

458 VOLUME 23(2), 2024

Date of publication SEP-30, 2024, date of current version JUL-24, 2024.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.23.3.3666

An Algorithm Based on An Efficient Cost
Model to Form Learning Groups

ALI BEN AMMAR1, AMIR ABDALLA MINALLA2
1 Higher Institute of Computer Science and Management of Kairouan, University of Kairouan, Tunisia.

2 University College of Tayma, University of Tabuk, Kingdom of Saudi Arabia.

Corresponding author: Ali Ben Ammar (e-mail: ali.benammar@isigk.rnu.tn).

 ABSTRACT The purpose of this research is to form learning groups that are intra-homogeneous (a high level
of similarity across student GPAs inside a group), inter-homogeneous (similarity or balance in the degree of
homogeneity between groups), and balanced in size. The algorithm proposed for this purpose treats the learning
group formation as an assignment-type optimization problem where it seeks to find a feasible least-cost assignment
of a given set of students to a given set of learning groups. It is referred to as GAGF (Generalized Assignment
Strategy for Group Formation). It is based on an efficient cost model, which performs three tasks: measuring the
cost of assigning students to a learning group, relating each improvement in assignment cost to increased intra-
group homogeneity and group size balance, and bringing the intra-homogeneity of the groups to a reference value
(a specific level of homogeneity), which improves inter-homogeneity. Experimental results have shown that the
GAGF algorithm is effective at constructing intra- and inter-homogeneous learning groups with balanced sizes. It
was found that using GAGF attained an improvement of more than 29% in intra-group homogeneity when
compared to both related work and self-formation methods. It significantly improved inter-group homogeneity,
outperforming related works by 79.75%.

 KEYWORDS Group formation Algorithm; Learning group formation; Intra-group Homogeneity; Inter-group
Homogeneity; Generalized Assignment problem; Cost model; Reference value.

I. INTRODUCTION
HE way learning groups are created affects the success of
the educational process and the achievement of learning

outcomes. The methods of forming learning groups vary
between traditional and automated. Traditional methods
include random formation and self-formation, in which
students take the responsibility to choose themselves to be the
group’s members, and the instructor-based formation method
involves manually selecting group members based on several
criteria. Automatic methods rely on algorithms to accurately
determine the members of each group. Each method aims to
form homogeneous, heterogeneous, or mixed groups. In a
homogeneous group, students have approximately similar
characteristics such as academic performance, or GPAs (grade
point average), learning styles, personality traits, and
demographic information that can include age, gender, and
racial, ethnic, or cultural background. On the other hand, in a
heterogeneous group, students have different or diverse
characteristics. A mixed group includes students with a mixture
of homogeneous and heterogeneous characteristics.
Homogeneous groups are more effective in in-person learning
or in some types of learning activities that involve guided

discovery, knowledge development, review of material already
learned, or highly structured tasks to build proficiency,
allowing students to progress at the same rate [1]. Cooperative
learning, which has become widespread due to electronic
networks, requires heterogeneous groups to enhance assistance
among students, improve interaction between group members,
and increase communication and cooperation skills.

Forming groups is a complex process because of the variety
of student characteristics it uses and because of the large
number of students. According to [2], the automatic formation
of learning groups is an NP-hard problem. Therefore, many
algorithms have been developed to solve this problem in an
effective and fast manner. They used different heuristics and
optimization methods, such as genetic algorithms, simulated
annealing, ant-colony, and machine learning. Most of the group
formation approaches examined in this work dealt with the
creation of mixed or heterogeneous groups for collaborative
purposes; these groups were typically small, with three to six
members. As another option for forming learning groups, some
studies have proposed optimizing intra-group
homogeneity/heterogeneity and inter-group
homogeneity/heterogeneity. However, although in-person
learning is still needed and desirable, as stated in several recent

T

Ali Ben Ammar et al. / International Journal of Computing, 23(3) 2024, 458-467

VOLUME 23(3), 2024 459

studies [3-5], there have been a few recent works studies [6, 7]
that focused on groups’ formation via this type of learning. In-
person learning is characterized by larger group sizes, with
instructor contributing more than the students. Therefore, in in-
person learning, it is preferable to have intra-group
homogeneity and inter-group homogeneity to achieve learning
outcomes, make the instructor’s effort balanced between the
groups, and facilitate his task.

This paper proposes an algorithm for forming learning
groups that are intra-homogeneous (a high level of similarity
across student GPAs inside a group), inter-homogeneous
(similarity or balance in the degree of homogeneity between
groups), and balanced in size. The proposed algorithm
considers the learning group formation as an assignment-type
optimization problem where the goal is to find a feasible least-
cost assignment of a given set of students to a given set of
learning groups. It is based on a cost model to measure the
assignment cost of a student or a small set of students to a
learning group. For every improvement in assignment cost to
be reflected in the improvement of intra-group homogeneity
and group size balance, the proposed cost model combines
several parameters, such as intra-group homogeneity, the size
of the item to be assigned, and the size of the group to which
the item will be assigned. It also employs a reference value,
which is a specific level of homogeneity towards which the
intra-homogeneity of the groups tends. The use of a reference
value aims to bring the intra-homogeneity of the groups closer
to each other and thus improve their inter-homogeneity. Hence,
the questions that the research intends to answer in this regard
are:

 Is the proposed cost model effective in improving the
intra- and inter-homogeneity of learning groups and
ensuring a balance between their sizes? If yes, what is
the recommended reference value?

 Compared with related works, what is the advantage of
the proposed algorithm in improving intra- and inter-
homogeneity of learning groups and ensuring balance
between their sizes?

II. LITERATURE
The way students are distributed into groups affects learning
outcomes [8]. It is a complex process due to the variety of
attributes and constraints used to form the groups [9].
Therefore, this issue has received great attention from
researchers in the fields of education and computer science,
especially in the past two decades. With the development of e-
learning and collaborative learning platforms, the issue of
automating the formation of learning groups has become very
necessary and of great importance. This section presents some
algorithms that have been used to automate the formation of
learning ensembles and highlights their characteristics.

The objectives of learning group formation algorithms vary,
but they often fall into two categories: enhancing homogeneity
or improving heterogeneity among students in the group. Other
objectives can be constructed by combining these two
possibilities. In homogeneous groups, learners' attributes, such
as their grades and personality traits, are similar or close to each
other, while the opposite occurs in heterogeneous groups.
According to [9], homogeneous groups are more suitable than
heterogeneous groups to perform skill exercises and guided
discovery learning activities. Heterogeneous groups are
suitable for in-class problem solving (journal creation, project,
and case analysis) and long-term problem-solving projects. [1]
developed an algorithm for generating homogeneous groups

based on personality traits. [10] proposed an algorithm for
forming homogeneous learning groups based on learning
styles. However, heterogeneous group formation algorithms
have received more attention from researchers, especially with
the spread of collaborative learning, learning platforms, and
remote work. Some of these algorithms were presented in [11-
19]. These algorithms use different grouping attributes but
mostly represent academic performance, personality traits,
learning styles, and demographic information such as age,
gender, and cultural background.

The combination of the previous two types, i.e.,
homogeneity and heterogeneity, has been applied in some
works as a third option to form mixed groups. Mixed groups
consist of members with a mixture of homogeneous and
heterogeneous learners' attributes. For example, the algorithm
proposed in [11] forms learning groups based on a set of
heterogeneous criteria such as student grades, knowledge
levels, and learning roles and homogeneous criteria such as
social interactions. In [9], sensing/intuitive learning styles and
topical interests are used as criteria for homogeneity within
groups, while active/reflective learning styles and prior
knowledge are used as criteria for heterogeneity. The method
proposed in [13], forms groups with different levels of
knowledge, similar interests, and distributed leadership. As
another option for forming learning groups, some works have
proposed optimizing intra-group homogeneity/heterogeneity
and inter-group homogeneity/heterogeneity. [20-23] propose
methods to enhance inter-group homogeneity and intra-group
heterogeneity. The purpose of this option is to create different
groups that are as similar as possible and, on the other hand, to
enhance the complementary role of learners within each
learning group by enabling their differences in their qualifying
characteristics (students with distinct features and skills).
While [6] suggested the formation of intra- and inter-
homogeneous learning, that is, the similarity of the students’
performance within the group and the similarity of the groups’
performance. Another goal adopted in some works is balance
in group size. It was stated in [9] that group size has an impact
on the learning process. Large groups contribute to increasing
the exchange of knowledge and skills, but they also represent a
burden in managing and evaluating their members and
monitoring their behavior. Therefore, [6] and [20] set group
balance as a goal to form learning groups. While works focused
at improving cooperative learning, such as [1, 7, 11, 12, 14, 19,
21, 23-26], limit group size, groups should be small, and with
no more than 6 members. This last option is suitable for
collaborative environments but is not possible in in-person
learning environments.

To optimize homogeneity and heterogeneity within and
between groups, some related works have formulated the group
formation problem as an optimization problem with a single
objective or multiple objectives in a combinatorial scenario that
integrates all the criteria used. According to [9], a single
objective function converts all attribute values to a single value,
making no attribute optimal, while multiple objective functions
make optimal values for all attributes simultaneously. The
works developed by [1, 2, 7, 15, 19], 23, 26-28] used a single
objective function to evaluate solutions (groups) formed by the
algorithm. They used either a single criterion or multiple
criteria. Other works have used multiple objective functions,
each consisting of different criteria. [22], proposes a multi-
objective optimization of group formation that consists of three
objective functions: maximizing mutual homogeneity,
maximizing heterogeneity within each group, and maximizing

 Ali Ben Ammar et al. / International Journal of Computing, 23(3) 2024, 458-467

460 VOLUME 23(3), 2024

empathy so that group members have affinity for each other.
[21] proposes a multi-objective heuristic to achieve multiple
predetermined targets of learning group formation
simultaneously, especially the inter-homogeneity and intra-
heterogeneity of each learning group. In [9], a multi-objective
ant colony system for group formation is developed in which
sensing/intuitive learning methods and interests in subjects are
used to improve group homogeneity, while active/reflective
learning and previous knowledge are used to establish group
heterogeneity.

Learner attributes used by related works as criteria in group
formation are mainly knowledge level, learning styles,
communication skills, leadership skills, gender, age, and self-
confidence. [15] classified these characteristics as static and
dynamic. Static characteristics are those that do not change or
at least do not change during a short period of learning, such as
gender, age, previous levels of knowledge, or learning styles.
Dynamic characteristics, which cannot be captured at a fixed
point, are constantly changing during students' learning
processes, such as levels of interaction or emotional status.
Dynamic criteria are especially used in collaborative
environments. However, when and how to define its value has
been a shortcoming in most related works, because failure to
define it properly leads to undesirable collaborative outcomes.
Therefore, to solve the problem of the unavailability of student
characteristics at the starting point, dynamic grouping was
used, in which groups are created and then modified by
dynamic swapping [12, 15, 29]. But dynamic grouping causes
an expensive runtime. Also, with dynamic grouping, it takes a
long time to form and stabilize groups, and it takes a long time
for students to work regularly. Because of the multiplicity and
dynamism of these criteria and the multiplicity of students to
be divided into groups, the issue of forming learning groups
becomes more complex, and is therefore considered NP-hard,
as stated in [2]. Hence, it is necessary to use optimization
techniques to address them, such as genetic algorithms [1, 2,
10, 11, 13, 15, 17, 25, 27, 28, 30], ant-colony [9], and machine
learning [24, 31, 32].

In summary, most related works were interested in forming
groups for the purpose of collaborative tasks, which spread
rapidly thanks to technological development. However,
collaborative activities are only a complement to in-person
learning, which is still needed and desirable, as reported in
several recent studies [3-5]. In in-person learning, the teacher's
contribution is greater than that of the student, and the number
of students is large. Therefore, in order to achieve learning
outcomes and facilitate the teacher’s task, it is necessary to
form homogeneous learning groups that are balanced in terms
of size and homogeneity. This combination of intra- and inter-
homogeneity of groups is treated in [6], where a self-balancing
BST was used as a data structure to improve the homogeneity
of groups, but achieving both objectives (intra- and inter-
homogeneity) at the same level was not possible. In this
research, to overcome the drawbacks of the algorithm proposed
in [6], the same data structure will be reused, a cost model will
be proposed and used to distribute students, and group
formation will be formulated as a generalized assignment
problem.

III. METHOD
This section introduces the proposed method for automating the
formation of learning groups. This method seeks to improve the
homogeneity of students' performance within learning groups
for the same course and to achieve a balance between those

groups in terms of size and degree of homogeneity. Student
grouping is based on GPA (grade point average), which means
that students with homogeneous GPAs are likely to be in the
same group. According to [33-35], GPA is positively related to
subsequent academic performance. The contributions of this
method are:

 Formulate the learning group formation problem as a
generalized assignment problem (GAP). The aim of this
formulation is to minimize the cost of assigning students
into groups while respecting the carrying capacity of
each group. It should be noted here that every reduction
in the assignment cost must be matched by an
improvement in the intra- and inter- homogeneity of
groups and in the balance of their sizes, which is the
main goal of this work.

 A cost model that the objective function of GAP will use
to minimize the assignment cost and to perform the
matching between minimizing the assignment cost and
improving both homogeneity and size balance. The
proposed cost model combines several parameters, such
as the intra-homogeneity of the groups, the size of the
item to be assigned, and the size of the group to which
the item will be assigned. It is also characterized by the
use of a reference value to which the intra-homogeneity
of the groups tends. The use of a reference value aims
to bring the intra-homogeneity of the groups closer to
each other and thus improve their inter-homogeneity.

This method uses self-balancing binary search trees (self-
balancing BST) to form learning groups. Self-balancing BST
can classify and sort data. They were used in [6] to classify
students according to their GPA. The result was branches
representing small groups of students who were nearly
homogeneous in performance, as shown in Figure 1. For
example, the branches B1 = {2.78, 1.88, 1.62, 1.00} and B2 =
{2.78, 3.75, 3.3, 3.29} in figure 1.a are two blocks of students
whose GPAs are approximately homogeneous. These branches
are then used as blocks to form learning groups. Therefore, in
this section, some concepts for using self-balancing BST will
be summarized. More details on how to use these trees are
presented in [6]. Then the focus will be on explaining the two
contributions of this work and how to implement them. This
section will conclude with the development of an algorithm that
summarizes all the steps involved in the formation of learning
groups.

A. USING SELF-BALANCING BINARY SEARCH TREES TO
FORM LEARNING GROUPS.
Binary search trees (BST) are a data structure used to sort and
classify data [36]. Self-balancing BSTs are a class of binary
search trees whose branches are balanced, and therefore
approximately equal in size or number of elements. For these
reasons, it has been used in [6] to form learning groups. The
two trees in Figure 1 are two implementations of self-balancing
BSTs. The 2-3 tree (Figure 1.a) allows each node to have one
or two data elements and two or three children. The 2-3-4 tree
(figure 1.b) allows each node to contain one to three data
elements and two, three, or four children. If 2-3 and 2-3-4 trees
are used for the same sample of data, the 2-3 will produce fewer
branches than the 2-3-4 tree, but its branch size will still be
larger than the 2-3-4 tree. For additional information about
balanced trees and their implementation, see [36]. For example,
the two trees in Figure 1 represent the structure of the GPA of
17 students. They were used in [6] in two stages. In the first
stage, the tree was built to sort the students and arrange them

Ali Ben Ammar et al. / International Journal of Computing, 23(3) 2024, 458-467

VOLUME 23(3), 2024 461

according to their GPA. The tree branches were then used as
blocks to build the learning groups. They represented small
groups of students who were roughly homogeneous in terms of
GPA or performance. For example, in figure 1.a, the branches
B1 = {2.78, 1.88, 1.62, 1.00} and B2 = {2.78, 3.75, 3.3, 3.29}
represent two small sets of students whose GPAs are not very
different. But some of its components (mostly the top nodes of
the branch) are outliers, and this is useful because it is not
recommended that groups be completely homogeneous in order
to maintain social integration and exchange of experiences
among students [37, 38].

Figure 1. Examples of self-balancing BSTs recording the
GPAs of 17 students.

The inclusion of a small group of students (a tree branch) in
a learning group is determined by the improvement in group
homogeneity (intra-homogeneity). In [6], the following
formulas were used to measure intra-homogeneity and inter-
homogeneity (homogeneity between groups). Intra-
homogeneity (formula 1) and inter-homogeneity (formula 2)
are used in the form of percentage values:

𝐻௜௡௧௥௔(g௜) =
𝑆(g௜)

𝜇(g௜)
× 100, (1)

𝐻௜௡௧௘௥(G) =
𝑆(H)

𝜇(H)
× 100, (2)

where:
­ g௜: a learning group.
­ 𝐻௜௡௧௥௔(g௜): intra-homogeneity of g௜
­ 𝜇(g௜): The mean of the students’ GPAs within a group

g௜
­ 𝑆(g௜): The standard deviation of the students’ GPAs

within a group g௜.
­ 𝐺 = {𝑔ଵ, … , 𝑔௡}: set of learning groups

­ H = {
ௌ(୥భ)

ఓ(୥భ)
, … ,

ௌ(୥೙)

ఓ(୥೙)
}: set of intra-homogeneities of

groups.
­ 𝐻௜௡௧௘௥(G): inter-homogeneity of learning groups in G

Formulas (1) and (2) measure what is known in statistics as
the coefficient of variation (CV), which is the ratio of the
dispersion of the data from its mean. In this work, the CV was
used as an indicator of both homogeneity and heterogeneity
within the group. A group with a CV ≤ 30% is considered
homogeneous. Otherwise, it is considered heterogeneous.

The most important advantages of using self-balancing
search tree branches to form learning sets are the following:

 Reducing the complexity of the algorithm by reducing
the number of iterations, as more than one student is
included in a learning group in each iteration rather than
one student.

 Helping in the formation of homogeneous learning
groups while limiting the achievement of complete
homogeneity.

In this research, self-balancing BSTs will be used in the
same way and with the same homogeneity measurement
formulas as was done in [6].

B. FORMULATE THE PROBLEM OF FORMING LEARNING
GROUPS AS A GENERALIZED ASSIGNMENT PROBLEM.
This subsection presents the formulation of the learning group
formation problem as a Generalized Assignment Problem
(GAP). [39] defines the GAP as follow: “The generalized
assignment problem (GAP) seeks the minimum cost
assignment of m tasks to n agents such that each task is assigned
to precisely one agent subject to capacity restrictions on the
agents.”. The aim of formulating the learning group formation
problem as a GAP is to minimize the assignment costs of
students to learning groups. The proposed cost model, as will
be explained later, will reflect this improvement in the
assignment cost in achieving the goal of this work, which is to
improve intra-group homogeneity, inter-group homogeneity,
and group balance.

The formulation of the GAP as presented in [39] is:

𝑚𝑖𝑛 ෍ ෍ 𝑐௜,௝𝑥௜,௝

௠

௝ୀଵ

௡

௜ୀଵ

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ෍ 𝑎௜,௝𝑥௜,௝ ≤ 𝑝௜ 𝑖 = 1, … , 𝑛

௠

௝ୀଵ

෍ 𝑥௜,௝ = 1 𝑗 = 1, … , 𝑚

௡

௜ୀଵ

𝑥௜,௝ ∈ {0,1} 𝑖 = 1, … , 𝑛; 𝑗 = 1, … , 𝑚

where:

­ 𝑐௜,௝ is the cost of assigning task 𝑗 to agent 𝑖.
­ 𝑎௜,௝ is the capacity used when task 𝑗 is assigned to

agent 𝑖.
­ 𝑝௜ is the available capacity of agent 𝑖.
­ 𝑥௜,௝ is equals 1 if task 𝑗 is assigned to agent 𝑖, and 0

otherwise.
In this work, the following matching will be applied to

formulate the problem of constructing learning groups as a
GAP:

 The branches of self-balancing binary search trees are
the tasks to be assigned. After each branch 𝑏௝ is assigned
to a group 𝑔௜, it is necessary to restructure the branches
that contain common elements with 𝑏௝. For example, if
the assignment algorithm processes branches B1 =
{2.78, 1.88, 1.62, 1.00} and B2 = {2.78, 3.75, 3.3, 3.29}
(as shown in Figure 1.a here above), and if B1 is
assigned during the first stage, the GPA with value 2.78
must be removed from B2 because the student with this
GPA has been assigned to a group.

 The available capacity of each group, represented by 𝑝௜
in the formulation above, corresponds to the maximum

 Ali Ben Ammar et al. / International Journal of Computing, 23(3) 2024, 458-467

462 VOLUME 23(3), 2024

number of students the learning group can contain.
Since the goal was to create groups of balanced size, it
was necessary to divide the total number of students by
the number of groups to be formed to obtain the 𝑝௜
value. Euclid division is what is applied here, where the
result (group size) must be an integer. But if the total
number of students is not divisible by the number of
groups to be formed, the resulting groups will not
accommodate all students. For example, if the total
number of students is 65 and the number of groups is 3,
the maximum number of each group will be 21
(63/3=21, remainder=2), which means that two students
will not be included in any of the three groups. To avoid
this problem, the value 1 is added to the division result.
Thus, the formula for calculating 𝑝௜ becomes as follows:

𝑝௜ =
𝑁

𝑛
+ 1 (3)

Where 𝑁 is the total number of students and 𝑛 is the number of
groups to be formed. Adding 1 to the quotient, in formula 3,
will allow for a small difference between group sizes of no
more than 𝑛 in both cases, whether 𝑁 is divisible by 𝑛 or not.
However, as long as this size difference does not exceed 𝑛, it
will not significantly upset the balance between the groups
because 𝑛 is very small compared to the sizes of the groups.
For example, if 𝑁 = 96 and 𝑛 = 4 (i.e. 𝑁 is divisible by 𝑛),
the maximum group size will be 25 students (96/4 = 24 and
24+1=25). So, the difference between groups will not exceed a
maximum of 4 (i.e. n value) students. This means that in
extreme cases, the composition of the four groups will be as
follows: 25, 25, 25 and 21. If N = 96 and n = 5 (i.e. N is not
divisible by n), the maximum group size will be 20 students
(96/5 = 19 and 19+1=20). Therefore, the difference between
the groups will not exceed a maximum of 5 students (i.e. n
value). This means that in extreme cases, the composition of
the five groups will be as follows: 20, 20, 20, 20 and 16.

 𝑎௜,௝ represents the capacity occupied by 𝑏௝ in 𝑔௜. In the
current problem, it is measured by the number of seats,
which means that the value of 𝑎௜,௝ will be the number
of elements (students) in branch 𝑏௝ and will be constant
for all groups.

 𝑐௜,௝ is a measure of how much the assignment of the
branch 𝑏௝ to the group 𝑔௜ affects the intra-homogeneity
of 𝑔௜, the inter-homogeneity between groups, and the
balance of their sizes. Its measurement formula will be
explained in the next subsection. According to the above
problem formulation, the objective would be to
minimize the sum of 𝑐௜,௝.

To form the learning groups, the proposed algorithm
iterates to select, at each iteration, the assignment 𝑥௜,௝ that gives
the best assignment cost. This selection was based on the idea
of heuristic proposed by [40] for GAP. The heuristic proposed
by [40] was well suited to the problem of forming learning
groups and it was also easy to apply. It states that the
assignment of job 𝑗 to machine 𝑖 is measured by a weight
function 𝑓(𝑖, 𝑗). For each job 𝑗, the difference (called minimum
difference) between the second smallest and smallest values of
𝑓(𝑖, 𝑗) is computed, and the jobs are assigned in decreasing
order of this difference. This minimum difference represents
the advantage of assigning j to i over the other assignments, i.e.,
the minimal decrease in cost (or increase in profit) it provides
over them. This heuristic assumes that the jobs are independent
of each other and that the result of 𝑓(𝑖, 𝑗) for job j is

independent of the prior contents of machine i, which is not the
case in the learning group formation problem where the jobs
(branches) are intersected (have common elements) and the
weight function is calculated based on the prior content of the
group. Therefore, the heuristic proposed by [40] will not be
applied in all its details, but rather the idea of the minimum
difference between the second smallest and smallest values of
𝑓(𝑖, 𝑗) will be used as a criterion for selecting the best
assignment and will be applied in a different way. The proposal
is that for each group 𝑔௜, the difference (or minimum difference
𝑀𝐷௜) between the second smallest and smallest values of 𝑐௜,௝ is
calculated. 𝑀𝐷௜ represents the benefit that the best assignment
in 𝑔௜ can make compared to the rest of the assignments. Then,
the group 𝑔௞ with the maximum 𝑀𝐷 value, for example 𝑀𝐷௞,
will have priority to include the branch that creates 𝑀𝐷௞. Next,
the proposed algorithm updates the branches by deleting the
common elements included in 𝑔௞ and iterates again to select
the best assignment between the remaining branches and the
groups that have not yet reached the available capacity. The
selection of the best assignment is formulated as follows:

Let:
­ 𝜑௝ = ൛𝑖 ∶ 𝑎𝑐𝑡𝑢𝑎𝑙𝑆𝑖𝑧𝑒(𝑔௜) + 𝑎௜,௝ ≤ 𝑝௜ൟ for 𝑗 = 1, … , 𝑚.

This determines for each branch 𝑏௝ which groups it can be
a member of.

­ 𝑠௜ = arg 𝑚𝑖𝑛௝ / ௜∈ఝೕ
{𝑐௜,௝} for 𝑗 = 1, … , 𝑚. This

determines which branch has the minimum cost of

assignment in the group 𝑔௜.

­ 𝑀𝐷௜ = min௝ / ௜∈ఝೕ ௔௡ௗ ௝ஷ ௦೔
 {𝑐௜,௝ − 𝑐௜,௦೔

} This determines

the least minimum difference between the best cost and
the other costs in each group 𝑔௜.

­ 𝚤̂ = arg max௜ 𝑀𝐷௜ for 𝑖 = 1, … , 𝑛 . This determines
which group has the best assignment.

­ 𝚥̂ = 𝑠ప̂.
So, to apply the best assignment:

­ 𝑥ప̂,ఫ̂ = 1
­ 𝑥௜,ఫ̂=0 for all 𝑖 = 1, … , 𝑛 𝑎𝑛𝑑 𝑖 ≠ 𝚤̂
­ 𝑝ప̂=𝑝ప̂ − 𝑎ప,ො ఫ̂

C. PROPOSED COST MODEL
This subsection presents the cost model that has been used, in
formulating the learning group formation problem as a GAP, to
minimize the cost of assigning branches to groups. This cost,
denoted by 𝑐௜,௝, is a measure of how much the assignment of
the branch 𝑏௝ to the group 𝑔௜ affects the intra-homogeneity of
𝑔௜, the inter-homogeneity between groups, and the balance of
their sizes. It is calculated as follow:

𝑐௜,௝ =
(ℎ௜,௝ × |ℎ௜,௝−∝ 𝐺𝐻|)

(1 + 𝑠𝑖𝑧𝑒(𝑔௧)) × 𝑎௜,௝

 (4)

where:
­ 𝑔௧ = 𝑔௜ ∪ ൛𝑏௝ൟ. This is a temporary learning group.
­ ℎ௜,௝ = 𝐻௜௡௧௥௔(𝑔௧). The intra-homogeneity of 𝑔௧ which is

calculated using formula 1.
­ 𝐺𝐻 = 𝐻௜௡௧௥௔(𝐺): Called the general homogeneity of G. It

is the intra-homogeneity of 𝐺 that is calculated using
formula 1, where G is the set of GPAs of all students.

­ ∝ ∈ [0,1] : a percentage.
As explained above in the problem formulation, the goal is

to minimize the sum of cost 𝑐௜,௝. To achieve this goal, the value
of ℎ௜,௝ in formula (4) must be small, which means that the
assignment priority will be to the branches that contribute most

Ali Ben Ammar et al. / International Journal of Computing, 23(3) 2024, 458-467

VOLUME 23(3), 2024 463

to achieving homogeneity of the group. However, relying on
ℎ௜,௝ alone may lead to the formation of highly homogeneous
learning groups, which is undesirable and may also cause
failure to achieve inter-homogeneity. Therefore, a percentage
∝ of 𝐺𝐻 (The general homogeneity value for all GPAs before
distributing them), was determined to be a reference value
towards which the homogeneity of the groups would tend. Then
ℎ௜,௝ was multiplied by the value of the distance between it and
∝ 𝐺𝐻, so that minimizing this calculation (ℎ௜,௝ × |ℎ௜,௝−∝ 𝐺𝐻|)
requires a small value for ℎ௜,௝ and a small value for
|ℎ௜,௝−∝ 𝐺𝐻|. This means that the branches that contribute the
most to improving intra-homogeneity without deviating from
the homogeneity of the rest of the groups have priority in
assignment. Then, in the first stage, the result of the calculation
ℎ௜,௝ × |ℎ௜,௝−∝ 𝐺𝐻| was divided by the temporary size of the
group i.e. 1 + 𝑠𝑖𝑧𝑒(𝑔௧). The +1 here is added to avoid division
by zero when the group is still empty. This division aims to
improve inter-homogeneity between groups and achieve
balance in their sizes. It forces the cost of assignment, i.e. 𝑐௜,௝,
to be proportional to the size of the group. This means that if
only the numerator in Formula (4) is used as the assignment
criterion, the algorithm will speed up the completion of the
formation of groups whose size has increased and delay it for
groups that are still empty or have few members. This is
because adding branches to large groups often results in a
significant improvement in the numerator in Formula (4)
compared to small groups. What would happen in this case is
high intra-homogeneity for the groups that formed quickly in
the first iterations of the algorithm because they chose what was
best for them, and low intra-homogeneity for the other groups
because they had to contain the remaining elements that might
be dispersed. It will also happen that the groups formed quickly
in the first iterations of the algorithm will have larger sizes than
those formed in the last iterations. Then the result of this
calculation was divided by the size of the branch, i.e., 𝑎௜,௝ , so
that there is a proportionality between the cost resulting from
the branch and its size. Also, this division aims to make the
assignment fair, meaning there is no absolute priority in
assigning long branches, which may cause a weak balance in
homogeneity and sizes between groups.

Thus, the proposed cost model for assignment provides all
necessary conditions to ensure homogeneity within and
between groups and a balance of their sizes. It also has a
mechanism to prioritize groups in branch inclusion.

D. THE ALGORITHM FOR FORMING LEARNING GROUPS.
To form a predetermined number n of learning groups that are
intra- and inter-homogeneous and of balanced size, an
algorithm is developed, denoted for simplicity as GAGF
(Generalized Assignment strategy for Group Formation), and
shown in figures 2, 3, and 4. GAGF considers the formation of
learning groups as a general assignment problem (described
here above) and determines the best assignment for each branch
such that the intra- and inter-homogeneity of the groups is
optimized. It iterates (from line 10 to line 19 in Figure 2) to
assign each branch to the most appropriate group, until all
branches are assigned. At each iteration, for each group, the
branches whose addition does not overflow the group are
selected (line 5 in Figure 3). The cost that each of those
branches would achieve if it were added to the group is then
calculated using the formula 4 (lines 6 and 7 in Figure 3). The
branch with the minimum cost is then kept with the minimum
difference (called MD) between its cost and the cost of the

second-best branch (Figure 4). At the end of each iteration, the
group with the best MD is selected, and the branch that
achieved the best cost is assigned to it (from lines 12 to 13 in
Figure 2). Also, at the end of each iteration, the algorithm
reconstructs the candidate branches by removing elements in
common with the selected branch. The following is the notation
used to write the pseudocode for this algorithm:
­ 𝐺𝑃𝐴𝑠: Students' GPAs that will be divided into groups.
­ 𝑇𝑇: The used tree kind which is either 2-3 or 2-3-4.
­ 𝑇: The self-balancing BST of kind TT which will be

constructed to contain 𝐺𝑃𝐴𝑠
­ 𝑆: The generated branches from the 𝑇 tree
­ 𝑏: A branch in 𝑆
­ 𝑛: The predetermined number of learning groups
­ 𝐺: The set of learning groups
­ 𝑔: A learning group.
­ 𝐻௜௡௧௥௔(𝑔): Intra-homogeneity of the learning group 𝑔
­ maxSize: The allowed size for groups.
­ 𝑐: The cost of assigning a branch 𝑏 to group 𝑔. It is

calculated according to formula (4).
­ 𝑀𝐷: The minimum difference (MD) in group g is the

difference between the best cost resulting from
assigning a branch 𝑏 to 𝑔 and the cost of the second-
best branch.

Figure 2. The Algorithm GAGF (Generalized Assignment
strategy for Group Formation).

 GAGF- Algorithm(GPAs, TT, n)
INPUT:
‐ GPAs: list of students’ GPAs
‐ TT: the type of balanced tree
‐ n: number of predetermined learning groups
OUTPUT:
‐ G: the set of created learning groups
BEGIN
1. T← ConstructTree(GPAs, TT) // Construct the T tree of type TT

 // from the list of GPAs
2. S← generateBranches(T) // Extract all the branches of T
3. 𝐺 ← ∅ // Initialize the Learning groups list to be empty
4. GH← 𝐻௜௡௧௥௔(𝐺𝑃𝐴𝑠) // calculate the general homogeneity (GH)
 // of all GPAs

5. maxSize←
௦௜௭௘(ீ௉஺௦)

௡
+ 1 // calculate the allowed size for groups.

6. For 𝑖 ← 1 𝑡𝑜 𝑛 do //Initialize all groups to an empty set and add
 // them to G
7. 𝑔௜ ← ∅
8. 𝐺 ← 𝐺 ∪ {𝑔௜}
9. End for

 While (S not empty) do // iterate to fill in the groups of G from S
11. A ←searchBestLocalAssign(S, G) // subfunction to search the
 // best assignment for each group (see figure 3)
12. (𝑔௕௘௦௧, 𝑏௕௘௦௧, 𝑀𝐷௕௘௦௧) ← arg(௚,௕,ெ஽)∈ ஺ max (𝑀𝐷) // Find the

 //best assignment i.e. the triplet (group, branch, minimum
 //difference) that has the maximum MD in A
13. 𝑔௕௘௦௧ ← 𝑔௕௘௦௧ ∪ {𝑏௕௘௦௧} // add the branch 𝑏௕௘௦௧ to the group 𝑔௕௘௦௧
14. For each:𝑏 ∈ 𝑆 // delete from any branch in S the elements in
 //common with 𝑏௕௘௦௧
15. 𝑏 ← 𝑏 − {𝑏 ∩ 𝑏௕௘௦௧}
16. End for
17. Refresh S // Remove from S any branch that has become empty.
 //after deleting its elements in common with 𝑏௕௘௦௧
18. End while
19. Return G // return the set of created learning groups.
STOP

 Ali Ben Ammar et al. / International Journal of Computing, 23(3) 2024, 458-467

464 VOLUME 23(3), 2024

Figure 3. The searchBestLocalAssign function to search the
best local assignment.

Figure 4. The BestForAGroup function to selecting the best
assignment in a group.

IV. RESULTS
Two experiments were conducted to examine the effectiveness
of the proposed method in improving the intra- and inter-
homogeneity of groups and achieving balance in their sizes.
They were carried out on a sample of 82 students who self-
enrolled in four learning groups in the computer skills course
at the University of Tabuk. The GPAs of students in this sample

were heterogeneous, as the general homogeneity reached
37.14%. During these experiments, the proposed method,
which is referred to as the GAGF algorithm for simplicity, was
applied to form four learning groups. Its results were then
compared to the results of two other formation methods: (i) the
self-formation method (the student registers himself and
chooses the group) applied at the University of Tabuk; (ii) the
related algorithm, presented in [6] and referred to for simplicity
as the GF-SBT algorithm. GAGF and GF-SBT use 2-3 and 2-
3-4 self-balancing BSTs to generate GPA branches (student
blocks). The average intra-homogeneity and inter-homogeneity
of the four generated groups are determined for each formation
method. The total number of students in each group was
calculated as well.

The first experiment tests the effectiveness of the proposed
cost model in improving intra- and inter-homogeneity and
balancing group sizes. In particular, this experiment focuses on
the role of the reference value in improving the homogeneity of
groups and the balance of their sizes. Therefore, the GAGF
algorithm was applied first without using the reference value
∝, and then other times using the reference value ∝ that was
moved from 30% to 100%. If the reference value is not used in
the cost model, it means that the numerator of the proposed cost
model (formula 4) consists of ℎ௜,௝ only without multiplying it
by the distance between it and a reference point (|ℎ௜,௝−∝ 𝐺𝐻|).
Small values of ∝ mean that the reference value (∝ 𝐺𝐻) to
which the homogeneity of the groups is pulled will be very
small compared to the general homogeneity (𝐺𝐻) value. A
value of 100% means that the reference value is the same as the
general homogeneity (𝐺𝐻) value. The results of using the
reference value were then compared with the results of not
using it to determine whether the cost model had a role in
improving the homogeneity of the groups and the balance of
their sizes. In this experiment, a 2-3-4 tree was used. The results
of this experiment are presented in Table 1.

The results in Table 1 show that using the proposed cost
model with its reference value contributed to an improvement
in intra-homogeneity, especially for ∝ < 80%, where this
improvement peaked in case ∝ = 30% when there was a ten-
percentage point difference with the case of not using the
reference value. However, in cases where the ∝ value was less
than 60%, this improvement resulted in poor inter-
homogeneity. Therefore, applying the cost model with an ∝
value ranging between 60% and 80% (60% ≤∝< 80%) gave
acceptable results for both intra- and inter-homogeneity. The
best result was for the case ∝=70%, where the intra-
homogeneity was 24.37% and the inter-homogeneity was
7.83%, which means an advantage over the results of not using

the reference value of 25.34% (
ଷଶ.଺ସିଶସ.ଷ଻

ଷଶ.଺ସ
%) for intra-

homogeneity and 48.14% (
ଵହ.ଵ଴ି଻.଼ଷ

ଵହ.ଵ଴
%) for inter-homogeneity.

The sizes of the groups formed by the algorithm were
approximately balanced, as one group included 19 students
while the rest of the groups included 21 students. This slight
difference is due to the maximum group size, which is defined

in the algorithm as
ே

௡
+ 1. To summarize this experiment, the

proposed cost model was effective in improving both intra- and
inter-homogeneities for ∝ values between 60% and 80%. It was
also able to generate learning groups with near-balanced sizes.

searchBestLocalAssign(S, G)
INPUT:
‐ S: list of branches
‐ G: set of learning groups
OUTPUT:
‐ A: a set containing the best local assignment for each learning

group
BEGIN
1. For each:𝑔 ∈ 𝐺
2. P ← ∅ // declare an empty set of branch assignment costs to groups.

3. For each:𝑏 ∈ 𝑆
4. 𝑔𝑡 ← 𝑔 ∪ {𝑏} // declare gt as a temporary group.
5. if (size(gt)<=maxSize)
6. h← 𝐻௜௡௧௥௔(𝑔𝑡) // calculate the homogeneity of the group 𝑔𝑡
7. 𝑐 ← (ℎ × |ℎ−∝ 𝐺𝐻|)/((1 + 𝑠𝑖𝑧𝑒(𝑔𝑡)) × 𝑠𝑖𝑧𝑒(𝑏))
 // calculate the cost of assigning the branch b to g
8. P ← 𝑃 ∪ {(𝑏, 𝑐)} // add the b and its cost c as pair
 //to the cost list
9. End if
10. End for
11. (𝑏௠, 𝑀𝐷) ← BestForAGroup(P) // subfunction to find
 //the branch 𝑏௠ ∈ 𝑃 that has the best cost (best local
 //assignment) for group g and the difference
 //(MD = minimum difference in P) between the cost of 𝑏௠
 //and the cost of the second-best branch. (see figure 4)
12. A ← 𝐴 ∪ {(𝑔, 𝑏௠, 𝑀𝐷)} // add to A the best local
 //assignment (𝑔, 𝑏௠) with its minimum advantage
 // (𝑀𝐷) that it provides over other possible assignments.
13. End for
14. Return A // return the set of best local assignments.
STOP

BestForAGroup (P)
INPUT:
‐ P: set of branch assignment costs to groups.
OUTPUT:
‐ (𝑏௠, 𝑀𝐷): the best branch in P that achieved the best cost plus the

 difference (MD = minimum difference in P) between the cost of
 that branch and the cost of the second-best branch.

BEGIN
1. (𝑏௠, 𝑐௠) ← arg min(௕,௖)∈ ௉(𝑐) // Find the pair (b, c) that has
 // the minimum cost in P
2. MD← arg max(௕,௖)∈ ௉(𝑐) // Initialize the minimum difference

 //(MD) between the cost of the branch selected for
 //assignment and the costs of other possible branches to the
 //maximum cost in P
3. For each:(𝑏, 𝑐) ∈ 𝑃 − {(𝑏௠, 𝑐௠)}
4. diff ← 𝑐 − 𝑐௠
5. if (diff< MD)
6. MD ← diff
7. End if
8. End for
9. Return (𝑏௠, MD) // return the set of best local assignment
 //in the group.
STOP

Ali Ben Ammar et al. / International Journal of Computing, 23(3) 2024, 458-467

VOLUME 23(3), 2024 465

Table 1. Results of applying the proposed cost model with
different refence values.

Reference
value

Average
intra-

homogeneity

Inter-
homogeneity

Group sizes

Without
reference value

32.64% 15.10% 21, 21, 21, 19

 21.84% 26.44% 21, 21, 21, 19

 26.70% 34.94% 21, 21, 19, 21

 29.89% 44.87% 21, 21, 19, 21

 24.52% 19.83% 21, 19, 21, 21

 24.37% 7.83% 21, 19, 21, 21

 32.67% 15.84% 21, 19, 21, 21

 35.43% 8.70% 21, 19, 21, 21

The second experiment was concerned with comparing the
results of applying the proposed method with the results of the
related work, which is the GF-BST algorithm, and the results
of the self-formation method. The goal is to study the
effectiveness of the proposed method, with its two
contributions, in improving the intra- and inter-homogeneity of
groups and achieving balance in their sizes. For this purpose,
the GAGF algorithm was applied with a reference value
∝ = 70%. In order to determine the type of self-balancing BST
that enhances the effectiveness of the proposed method, the
GAGF and GF-BST algorithms were applied twice, first using
2-3 tree and then using 2-3-4 tree.

The results of this experiment are shown in Table 2. It was
found that the GAGF algorithm was more effective than the
GF-BST algorithm and self-formation in improving intra-
homogeneity in both uses of 2-3 tree and 2-3-4 tree. The
average intra-homogeneity difference between the GAGF
algorithm and the other two methods ranged between 10 and 12
percentage points, giving an improvement rate between 29%
and 32%. It was also found that the type of self-balancing BST
used did not have a significant impact on the intra-homogeneity
of the groups formed. However, the type of self-balancing BST
used had a significant impact on improving inter-homogeneity,
as using 2-3-4 tree produced better inter-homogeneity than 2-3
tree. In both uses of 2-3 tree and 2-3-4 tree, the GAGF
algorithm formed learning groups with more balanced
homogeneity than those formed by the GF-BST algorithm.
However, the best difference between the two methods was
with the use of the 2-3-4 tree, where the inter-homogeneity
value of the GAGF algorithm represents 20.25% of the inter-
homogeneity value produced by the GF-BST algorithm, i.e. an

improvement of 79.75% (
ଷ଼.଺଻ି .଼ଷ

ଷ଼.଺଻
%). The self-formation

method was better than the GF-BST and GAGF algorithms in
improving inter-homogeneity. In this regard, the difference
between its results and the results of the proposed method was
not significant, especially when using tree 234. The groups
formed using the GAGF algorithm were approximately
balanced in size, unlike the groups formed using the self-
formation method, whose sizes were unbalanced. The
algorithm GF-BST was better in this regard because it was
more stringent in balancing the size of groups.

Table 2. Comparison between the results of GAGF,
GF-SBT, and self-formation method.

Method
Self-

balanced
BST

Average intra-
homogeneity

Inter-
homogeneity

Group sizes

GF-SBT
2-3Tree 34.88% 20.95% 21, 21, 20, 20

2-3-4 Tree 34.65% 38.67% 21, 21, 20, 20

GAGF
2-3 Tree 24.14% 11.99% 21, 19, 21, 21

2-3-4 Tree 24.37% 7.83% 21, 21, 19, 21

Self-
formation

- 35.82% 5.08% 21, 23, 16, 22

V. DISCUSSION
The results of this study are discussed based on the two
research questions, as follows:

Question1: Is the proposed cost model and its reference
value effective in improving the intra- and inter-homogeneity
of learning groups and ensuring a balance between their sizes?
If yes, what is the recommended reference value?

The proposed cost model is used to measure the cost of
including a student or a small set of students in a group. It is
based on the idea of approximating the homogeneity of the
groups around a reference value that represents ∝% of the
general homogeneity of the students. The experiment's results
have shown that the proposed cost model was a significant
contribution. Its effect was most evident in achieving an
excellent balance between the homogeneity of the groups. To
achieve good levels of intra- and inter-group homogeneity, it is
recommended to apply the proposed method with an ∝ value
between 60% and 80% (60% ≤∝< 80%). With a reference value
∝=70%, the proposed method outperforms the related work,
presented in [6], in improving the homogeneity between groups
by more than 79%. The proposed method outperformed the
same work in improving the intra-homogeneity value by about
30%.

Question2: Compared with related works, what is the
advantage of the proposed algorithm in improving intra- and
inter-homogeneity of learning groups and ensuring balance
between their sizes?

Combining the two contributions of this work had a positive
impact on improving the intra- and inter-homogeneity of
learning groups and ensuring their balance. This made the
GAGF algorithm 79.75% better than the GF-BST algorithm,
presented in [6], in improving inter-homogeneity and 29.66%
better in improving intra-homogeneity. It also enabled it to
outperform the self-formation method by 31.96% in improving
intra-homogeneity.

Using the 2-3-4 trees was better than using the 2-3 trees,
because it provided the optimum balance of enhancing both
intra- and inter-homogeneity. This is because the 2-3-4 trees,
with their short and homogeneous branches, contributed to the
formation of groups with improved intra-homogeneity, which
was also confirmed in [6]. The use of the reference value in the
cost model contributed to balancing the homogeneity of the
groups, and this is an advantage compared to the algorithm GF-
BST. Therefore, it is recommended to use a self-balancing BST
with short branches to form learning groups. Since the branch
length is the height of the tree + 1 and the total number of
students N does not exceed a few hundred in most cases, 2-3-4
trees are very suitable for achieving excellent results because
they produce short branches with length in the range of log2N

 Ali Ben Ammar et al. / International Journal of Computing, 23(3) 2024, 458-467

466 VOLUME 23(3), 2024

(when there is only one member at each node) and log4(N/3)
(when each node has 4 children).

The proposed algorithm groups students based on one static
characteristic, which is the students' GPAs. It would be
interesting to include other group characteristics, preferably
dynamic data such as interaction or emotional state, which
would allow the instructor to adjust the composition of the
groups after a few lectures.

I. CONCLUSION
In this paper, an algorithm, called GAGF (Generalized
Assignment strategy for Group Formation), has been proposed
and tested for forming intra-homogeneous (student
performance similarity within the group) and inter-
homogeneous (group performance similarity between groups)
learning groups with a balanced size. GAGF considers the
learning group formation as an assignment-type optimization
problem where the goal is to find a feasible least-cost
assignment of a given set of students to a given set of learning
groups. It is based on a cost model that is used to minimize the
assignment cost and perform the matching between minimizing
the assignment cost on the one hand and improving intra- and
inter-homogeneity and size balance on the other hand. The
specificity of this cost model is the use of a reference value
towards which the homogeneity of the groups tends and thus
improves the inter-group homogeneity.

The results of the experiments have shown the efficiency of
GAGF in balancing the size of the groups, balancing the
homogeneity between them (inter-homogeneity), and
improving their intra-homogeneity. It was found that GAGF
was 79.75% better than the GF-BST algorithm, presented in
[6], in improving inter-homogeneity and 29.66% better in
improving intra-homogeneity. It was also found that GAGF
outperforms the self-formation method by 31.96% in
improving intra-homogeneity. Therefore, the GAGF algorithm
is recommended for in-person learning where the groups are
large and the teacher's contribution is greater than the students'
contribution, which requires balance between groups to
achieve learning outcomes and make the teacher's effort
balanced between groups.

The algorithm GAGF provides a mechanism for grouping
students according to a static characteristic, which is the
students' GPAs. Future work could include other dynamic
characteristics that make the formation of learning groups
dynamic and responsive to the teacher's desires. For example,
it will be important to incorporate dynamic student data such
as interaction and adjust student distribution when there is an
imbalance between groups.

References

[1] O. Revelo-Sánchez, C. A. Collazos & M. A. Redondo, “Group formation
in collaborative learning contexts based on personality traits: An
empirical study in initial programming courses,” Interaction Design and
Architecture(s) Journal - IxD&A, no. 49, 2, 2021.
https://doi.org/10.55612/s-5002-049-002.

[2] J. Moreno, D. A. Ovalle & R. M. Vicari, “A genetic algorithm approach
for group formation in collaborative learning considering multiple
student characteristics,” Computers & Education, vol. 58, issue 1, pp.
560–569, 2012. https://doi.org/10.1016/j.compedu.2011.09.011.

[3] V. Gherheș, C. E. Stoian, M. A. Fărcașiu, M. Stanici, “E-Learning vs
face-to-face learning: analyzing students’ preferences and behaviors,”
Sustainability, vol. 13, no. 8, pp. 4381, 2021.
https://doi.org/10.3390/su13084381.

[4] R. J. Petillion, W. S. McNeil, “Student experiences of emergency remote
teaching: impacts of instructor practice on student learning, engagement,

and well-being,” J Chem Educ., vol. 97, pp. 2486–2493, 2020.
https://doi.org/10.1021/acs.jchemed.0c00733.

[5] P. Photooulos, C. Tsonos, I. Stavrakas, D. Triantis, “Remote and in-
person learning: Utility versus social experience,” SN Comput. Sci., vol.
4, no. 116, pp. 1–13, 2023. https://doi.org/10.1007/s42979-022-01539-6.

[6] A. Ben Ammar, A. Minalla, “An algorithm based on self-balancing
binary search tree to generate balanced, intra-homogeneous and inter-
homogeneous learning groups,” International Journal of Advanced
Computer Science and Applications, vol. 14, issue 6, 2023.
https://doi.org/10.14569/IJACSA.2023.0140622.

[7] O. Revelosanchez, C. A. Collazos, M. A. Redondo, & I. I. Bittencourt,
“Homogeneous group formation in collaborative learning scenarios: An
approach based on personality traits and genetic algorithms,” IEEE
Trans. Learn. Technol., 2021.
https://doi.org/10.1109/TLT.2021.3105008.

[8] C. T. Krouska, M. Virvou, “Applying genetic algorithms for student
grouping in collaborative learning: A synthetic literature review,”
Intelligent Decision Technologies, vol. 13, pp. 395-406, 2020. Doi:
10.3233/IDT-190184. https://doi.org/10.3233/IDT-190184.

[9] F. Fahmi & D. Nurjanah, “Group formation using multi objectives ant
colony system for collaborative learning,” Proceedings of the 5th
International Conference on Electrical Engineering, Computer Science
and Informatics (EECSI), Malang, Indonesia, October 2018, pp. 696-702,
https://doi.org/10.1109/EECSI.2018.8752690.

[10] V. R. Garcia, B. Vega, A. Ruiz-Ichazu, D. Rivera, E. Rosero-Perez,
“Automating the generation of study teams through genetic algorithms
based on learning styles in higher education,” Advances in Artificial
Intelligence, Software and Systems Engineering, pp. 270-277, 2021.
https://doi.org/10.1007/978-3-030-51328-3_38.

[11] C.-M. Chen, C.-H. Kuo, “An optimized group formation scheme to
promote collaborative problem-based learning,” Computers &
Education, vol. 133, pp. 94–115, 2019.
https://doi.org/10.1016/j.compedu.2019.01.011.

[12] U. Haq, A. Anwar, I. U. Rehman, W. Asif, D. Sobnath, H. H. Sherazi, et
al., “Dynamic group formation with intelligent tutor collaborative
learning: A novel approach for next generation collaboration,” IEEE
Access, vol. 9 , 2021, 143406-143422.
https://doi.org/10.1109/ACCESS.2021.3120557.

[13] P. K. Imbrie, J. Agarwal, G. Raju, “Genetic algorithm optimization of
teams for heterogeneity,” Proceedings of the IEEE Frontiers in
Education Conference (FIE), Uppsala, Sweden, October 2020, pp. 1–5.
https://doi.org/10.1109/FIE44824.2020.9274243.

[14] D. Lambić, B. Lazović, A. Djenić & M. Marić, “A novel metaheuristic
approach for collaborative learning group formation,” Journal of
Computer Assisted Learning, vol. 34, issue 6, pp. 907–916, 2018.
https://doi.org/10.1111/jcal.12299.

[15] X. Li, F. Ouyang, W. Chen, “Examining the effect of a genetic algorithm-
enabled grouping method on collaborative performances, processes, and
perceptions,” J Comput High Educ, vol. 34, pp. 790–819, 2022.
https://doi.org/10.1007/s12528-022-09321-6.

[16] Y. Lin, Y. Chang, C. Chu, “Novel approach to facilitating tradeoff multi-
objective grouping optimization,” IEEE Transactions on Learning
Technologies, vol. 9, issue 2, pp. 107–119, 2016.
https://doi.org/10.1109/TLT.2015.2471995.

[17] H. L. Masri, K. S. Kalid, “Group-formation system to facilitate
heterogeneous grouping in collaborative learning for non-technical
courses,” Platform A J. Sci. Technol., vol. 3, no. 1, pp. 48-62, 2020.
https://doi.org/10.61762/pjstvol3iss1art7130.

[18] R. C. Reis, S. Isotani, C. L. Rodriguez, K. T. Lyra, P. A. Jaques, I. I.
Bittencourt, “Affective states in computer-supported collaborative
learning: Studying the past to drive the future,” Computers & Education,
vol. 120, pp. 29–50, 2018.
https://doi.org/10.1016/j.compedu.2018.01.015.

[19] Đ. Takači, M. Marić, G. Stankov, A. Djenić, “Efficiency of using VNS
algorithm for forming heterogeneous groups for CSCL learning,”
Computers & Education, no. 109, pp. 98–108, 2017.
https://doi.org/10.1016/j.compedu.2017.02.014.

[20] E. Andrejczuk, F. Bistaffa, C. Blum, J.A. Rodriguez-Aguilar, C. Sierra,
“Heterogeneous teams for homogeneous performance,” Proceedings of
the Conference on Principles and Practice of Multi- Agent Systems
PRIMA 2018, Lecture Notes in Computer Science, Springer, Cham,
Switzerland, 2018, pp. 89–105. https://doi.org/10.1007/978-3-030-
03098-8_6.

[21] S. Garshasbi, Y. Mohammadi, S. Graf, S. Garshasbi, J. Shen, “Optimal
learning group formation: A multi-objective heuristic search strategy for
enhancing inter-group homogeneity and intra-group heterogeneity,”
Expert Systems with Applications, vol. 118, pp. 506–521, 2019.
https://doi.org/10.1016/j.eswa.2018.10.034.

Ali Ben Ammar et al. / International Journal of Computing, 23(3) 2024, 458-467

VOLUME 23(3), 2024 467

[22] P. B. C. Miranda, R. F. Mello, C.A. Nascimento, “A multi-objective
optimization approach for the group formation problem,” Expert Systems
with Applications, vol. 162, pp. 113828, 2020.
https://doi.org/10.1016/j.eswa.2020.113828.

[23] Z. Sun, M. Chiarandini, “An exact algorithm for group formation to
promote collaborative learning,” Proceedings of the 11th Int. Learn.
Anal. Knowl. Conf., 2021, pp. 546-552.
https://doi.org/10.1145/3448139.3448196.

[24] M. Hasan, “Optimal Group Formulation Using Machine Learning,” arXiv
preprint arXiv:2105.07858. 2021.

[25] C. T. Krouska & M. Virvou, “An enhanced genetic algorithm for
heterogeneous group formation based on multi-characteristics in social
networking-based learning,” IEEE Transactions on Learning
Technologies, vol. 13, issue 3, pp. 465–476, 2020.
https://doi.org/10.1109/TLT.2019.2927914.

[26] N. Sarode & J. Bakal, “Toward effectual group formation method for
collaborative learning environment,” Sustainable Communication
Networks and Application, Chennai, India:Springer, 2021, pp. 351-361.
https://doi.org/10.1007/978-981-15-8677-4_29.

[27] J. M. A. Pinninghoff, A. R. Contreras, L. P. Salcedo et al., “Genetic
algorithms as a tool for structuring collaborative groups,” Nat Comput,
vol. 16, pp. 231–239, 2017. https://doi.org/10.1007/s11047-016-9574-1.

[28] Z. Yaqian, L. Chunrong, L. Shiyu, L. Weigang. “An improved genetic
approach for composing optimal collaborative learning groups”.
Knowledge-Based Systems, vol. 139, pp. 214-225, 2018,
https://doi.org/10.1016/j.knosys.2017.10.022.

[29] B. Jong, Y. Wu, T. Chan. “Dynamic grouping strategies based on a
conceptual graph for cooperative learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 18, issue 6, pp. 738–747, 2006.
https://doi.org/10.1109/TKDE.2006.93.

[30] H.-W. Tien, Y.-S. Lin, Y.-C. Chang, & C.-P. Chu, “A genetic algorithm-
based multiple characteristics grouping strategy for collaborative
learning,” Proc. Int. Conf. Web Learn., 2013, pp. 11-22.
https://doi.org/10.1007/978-3-662-46315-4_2.

[31] R. Costaguta, “Algorithms and machine learning techniques in
collaborative group formation,” In: Pichardo Lagunas, O., Herrera
Alcántara, O., Arroyo Figueroa, G. (eds) Advances in Artificial
Intelligence and its Applications. MICAI 2015. Lecture Notes in
Computer Science, Springer, Cham, vol. 9414, 2015,
https://doi.org/10.1007/978-3-319-27101-9_18.

[32] R. Vankayalapati, K. Ghutugade, R. Vannapuram, and B. Prasanna, “K-
means algorithm for clustering of learners performance levels using
machine learning techniques,” Revue d'Intelligence Artificielle, vol. 35,
pp. 99-104, 2021. https://doi.org/10.18280/ria.350112.

[33] M. Hodara, K. Lewis, How well does high school grade point average
predict college performance by student urbanicity and timing of college
entry? US Department of Education, Institute of Education Sciences,
National Center for Education Evaluation and Regional Assistance,
Regional Educational Laboratory Northwest, 2017. [Online]. Available
at: https://ies.ed.gov/ncee/edlabs/projects/project.asp?projectID=4546.

[34] K. Singh, & T. Maloney, “Using validated measures of high school
academic achievement to predict university success,” New Zealand

Economic Papers, vol. 53, issue 1, pp. 89–106.
https://doi.org/10.1080/00779954.2017.1419502.

[35] M. M. Sulphey, N. S. Al-Kahtani, A. M. Syed, “Relationship between
admission grades and academic achievement,” The International Journal
of Entrepreneurship and Sustainability Issues, vol. 5, issue 3, pp. 648–
658, 2018. https://doi.org/10.9770/jesi.2018.5.3(17).

[36] R. Stephens, Essential Algorithms, 2nd edition, Wiley, 2019. ISBN:
9781119575993. https://doi.org/10.1002/9781119575955.

[37] S. O. Adodo, J. O. Agbayewa, “Effect of homogenous and heterogeneous
ability grouping class teaching on student’s interest, attitude and
achievement in integrated science,” International Journal of Psychology
and Counseling, vol. 3, issue 3, pp. 48-54, 2011.

[38] A. S. Booij, E. Leuven, H. Oosterbeek, “Ability peer effects in university:
Evidence from a randomized experiment,” Rev. Econ. Stud., vol. 84, pp.
547–578, 2017. https://doi.org/10.1093/restud/rdw045.

[39] O. E. Kundakcioglu, S. Alizamir, “Generalized assignment problem,” In:
Floudas, C., Pardalos, P. (eds) Encyclopedia of Optimization. Springer,
Boston, MA., 2009, pp. 1153-1162. ISBN 978-0-387-74759-0,
https://doi.org/10.1007/978-0-387-74759-0_200.

[40] S. Martello, P. Toth, “An algorithm for the generalized assignment
problem,” Proceedings of the 9th IFORS Conference, Hamburg,
Germany, 1981.

ALI BEN AMMAR obtained his PhD in
computer science from Manouba
University in the Republic of Tunisia. He
has more than 20 years of academic
experience as an assistant professor in
Tunisian and Saudi universities. His
current research interests include data
science and e-learning. He can be
contacted via e-mail at:
ali.benammar@isigk.rnu.tn.

AMIR A. MINALLA obtained his PhD in
English Language Teaching from Sudan
University of Science and Technology,
Sudan in 2016. He is currently associate
professor at Department of Languages
and Translation, University of Tabuk,
Saudi Arabia. He has several
publications in Indexed Magazines. His
main areas of interest are applied

linguistics, teaching and learning, and problem-based learning.
He can be contacted via e-mail at: a-alameen@ut.edu.sa.

