

574 VOLUME 23(4), 2024

Date of publication DEC-31, 2024, date of current version NOV-07, 2024.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.23.4.3756

Adaptive Consensus Algorithms:
Designing for Durability against Unstable

Network Connections
STANISLAV ZHURAVEL, OLHA SHPUR, MYKHAILO KLYMASH

Department of Telecommunication, Lviv Polytechnic National University, Lviv, 79013, Ukraine

Corresponding author: Olha Shpur (e-mail: olha.m.shpur@lpnu.ua).

 ABSTRACT In distributed systems, achieving a consensus among nodes is crucial for ensuring data integrity and
operational synchronization. A prevalent obstacle in this context is the instability of network connections, which can
significantly undermine system performance and reliability. This article delves into a sophisticated strategy for refining
consensus algorithms, aiming to introduce adaptability and fortify resilience against the unpredictability of network
conditions. It describes and proposes a new method that modifies traditional consensus mechanisms to better withstand
the challenges posed by unstable network environments. The essence of the method is to solve the consensus problem
by dynamically adjusting the network parameters to match the real-time connection better. Further analysis of the
system operation during the time of correct functioning allows us to detect failures with the help of a timeout, which
signals the loss of communication with a node with which it is not possible to exchange messages. This approach makes
it possible to improve the system's conclusion about the malfunction of a particular node and avoid possible false
conclusions about its malfunction. Adjusting the delay value can help maintain stable system performance under
variable network conditions.

 KEYWORDS consensus algorithms; network instability; fault tolerance; simulation model; distributed systems.

I. INTRODUCTION
N the dynamic landscape of distributed computing, the
ability of nodes within a network to reach consensus is

fundamental to the integrity and efficiency of distributed
systems. These systems underpin a variety of critical
applications, from blockchain technologies to distributed
databases, where the consistency of shared data is paramount.
However, the inherent challenge of maintaining this
consistency becomes pronounced in the face of unstable
network connections – a common and yet significantly
impactful issue that can lead to data inconsistencies, decreased
system performance, and reduced reliability [1, 2, 15].

The susceptibility of distributed systems to network
instabilities calls for innovative solutions that can enhance the
resilience of consensus mechanisms. Traditional consensus
algorithms, while effective under stable conditions, often fall
short when confronted with the erratic nature of real-world
network environments. This limitation underscores the need for
a new approach that not only recognizes the variable nature of
network connectivity but also adapts to it, ensuring
uninterrupted system performance and data integrity.

This article addresses this pressing need by introducing a
novel modification to existing consensus algorithms, aimed at
bolstering their robustness against network instability. By
reimagining consensus mechanisms with a focus on
adaptability, the proposed method offers a promising solution

to one of the most persistent challenges in distributed
computing. The essence of this approach lies in its dynamic
adjustment of consensus parameters in response to the
fluctuating conditions of the network, thereby maintaining a
consistent and reliable consensus process.

In presenting this innovative method, the article aims to
contribute to the broader discourse on distributed system
design, offering a theoretical foundation that can guide future
research and development. The introduction of this adaptive
consensus algorithm not only marks a significant step forward
in the quest for more resilient distributed systems but also sets
the stage for empirical investigations that will further elucidate
its practical implications and potential benefits.

A. PROBLEM STATEMENT
In the intricate ecosystem of distributed systems, where
consensus algorithms are fundamental in maintaining the
coherence and reliability of the network, unstable connections
pose a significant threat. The operational efficiency and the
very essence of distributed consensus, that is, the ability to
achieve agreement on a single data value among nodes is at risk
when faced with the erratic nature of network connectivity.
Instances of latency variability and temporary disconnections
can precipitate a cascade of operational challenges, including
increased transaction times, throughput bottlenecks, and, most
critically, the potential for the loss of consensus.

I

Stanislav Zhuravel et al. / International Journal of Computing, 23(4) 2024, 574-582

VOLUME 23(4), 2024 575

Achieving consensus in clusters involves various methods,
each designed to ensure data consistency and reliability across
distributed nodes. The primary classifications of consensus
methods include leader-based, leaderless, quorum-based,
Byzantine fault-tolerant (BFT) [3-5], proof-based, hierarchical,
and hybrid approaches. Leader-based methods, such as Raft
and Paxos, rely on electing a leader to coordinate decisions and
manage the replication of data. Leaderless methods, like gossip
protocols and some blockchain systems, do not have a central
leader, instead relying on decentralized coordination among
nodes. Quorum-based methods use subsets of nodes to approve
decisions, ensuring consistency by requiring agreement from a
majority or quorum. Byzantine fault-tolerant algorithms, such
as Practical Byzantine Fault Tolerance (PBFT), are designed to
withstand nodes that may behave maliciously or arbitrarily.
Proof-based methods, like Proof of Work (PoW) and Proof of
Stake (PoS) [6-10], are commonly used in blockchain systems
to achieve consensus without centralized control. Hierarchical
methods, such as LEACH, focus on energy efficiency by
organizing nodes into clusters with designated leaders. Hybrid
methods combine elements from different consensus
approaches to leverage their strengths and mitigate
weaknesses, such as Algorand's combination of cryptographic
sortition with Byzantine agreement.

Among these consensus methods, leader-based protocols
like Raft [11], Paxos (specifically Multi-Paxos), and
ZooKeeper's Zab protocol [12-15] incorporate the notion of a
leader and rely on delays to detect failures. In these systems, a
leader is elected to coordinate actions and ensure consistency,
while followers use timeouts to detect the absence of leader
heartbeats, which indicates potential failures. If a leader fails to
send heartbeats within a specified timeout period, followers
assume the leader is unreachable and initiate a new election.
This timeout mechanism effectively uses delays to maintain
system availability and quickly adapt to changing conditions.
By leveraging leader election and delay detection, these
protocols focus on ensuring robust and efficient operation in
distributed environments.

The central issue that this article addresses is the
vulnerability of leader-based consensus algorithms to network
instability, which can be ubiquitous in real-world applications
due to various factors, such as hardware failures, bandwidth
fluctuations, and dynamic network topologies [16-19]. Despite
the robust design of consensus protocols like Raft, the reality
of network unpredictability necessitates a better understanding
of its impact on system performance and the critical thresholds
where system efficiency begins to degrade significantly.

This work aims to dissect the problem of constant leader
reelection induced by network delays in distributed systems
running consensus algorithms like Raft. This condition is not
merely a performance concern but a systemic threat that can
disrupt the entire consensus process, leading to a state of
confusion within the cluster and undermining the fidelity of the
distributed ledger or database.

The problematic nature of this issue is multifaceted:
 the sensitivity of consensus algorithms to the precise

timing of heartbeat messages for leader election and the
consequential risk of frequent, unnecessary
reconfigurations in the face of network instability;

 the need for a delicate balance in timeout settings to
differentiate between actual leader failures and transient
network delays, which is not well-defined in the face of
varying network conditions;

 the implications of frequent leader re-elections, which
include not only performance degradation but also the
heightened risk of 'split-brain' scenarios and data
inconsistencies.

In addressing these challenges, the article proposes to
explore new methods and modifications to consensus
algorithms that bolster resilience against unstable network
conditions. The goal is to offer a novel approach that can
maintain the integrity and consistency of distributed systems,
thereby ensuring their operational efficiency and reliability in
an unpredictable network landscape.

II. SELECTING THE BEST LEADER IN DISTRIBUTED
NETWORK
Before implementing any modifications to consensus
algorithms, it is crucial to discern the optimal configuration for
peak system performance when running such protocols.

In the domain of leader-based consensus algorithms, such
as Raft, the ideal scenario is straightforward: the most robust
cluster is one where the leader maintains the most reliable
network connections with its followers. This implies minimal
delay between the leader and its followers. Recalling the
operational principles of the Raft algorithm, it becomes
apparent that Raft is not designed to identify the most optimal
leader within the cluster; instead, its primary objective is to
manage system failures and ensure the cluster's collective
operation, without specific consideration for efficiency.

Nevertheless, algorithms like Raft are not inherently
equipped to address real-world challenges, such as those
mentioned previously, where network instabilities lead to a
"frozen" state of the cluster due to constant leader reelection
triggered by a few problematic network links.

In the domain of distributed computing, the election of an
optimal leader within a cluster is paramount for ensuring
efficient data management and system functionality. This
necessitates a comprehensive analysis of attributes and
conditions conducive to the selection of the most suitable
leader among the nodes [20-22].

In the discourse on distributed systems, particularly those
reliant on consensus algorithms, the issue of identifying the
most optimal leader at any given juncture emerges as pivotal
[23-25]. This inquiry is inherently temporal, contingent upon
the prevailing network stability, which is subject to fluctuations
over time. Consequently, an assertion regarding the superior
suitability of a node as a leader can only be accurately made
within the context of a specific temporal snapshot, given the
rapid evolution of network conditions.

The table below shows potential network technologies
where a cluster running a consensus algorithm can be deployed,
along with possible instability factors that could significantly
impact network performance at specific point in time and,
consequently, the execution of the consensus algorithm.

 Stanislav Zhuravel et al. / International Journal of Computing, 23(4) 2024, 574-582

576 VOLUME 23(4), 2024

Table 1. Network technologies and instability factors

Technology Description Instability factors
MPLS/IP Efficient routing for

enterprise networks
Latency variability,

bandwidth fluctuations
BLE Low-power, short-range

wireless technology
Interference, limited

range
WSN Networks of spatially

distributed sensors
Environmental

interference, energy
constraints

5G High-speed mobile
network technology

Cell handover issues,
network congestion

SAT-Links Satellite communication
links for remote areas

Weather interference,
signal delay

Mesh Networks with multiple
data paths for robustness

Dynamic topology
changes, node failures

Latency in network technologies can vary significantly

based on the use case, environmental factors, and
infrastructure. While transmission latency might be low for
high-speed links, other factors like propagation and processing
latencies can contribute significantly to the overall delay.
Understanding these aspects helps in designing better
communication infrastructures and distributed systems.

To elucidate this concept, a comparative analysis of two
nodes within a hypothetical network cluster, designated as node
4 (the incumbent leader) and node 1 (a potential candidate for
leadership), is presented in Figure 1.

Assuming node 1 is aiming for leadership, determining its
suitability compared to node 4 involves assessing the network
latency to all other nodes within the cluster. This process is
simplified to a comparative analysis of the delays encountered
in communications originating from both nodes to their peers
across the network. This approach underscores the fluidity of
leadership efficacy in distributed systems, where the optimal
leader is not a static designation but rather a reflection of the
network current operational landscape. Through this lens,
methodologies for leader selection that are both adaptive and
reflective of the underlying network dynamics can be
discerned.

The optimal leader is thus determined not solely by its
status or capabilities but by the aggregate efficiency it brings to
the network communication.

Figure 1. Cluster latency map for leader election

To mathematically formalize this notion, one could denote
),1(jL as the latency between node i and node j . For a

given node 1 vying for leadership, its total latency 1T can be

expressed as the sum of latencies between node 1 and all other
1n nodes in the network:

1
2

(1,)
n

j

T L j


 . (1)

Similarly, the current leader node 4 has a corresponding

total latency 4T :

4
1, 4

(4,)
n

j j

T L j
 

  . (2)

In this context, node 1 would be a more suitable leader if

1T is less than 4T , indicating that node 1 has a lower overall

latency in communicating with the rest of the network:

41_____1_ TTifsuitablemoreisNode  . (3)

According to the methodology, the node with the lower

total latency is more suitable leader. Comparing 1T and

4T is as follows:

)676()835(41 msTmsT  . (4)

Thus, node 4, with a total latency of 676ms, is more suitable

as a leader than node 1 with a total latency of 835ms, based on
the given configuration.

This evaluation assumes that overall lower latency
correlates directly with better performance and suitability for
leadership. However, this simplistic methodology overlooks
scenarios wherein a single connection experiences significantly
higher latency than the others, which plays a critical role in the
comprehensive evaluation.

Let us enhance the reliability of connections from Node 1
to other nodes, except one link that exhibits significantly higher
latency (refer to Figure 2).

Figure 2. Cluster latency map with anomalous link

Utilizing the methodology above to identify the most
suitable leader might initially suggest Node 4 as the preferable
candidate. However, this assessment would be incorrect. The
actual performance of the cluster depends fundamentally on the

Stanislav Zhuravel et al. / International Journal of Computing, 23(4) 2024, 574-582

VOLUME 23(4), 2024 577

majority consensus within the cluster. The leader-based
consensus algorithm requires a majority of nodes to progress.
This means that for any given cluster of n nodes, there is a need

for the majority of 12 n nodes to be operational and able to

communicate to make progress. More specifically majority can
be expressed as:

1
2






n

M , (5)

where, brackets denote the floor function, which rounds down
to the nearest whole number. This ensures that the majority is
always more than half of the total number of nodes.

Hence, the determination of the most appropriate leader
requires consideration of the majority principle within the
cluster, which led to the definition of the new approach.

The new methodology defines a strategy for identifying the
optimal leader in a network by considering the majority rule
within a cluster. It emphasizes the selection of a node that
utilizes the fastest communication channels within the cluster.
The first step is to determine the smallest number of nodes
required to form a majority that will govern decision-making.
Subsequently, nodes are ordered by their communication
speed, from the most to the least efficient. Within this
prioritized group, the strategy involves calculating the average
speed, determining the median, or identifying the single
slowest link. Through this assessment, the node that is best
positioned to take on the leadership role is selected, to expedite
decision-making and enhance the overall efficiency of the
cluster.

In mathematical terms, identifying the best leader within a
cluster involves several steps that can be outlined as follows:

1. Calculate majority (M): The majority, M , is
determined for the cluster. If the total number of nodes
in the cluster is n, then M is calculated by formula 5.

2. Sort latencies: Let  nlllL ,...,, 21 represent the set

of latencies from one node to all other nodes in the
cluster. The latencies in L are then sorted in ascending

order to obtain  )()2()1(,...,, nsorted lllL  , where

)()2()1(... nlll 

3. Select first M latencies: From the sorted set sortedL ,

the first M latencies are selected, forming a subset

 )()2()1(,...,, MM lllL  .

4. Calculate metric to define the best leader: Use
average, median or identify the slowest link within the
quorum (majority).

Let us describe these metrics mathematically. The average
is given by:





M

i
il

M
l

1
)(

1
. (6)

The median is defined as the middle value of ML when

M is odd, or the average of the two middle values when M
is even:

 oddisMiflM M __
2

1






 

or

  evenisMif

ll

M
MM

__
2

2

1

2






 







 

 . (7)

The slowest link within the majority is defined by:

 MM lllL ,...,max)max(21 . (8)

These values serve as a metric to evaluate the suitability of

a node for leadership, based on its latency performance relative
to the majority of nodes in the cluster.

When selecting an optimal metric for leader election, the
leader's impact on the system overall throughput must be
carefully considered. In environments where rapid decision-
making is critical, such as in real-time systems where any delay
in node communication could lead to significant consequences,
focusing on the slowest link might be the most prudent
approach. This metric is particularly telling as it encapsulates
the performance threshold for the entire quorum; the system
cannot progress faster than its slowest participating node.
Therefore, the slowest link essentially sets the pace for the
majority decision-making process. To ensure that the chosen
metric aligns with the system demands and operational reality,
it is imperative to base the decision on empirical evidence from
real-world experiments, which provide a tangible measure of
the system under typical operational loads and conditions.

While each metric offers potential benefits for leader
election, the priority for immediate and efficient decision-
making in critical environments guides the selection towards
the slowest link metric for the present. This parameter is crucial
as it sets the operational tempo for the entire quorum, with the
system speed being inherently linked to the pace of its slowest
node, ensuring that decisions are reached only once the entire
majority has completed its tasks.

In light of these considerations, the approach to leader
selection in distributed systems is reimagined through a
quorum-based algorithm that prioritizes the stability of the
network slowest link, ensuring the elected leader is the one
most capable of maintaining system integrity during periods of
latency variation. The algorithm, detailed below (Figure 3),
introduces a methodical process that not only evaluates the total
latency from a prospective leader to other nodes but also
considers the maximum latency affecting the majority of the
cluster. By doing so, it accounts for the critical path of
communication which is essential for consistent and reliable
decision-making. The pseudo-code representation of this novel
leader selection process encapsulates a method that is both
empirical and adaptive, serving as a blueprint for building
resilient distributed systems in the face of fluctuating network
conditions.

The methodology for optimal leader selection is in place;
however, the specific mechanisms within the cluster to
effectively enact this selection remain undefined. It is
necessary to detail the procedures that will smoothly
incorporate leader selection into the existing fabric of the
cluster's operational protocol.

 Stanislav Zhuravel et al. / International Journal of Computing, 23(4) 2024, 574-582

578 VOLUME 23(4), 2024

Figure 3. Quorum-based leader selection algorithm

A. SELECTION PROCESS
In typical leader-based consensus algorithms like Raft, leader
reelection is initiated when a follower node fails to receive
regular "heartbeat" messages from the current leader within a
predetermined timeout period, indicating a potential leader
failure. The follower then transitions to a candidate state,
increments its term count, and seeks votes from other nodes in
the cluster. To become the new leader, the candidate must
secure a majority of the votes from the cluster. Once elected, it
begins transmitting new heartbeats to assert control and ensure
log consistency across the cluster. This mechanism allows the
system to swiftly recover from leader failures, enhancing its
resilience and ensuring uninterrupted operation. The
predefined timeout for these heartbeat messages is set
randomly within a specific range, such as 100 to 300
milliseconds, to ensure that at least one node will time out
sooner than others, facilitating a smooth transition to a new
leader and effectively giving one node a head start.

The problem arises because the selection of the new leader
is effectively random, as the timeout for heartbeat messages is
set randomly, inadvertently giving one node an advantage. This
approach, which uses a timeout for leader selection, simplifies
the Raft algorithm, making it straightforward to implement.
Therefore, it is beneficial to retain the concept of timeouts. To
refine this process, it would be more strategic to adjust the
system so that the most suitable node has a shorter timeout,
allowing it to take the lead more quickly than the others.

As mentioned earlier, this simple random process also often
leads to frequent leader reelections due to network delays.

Let us focus on establishing a process to determine the
correct timeout for nodes within the cluster. This will aid in
choosing the right leader if an election is imminent and prevent
unnecessary elections from starting.

Given that the algorithm is distributed and there is no leader
to oversee the process of selecting a new leader (because the
leader is deemed unreachable at the time of selection), it is
crucial for each node to independently determine its timeout.

The challenge is that each node must base its decision on its
knowledge and ensure it will be elected if its capabilities are
the most suitable for the cluster's needs.

Another challenge is that each node's knowledge is
restricted and does not reflect the overall state of the cluster.
Independently, a node can measure its response times to other
nodes, an essential factor for selecting the best leader.
Therefore, the initial step is to establish a process where all
nodes assess their delays to all other nodes. This measurement
is crucial for evaluating their suitability for the role of leader.

Let us define the first step more specifically, each node iN

periodically assesses the delay),(jiDk relative to every other

node jN using a schedule determined by an administrator-

defined interval t . This delay measurement is performed at

times tktk  for each consecutive interval ,...3,2,1k

The setup ensures that nodes consistently and systematically
measure and update their inter-node delay metrics according to
the periodicity set by t , facilitating efficient network
monitoring and management. It is crucial that the administrator
carefully selects the interval t based on the cluster's
computational capabilities and the current state of the network.
Since generating ping messages, although computationally
inexpensive, consumes CPU resources and increases network
traffic, t should be optimized to balance the frequency of
measurements with the potential impact on system
performance. An overly frequent assessment could
unnecessarily burden the network, while infrequent
measurements might not capture significant changes in node
latency in a timely manner. Therefore, t must be judiciously
chosen to ensure efficient network monitoring without
compromising the overall functionality and responsiveness of
the cluster. A beneficial aspect of this approach is that for
relatively stable networks, the timeout t can be set to longer
intervals, ensuring that evaluations are not triggered too
frequently. Additionally, this process can be further refined by
assigning a unique offset to each node's timing, preventing
simultaneous evaluations across all nodes and thereby reducing
the risk of overwhelming the network at any single point in
time.

Having defined the evaluation process, let us outline the
concept for determining timeout. As a reminder, our goal is for
each node to calculate a timeout based on delays to other nodes.
This timeout should be brief enough to give the node a head
start in the election process if it is best suited for leadership
within the cluster. Additionally, this process must occur
without direct communication with other nodes to maintain the
effectiveness and simplicity crucial for distributed systems.

At the same time, this timeout should be flexible enough to
cover temporary fluctuations of network (meaning some link
experience temporary problems) and at the same time, it should
be fixed to some value to make sure it will not be waiting for
the failed node.

To express the process of defining the timeout value in a
consensus algorithm under variable network conditions, it is
evident that while this timeout should incorporate the delay of

the slowest link in the majority, symbolized as)max(ML , it

should not merely be set to this value. This approach is
inadequate because an accurately calculated timeout must also

Stanislav Zhuravel et al. / International Journal of Computing, 23(4) 2024, 574-582

VOLUME 23(4), 2024 579

be capped at a certain maximum maxT to ensure the system

reconfiguration in case of actual node failure, and not just due
to transient delays. This cap is ideally set by an administrator
who understands the specific utilization requirements and
constraints of the system.

The formula for setting the adaptive timeout T can thus be
expressed as follows:

max*
100

)max(
T

L
T M 






 . (9)

To address the issue of potential simultaneous timeouts

across multiple nodes in the cluster when the network delays
are uniformly distributed, it is indeed crucial to introduce
randomness to the timeout setting as suggested by the Raft
consensus protocol. This randomness helps in reducing the
likelihood of all nodes initiating leader elections
simultaneously due to experiencing timeouts at the same
moment. We can modify the formula to incorporate a random
component while maintaining the fundamental principles of the
original setup.

max*
100

),()max(
T

barandL
T iM 






 

 , (10)

where),(barand generates a random number between a and

b (a and b provided by administrator).
Let us identify the potential drawbacks of this approach.
Firstly, using a simple constant such as 100 definitely will

not work here, especially if network delays increase
substantially, causing the result of multiplication to increase
considerably.

Now, consider the next scenario involving a 5-node cluster
(refer to Figure 4, where other nodes are assumed but not
displayed). It is assumed that Node 2 is better suited to be a
leader, given its latency, the maximum latency within the

quorum is less than that of node 3: 32)max()max(MM LL  .

Considering network delays, there is a possibility that node 3
may reach its timeout before the message from node 2 arrives,
prompting node 3 to initiate a new election. Although node 2
has a better potential to win the election, this scenario
highlights the need for further improvement.

Figure 4. Cluster communication delay visualization: node-to-
node latency mapping

Without further ado, let us present the solutions to those
problems and refine the formula for the timeout.

Firstly, the process by which nodes transmit heartbeat
messages needs modification. These messages should include
information about delays experienced by the leader to each
node and also convey the current maximum latency

)max(ML value. Additionally, each node receiving a

heartbeat should measure the delay from the sending node to
itself.

With this updated process, each node can gather
comprehensive information about the current state of the
cluster, enabling more informed decision-making in case of
disruptions. It is acknowledged that during the early stages of
execution, nodes may not yet receive this information.
However, this is acceptable as the cluster's state is not at risk at
this time; the information is primarily needed for process
tuning and adjustment.

Initially, each node has access to the maximum latency

values of the other nodes,)max(ML represented as the set

 :

 121)max(,...,)max(,)max( nMMM LLL . (11)

Each node can then independently assess whether it is the

most suitable candidate for the role of leader using the
condition:

max() min()M iL   . (12)

Should a node determine that it is not the optimal choice for

leadership, it is imperative that it calculates its waiting time so
that delays do not negatively influence the election process.
Thus, the node will compute its waiting time using the formula:

   cdlccbcccdlbcme
iM

i TTTbarandTT
L

T 


















 ,min),(1,
)max(

)max(
max maxmax , (13)

where:

iML)max(represents the delay of the slowest link within

the majority of candidate i;
),(barand - a function to introduce randomness within a

range (a and b provided by the administrator);

me represents a value ranging from 0 to 1, which specifies

the fraction of maxT to be used as the minimum value of iT ;

maxT is the maximum timeout value set by the

administrator;

c is the maximum timeout limit set to counteract

communication delays within the cluster (specified by the
administrator);

 Stanislav Zhuravel et al. / International Journal of Computing, 23(4) 2024, 574-582

580 VOLUME 23(4), 2024

dlbcT denotes the timeout from the assumed dead leader to

the best candidate;

bcccT represents the timeout from the best candidate to the

current candidate;

dlccT stands for the timeout from the dead leader to the

current candidate.
A node that presumes itself to be the optimal leader will not

utilize the second part of the formula; therefore, the
comprehensive formula that addresses both scenarios is as
follows:

   




















































),(,

)max(

)max(
max

,min),(1,
)max(

)max(
max

maxmax

maxmax

barandTT
L

TTTbarandTT
L

T

me
iM

cdlccbcccdlbcme
iM

i if

if  
 


max)max(

max)max(

iM

iM

L

L
. (14)

Figure 5. Follower heartbeat and timeout configuration

process

The node calculation process is outlined in pseudocode
below (Figure 5). This procedure specifies that each node
responds to a 'follower heartbeat', enabling the measurement of
the delay from the node to itself. In certain scenarios, it may be
feasible to simplify this process by assuming that the delay
from the node is equivalent to the delay to the node, which
holds true in most configurations.

III. EXPERIMENTAL RESULTS
Let us try to use the algorithm to calculate the leader election
timeout for a cluster configuration [26]. Assume a cluster of
five nodes (see Figure 6), node 1 is considered to be a leader
with the following parameters defined:

maxT =300, a=1, b=10, c =50, me =0.4

Figure 6. Five-node cluster

Network delays within the cluster are shown in Figure 7.

Figure 7. Network delays within the cluster

Table 2. Network delays within the cluster

- Node 1 Node 2 Node 3 Node 4 Node 5
Node 1 - 164 212 108 196
Node 2 130 - 165 300 195
Node 3 196 184 - 131 117
Node 4 138 101 131 - 150
Node 5 175 161 103 143 -

Assuming the cluster has been operational for an extended

period and all nodes are well-informed of the cluster state
through the 'follower heartbeat' process, each node will use the
defined algorithm to calculate the timeout if the leader (node 1)
experiences a sudden failure.

Considering the issues defined earlier, the timeouts, as
calculated by the designated algorithm, should be:

 adaptive to the current network delays within the
cluster;

 optimally short for the most suited node to react quicker
than others;

0

50

100

150

200

250

300

350

Node 1 Node 2 Node 3 Node 4 Node 5

Stanislav Zhuravel et al. / International Journal of Computing, 23(4) 2024, 574-582

VOLUME 23(4), 2024 581

 sufficiently long to accommodate the current state of the
network, yet short enough to initiate a timeout promptly
if the leader is deemed unresponsive;

 staggered to prevent simultaneous timeouts among the
nodes and avoid the split-brain scenario within the
cluster.

Firstly, to ascertain which node is best equipped to assume
leadership, we will employ formulas 7 and 8 to compute the
𝑚𝑎𝑥𝐿௠ values for each node. These calculations will help
identify the node with the optimal characteristics for leadership
based on current network conditions and node responsiveness,
results of calculations are presented in Table 3.

Table 3. Cluster delay properties according to proposed
algorithm

Node {𝒍𝟏, 𝒍𝟐, … 𝒍𝐍ି𝟏} 𝐬𝐨𝐫𝐭({𝒍𝟏, 𝒍𝟐, … 𝒍𝑴}) 𝒎𝒂𝒙(𝑳𝑴)
1 {164, 212, 108, 196} {108, 164, 196} 196
2 {130, 165, 300, 195} {165, 195, 300} 300
3 {196, 184, 131, 117} {117, 131, 184} 184
4 {138, 101, 131, 150} {101, 131, 150} 150
5 {171, 161, 103, 143} {103, 143, 161} 161

As it can be observed, node 4 has the minimum value of

)max(ML = 150 and should be considered the best candidate

to assume leadership of the cluster. Therefore, the algorithm
should yield a value that complies with the before mentioned
assumptions.

Let us use formula 14 to calculate the timeouts for each
node in the cluster, the results and main intermediate
computation results are shown in Table 4.

Table 4. Final and main intermediate computation results

Node 𝒎𝒂𝒙(𝜣) 𝑻𝒅𝒍𝒃𝒄 𝑻𝒃𝒄𝒄𝒄 𝑻𝒅𝒍𝒄𝒄 𝑹𝒂𝒏𝒅(𝒂, 𝒃) 𝑻
1

300 108

138 0 7 253
2 101 164 8 353
3 131 212 3 214
4 0 108 4 154
5 150 196 1 212

As observed, node 4 has a timeout value of 154

milliseconds. When compared to the delay between the current
leader (node 1) and the best candidate (node 4), which is 108
milliseconds, the timeout value perfectly aligns with the
requirements. It is adaptive, closely approximating 108
milliseconds, and is optimally short, allowing to react more
quickly than others and trigger reelection swiftly in case of
abnormalities in network delays. Additionally, it is sufficiently
long to accommodate the current state of the network, which
helps prevent unnecessary reelections due to fluctuations in the
network. Overall, the timeouts are staggered to prevent
simultaneous timeouts among the nodes, thus enhancing
system stability.

Although the experiment yields strong results, additional
testing and modeling are essential to further validate the new
approach. Rigorous experimentation will ensure that the
algorithm performs as expected under various network
conditions and scenarios, ultimately confirming its reliability
and efficiency in real-world applications.

VI. CONCLUSIONS
This article has explored a sophisticated strategy for enhancing
consensus algorithms in distributed systems, particularly in the
face of unstable network conditions. The innovative approach
introduced involves dynamically adjusting the consensus

parameters to better align with the real-time state of network
connectivity, thereby maintaining stable system performance
under varying network conditions.

The research presented provides a solid theoretical
foundation for understanding how adaptive mechanisms can be
integrated into existing consensus frameworks to mitigate the
challenges posed by network instability. This includes the
significant enhancement of system resilience, ensuring that
distributed systems remain functional and consistent despite
network disruptions.

Future research should focus on the empirical validation of
the proposed modifications, examining their effectiveness
across different network scenarios and configurations. This
will require rigorous testing and simulations to confirm the
anticipated improvements in system reliability and
performance. The continuation of this work will not only
validate the theoretical models presented but also contribute to
the ongoing refinement of consensus algorithms.
In summary, the article contributes to the broader discourse on
distributed system design by proposing methods that adjust to
network variability, thereby enhancing the robustness and
reliability of these systems. This approach represents a
significant step forward in distributed computing, ensuring that
systems are better equipped to handle the complexities and
unpredictabilities of real-world network conditions.

References

[1] S. Zhuravel, M. Klymash, O. Shpur, and O. Lavriv, “Achieving
consistency and consensus of distributed infocommunication systems,”
Proceedings of the 16th International Conference on Advanced Trends in
Radioelectronics, Telecommunications and Computer Engineering
(TCSET), Lviv, Ukraine, February 22-26, 2022, pp. 386-389.
https://doi.org/10.1109/TCSET55632.2022.9767019.

[2] S. Zhuravel, O. Shpur, and Y. Pyrih, “Method of achieving consensus in
distributed service,” Infocommunication Technologies and Electronic
Engineering, vol. 2, no. 2, pp. 58–66, 2022.
https://doi.org/10.23939/ictee2022.02.058.

[3] G. Stafford, LAN network stability: measure response time of a wireless
vs. ethernet-based LAN, 2021, [Online]. Available at:
https://www.kaggle.com/code/garystafford/network-stability-
notebook/input.

[4] W. Zhong, C. Yang, W. Liang, J. Cai, L. Chen, J. Liao and N. Xiong,
“Byzantine fault-tolerant consensus algorithms: A survey,” Electronics,
vol. 12, no. 18, 3801, 2024. https://doi.org/10.3390/electronics12183801.

[5] R. Hao, X. Dai, X. Xie, “Doppel: A BFT consensus algorithm for cyber-
physical systems with low latency,” Journal of Systems Architecture, vol.
148, 103087, 2024. https://doi.org/10.1016/j.sysarc.2024.103087.

[6] Z. Hussein, M. Salama, and S. El-Rahman, “Evolution of blockchain
consensus algorithms: a review on the latest milestones of blockchain
consensus algorithms,” Cybersecurity, vol. 6, no. 30, 2023.
https://doi.org/10.1186/s42400-023-00163-y.

[7] K. Venkatesan and S. Rahayu, “Blockchain security enhancement: an
approach towards hybrid consensus algorithms and machine learning
techniques,” Scientific Reports, vol. 14, p. 1149, 2024.
https://doi.org/10.1038/s41598-024-51578-7.

[8] F. Nawab, M. Sadoghi “Consensus in data management: From distributed
commit to blockchain,” Foundations and Trends in Databases, vol. 12,
issue 4, pp. 221-364, 2023. http://doi.org/10.1561/1900000075.

[9] Y. Xiao, N. Zhang, W. Lou, Y. Hou, “A survey of distributed consensus
protocols for blockchain networks,” IEEE Commun. Surv. Tutorials,
vol. 22, issue 2, pp. 1432–1465, 2020.
https://doi.org/10.1109/COMST.2020.2969706.

[10] S. Fahim, S. M. Katibur Rahman, S. Mahmood, “Blockchain: A
comparative study of consensus algorithms PoW, PoS, PoA, PoV,”
International Journal of Mathematical Sciences and Computing
(IJMSC), vol. 9, no. 3, pp. 46-57, 2023.
https://doi.org/10.5815/ijmsc.2023.03.04.

[11] Y. Li, Y. Fan, L. Zhang, and J. Crowcroft, “RAFT consensus reliability
in wireless networks: probabilistic analysis,” IEEE Internet of Things
Journal, vol. 10, issue 14, pp. 12839-12853, 2023.
https://doi.org/10.1109/JIOT.2023.3257402.

 Stanislav Zhuravel et al. / International Journal of Computing, 23(4) 2024, 574-582

582 VOLUME 23(4), 2024

[12] H. Knudsen, J. Notland, P. Haro, T. Ræder, and J. Li, “Consensus in
blockchain systems with low network throughput: a systematic mapping
study,” Proceedings of the 3rd Blockchain and Internet of Things
Conference, July 2021, pp. 15-23.
https://doi.org/10.1145/3475992.3475995.

[13] M. Kleppmann, Designing Data-Intensive Applications, O'Reilly UK
Ltd, 2017, 614 p.

[14] F. Palacios, E. Quesada, H. La, S. Salazar, S. Commuri, and L. Garcia
Carrillo, “Adaptive consensus algorithms for real‐time operation of
multi‐agent systems affected by switching network events,” International
Journal of Robust and Nonlinear Control, vol. 27, issue 9, 2016.
https://doi.org/10.1002/rnc.3687.

[15] N. Lutsiv, T. Maksymyuk, M. Beshley, O. Lavriv, V. Andrushchak, et
al., “Deep semisupervised learning-based network anomaly detection in
heterogeneous information systems,” Computers, Materials & Continua,
vol. 70, issue 1, pp. 413-431, 2022.
https://doi.org/10.32604/cmc.2022.018773.

[16] B. Wang, S. Liu, H. Dong, X. Wang, W. Xu, J. Zhang, P. Zhong, Y.
Zhang, “Bandle: asynchronous state machine replication made efficient,”
Proceedings of the Nineteenth European Conference on Computer
Systems, Association for Computing Machinery, April 2024, pp. 265–
280. https://doi.org/10.1145/3627703.3650091.

[17] A. Guru, H. Mohapatra, B. Mohanta, C. Altrjman, A. Yadav, “A survey
on consensus protocols and attacks on blockchain technology,” Applied
Sciences, vol. 13, issue 4, 2604, 2023,
https://doi.org/10.3390/app13042604.

[18] Y. Sang, H. Shen, Y. Tan, N. Xiong, “Efficient protocols for privacy
preserving matching against distributed datasets,” In: Ning, P., Qing, S.,
Li, N. (eds) Information and Communications Security. ICICS 2006.
Lecture Notes in Computer Science, vol 4307. Springer, Berlin.
Heidelberg. https://doi.org/10.1007/11935308_15.

[19] N. El Rharbi, H. Atteriuas, A. Younes, A. Harchaoui, O. Izem “A
comparative study of the recent blockchain consensus algorithms,”
Proceedings of the E-Learning and Smart Engineering Systems (ELSES
2023). Atlantis Press, 2023, pp. 316-327. https://doi.org/10.2991/978-94-
6463-360-3_32.

[20] S. Liu, R. Zhang, C. Liu, et al., “An improved PBFT consensus algorithm
based on grouping and credit grading,” Sci Rep 13, 13030, 2023.
https://doi.org/10.1038/s41598-023-28856-x.

[21] N. Hagshenas, M. Mojarad, H. Arfaeinia, “A fuzzy approach to fault
tolerant in cloud using the checkpoint migration technique,” International
Journal of Intelligent Systems and Applications (IJISA), vol. 14, no. 3,
pp. 18-26, 2022. https://doi.org/10.5815/ijisa.2022.03.02.

[22] S. Jamuna, P. Dinesha, K. Shashikala, K. Kishore Kumar, “Design and
implementation of reliable encryption algorithms through soft error
mitigation,” International Journal of Computer Network and Information
Security (IJCNIS), vol. 12, no. 4, pp. 41-50, 2020.
https://doi.org/10.5815/ijcnis.2020.04.04.

[23] N. Razali, I. Isa, S. Sulaiman, N. Noor, M. Osman, “CNN-Wavelet
scattering textural feature fusion for classifying breast tissue in
mammograms,” Biomedical Signal Processing and Control, vol. 83,
pp. 104683, 2023. https://doi.org/10.1016/j.bspc.2023.104683.

[24] A. Yazdinejad, R. Parizi, A. Dehghantanha, K. Choo, “P4-to-blockchain:
A secure blockchain-enabled packet parserfor software defined
networking,” Comput. Secur., vol. 88, p. 101629, 2020.
https://doi.org/10.1016/j.cose.2019.101629.

[25] J. Yusoff, Z. Mohamad, M. Anuar, “A review: consensus algorithms on
blockchain,” Journal of Computer and Communications, vol. 10, issue
09, pp. 37–50, 2022. https://doi.org/10.4236/jcc.2022.109003.

[26] N. Peleh, S. Zhuravel, O. Shpur, O. Rybytska, “Structured and
unstructured log analysis as a methods to detect DDoS attacks in SDN
networks,” Internet of Things (IoT) and Engineering Applications, pp. 1-
9, Sept. 2021. https://doi.org/10.1007/978-3-030-92435-5_12.

S. ZHURAVEL is currently pursuing a
PhD at Lviv Polytechnic National
University in Lviv, Ukraine, a program
he began in 2021. Alongside his
studies, he serves as an assistant
lecturer in the Department of
"Telecommunications" at the same
university. He also has over five years
of experience as a Software Engineer,
specializing in the development of
enterprise applications. His research
interests include distributed systems,

consensus algorithms, and distributed computing.

O. SHPUR, PhD, as Associate
Professor of the Department of
"Telecommunications" at Lviv
Polytechnic National University. Her
research interests include principles
of building and functioning of data
center in distributed service systems,
adaptation of data center operations
to the integration of multi-task
CloudNFV/Big Data structures, cloud-
technology, SDN.

M. KLYMASH is now the Chief of
Telecommunication Department, Lviv
Polytechnic National University,
Ukraine. He received his PhD in
optical data transmission, location
and processing systems from Bonch-
Bruevich Saint-Petersburg State
University of Telecommunications,
Saint Petersburg, Russia, in 1994
Honored member of Ukrainian
Communications Academy. The
topics of his current interest of rese-

arch include distributed networks, cloud computing,
convergent mobile networks, big data, software defined
networks and 5G heterogeneous networks.

