enhancing 
consensus algorithms in distributed systems, particularly in the 
face of unstable network conditions. The innovative approach 
introduced involves dynamically adjusting the consensus 

parameters to better align with the real-time state of network 
connectivity, thereby maintaining stable system performance 
under varying network conditions. 

The research presented provides a solid theoretical 
foundation for understanding how adaptive mechanisms can be 
integrated into existing consensus frameworks to mitigate the 
challenges posed by network instability. This includes the 
significant enhancement of system resilience, ensuring that 
distributed systems remain functional and consistent despite 
network disruptions. 

Future research should focus on the empirical validation of 
the proposed modifications, examining their effectiveness 
across different network scenarios and configurations. This 
will require rigorous testing and simulations to confirm the 
anticipated improvements in system reliability and 
performance. The continuation of this work will not only 
validate the theoretical models presented but also contribute to 
the ongoing refinement of consensus algorithms. 
In summary, the article contributes to the broader discourse on 
distributed system design by proposing methods that adjust to 
network variability, thereby enhancing the robustness and 
reliability of these systems. This approach represents a 
significant step forward in distributed computing, ensuring that 
systems are better equipped to handle the complexities and 
unpredictabilities of real-world network conditions. 
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