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 ABSTRACT The purpose of this research is to form learning groups that are intra-homogeneous (a high level 
of similarity across student GPAs inside a group), inter-homogeneous (similarity or balance in the degree of 
homogeneity between groups), and balanced in size. The algorithm proposed for this purpose treats the learning 
group formation as an assignment-type optimization problem where it seeks to find a feasible least-cost assignment 
of a given set of students to a given set of learning groups. It is referred to as GAGF (Generalized Assignment 
Strategy for Group Formation). It is based on an efficient cost model, which performs three tasks: measuring the 
cost of assigning students to a learning group, relating each improvement in assignment cost to increased intra-
group homogeneity and group size balance, and bringing the intra-homogeneity of the groups to a reference value 
(a specific level of homogeneity), which improves inter-homogeneity. Experimental results have shown that the 
GAGF algorithm is effective at constructing intra- and inter-homogeneous learning groups with balanced sizes. It 
was found that using GAGF attained an improvement of more than 29% in intra-group homogeneity when 
compared to both related work and self-formation methods. It significantly improved inter-group homogeneity, 
outperforming related works by 79.75%. 
 

 KEYWORDS Group formation Algorithm; Learning group formation; Intra-group Homogeneity; Inter-group 
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I. INTRODUCTION 
HE way learning groups are created affects the success of 
the educational process and the achievement of learning 

outcomes. The methods of forming learning groups vary 
between traditional and automated. Traditional methods 
include random formation and self-formation, in which 
students take the responsibility to choose themselves to be the 
group’s members, and the instructor-based formation method 
involves manually selecting group members based on several 
criteria.  Automatic methods rely on algorithms to accurately 
determine the members of each group. Each method aims to 
form homogeneous, heterogeneous, or mixed groups. In a 
homogeneous group, students have approximately similar 
characteristics such as academic performance, or GPAs (grade 
point average), learning styles, personality traits, and 
demographic information that can include age, gender, and 
racial, ethnic, or cultural background. On the other hand, in a 
heterogeneous group, students have different or diverse 
characteristics. A mixed group includes students with a mixture 
of homogeneous and heterogeneous characteristics. 
Homogeneous groups are more effective in in-person learning 
or in some types of learning activities that involve guided 

discovery, knowledge development, review of material already 
learned, or highly structured tasks to build proficiency, 
allowing students to progress at the same rate [1]. Cooperative 
learning, which has become widespread due to electronic 
networks, requires heterogeneous groups to enhance assistance 
among students, improve interaction between group members, 
and increase communication and cooperation skills. 

Forming groups is a complex process because of the variety 
of student characteristics it uses and because of the large 
number of students. According to [2], the automatic formation 
of learning groups is an NP-hard problem. Therefore, many 
algorithms have been developed to solve this problem in an 
effective and fast manner. They used different heuristics and 
optimization methods, such as genetic algorithms, simulated 
annealing, ant-colony, and machine learning. Most of the group 
formation approaches examined in this work dealt with the 
creation of mixed or heterogeneous groups for collaborative 
purposes; these groups were typically small, with three to six 
members. As another option for forming learning groups, some 
studies have proposed optimizing intra-group 
homogeneity/heterogeneity and inter-group 
homogeneity/heterogeneity. However, although in-person 
learning is still needed and desirable, as stated in several recent 
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studies [3-5], there have been a few recent works studies [6, 7] 
that focused on groups’ formation via this type of learning. In-
person learning is characterized by larger group sizes, with 
instructor contributing more than the students. Therefore, in in-
person learning, it is preferable to have intra-group 
homogeneity and inter-group homogeneity to achieve learning 
outcomes, make the instructor’s effort balanced between the 
groups, and facilitate his task.  

This paper proposes an algorithm for forming learning 
groups that are intra-homogeneous (a high level of similarity 
across student GPAs inside a group), inter-homogeneous 
(similarity or balance in the degree of homogeneity between 
groups), and balanced in size. The proposed algorithm 
considers the learning group formation as an assignment-type 
optimization problem where the goal is to find a feasible least-
cost assignment of a given set of students to a given set of 
learning groups. It is based on a cost model to measure the 
assignment cost of a student or a small set of students to a 
learning group. For every improvement in assignment cost to 
be reflected in the improvement of intra-group homogeneity 
and group size balance, the proposed cost model combines 
several parameters, such as intra-group homogeneity, the size 
of the item to be assigned, and the size of the group to which 
the item will be assigned. It also employs a reference value, 
which is a specific level of homogeneity towards which the 
intra-homogeneity of the groups tends. The use of a reference 
value aims to bring the intra-homogeneity of the groups closer 
to each other and thus improve their inter-homogeneity. Hence, 
the questions that the research intends to answer in this regard 
are: 

 Is the proposed cost model effective in improving the 
intra- and inter-homogeneity of learning groups and 
ensuring a balance between their sizes? If yes, what is 
the recommended reference value? 

 Compared with related works, what is the advantage of 
the proposed algorithm in improving intra- and inter-
homogeneity of learning groups and ensuring balance 
between their sizes? 

II. LITERATURE  
The way students are distributed into groups affects learning 
outcomes [8]. It is a complex process due to the variety of 
attributes and constraints used to form the groups [9]. 
Therefore, this issue has received great attention from 
researchers in the fields of education and computer science, 
especially in the past two decades. With the development of e-
learning and collaborative learning platforms, the issue of 
automating the formation of learning groups has become very 
necessary and of great importance. This section presents some 
algorithms that have been used to automate the formation of 
learning ensembles and highlights their characteristics. 

The objectives of learning group formation algorithms vary, 
but they often fall into two categories: enhancing homogeneity 
or improving heterogeneity among students in the group. Other 
objectives can be constructed by combining these two 
possibilities. In homogeneous groups, learners' attributes, such 
as their grades and personality traits, are similar or close to each 
other, while the opposite occurs in heterogeneous groups. 
According to [9], homogeneous groups are more suitable than 
heterogeneous groups to perform skill exercises and guided 
discovery learning activities. Heterogeneous groups are 
suitable for in-class problem solving (journal creation, project, 
and case analysis) and long-term problem-solving projects. [1] 
developed an algorithm for generating homogeneous groups 

based on personality traits. [10] proposed an algorithm for 
forming homogeneous learning groups based on learning 
styles. However, heterogeneous group formation algorithms 
have received more attention from researchers, especially with 
the spread of collaborative learning, learning platforms, and 
remote work. Some of these algorithms were presented in [11-
19]. These algorithms use different grouping attributes but 
mostly represent academic performance, personality traits, 
learning styles, and demographic information such as age, 
gender, and cultural background. 

The combination of the previous two types, i.e., 
homogeneity and heterogeneity, has been applied in some 
works as a third option to form mixed groups. Mixed groups 
consist of members with a mixture of homogeneous and 
heterogeneous learners' attributes. For example, the algorithm 
proposed in [11] forms learning groups based on a set of 
heterogeneous criteria such as student grades, knowledge 
levels, and learning roles and homogeneous criteria such as 
social interactions. In [9], sensing/intuitive learning styles and 
topical interests are used as criteria for homogeneity within 
groups, while active/reflective learning styles and prior 
knowledge are used as criteria for heterogeneity. The method 
proposed in [13], forms groups with different levels of 
knowledge, similar interests, and distributed leadership. As 
another option for forming learning groups, some works have 
proposed optimizing intra-group homogeneity/heterogeneity 
and inter-group homogeneity/heterogeneity. [20-23] propose 
methods to enhance inter-group homogeneity and intra-group 
heterogeneity. The purpose of this option is to create different 
groups that are as similar as possible and, on the other hand, to 
enhance the complementary role of learners within each 
learning group by enabling their differences in their qualifying 
characteristics (students with distinct features and skills). 
While [6] suggested the formation of intra- and inter-
homogeneous learning, that is, the similarity of the students’ 
performance within the group and the similarity of the groups’ 
performance. Another goal adopted in some works is balance 
in group size. It was stated in [9] that group size has an impact 
on the learning process. Large groups contribute to increasing 
the exchange of knowledge and skills, but they also represent a 
burden in managing and evaluating their members and 
monitoring their behavior. Therefore, [6] and [20] set group 
balance as a goal to form learning groups. While works focused 
at improving cooperative learning, such as [1, 7, 11, 12, 14, 19, 
21, 23-26], limit group size, groups should be small, and with 
no more than 6 members. This last option is suitable for 
collaborative environments but is not possible in in-person 
learning environments.  

To optimize homogeneity and heterogeneity within and 
between groups, some related works have formulated the group 
formation problem as an optimization problem with a single 
objective or multiple objectives in a combinatorial scenario that 
integrates all the criteria used. According to [9], a single 
objective function converts all attribute values to a single value, 
making no attribute optimal, while multiple objective functions 
make optimal values for all attributes simultaneously. The 
works developed by [1, 2, 7, 15, 19], 23, 26-28] used a single 
objective function to evaluate solutions (groups) formed by the 
algorithm. They used either a single criterion or multiple 
criteria. Other works have used multiple objective functions, 
each consisting of different criteria. [22], proposes a multi-
objective optimization of group formation that consists of three 
objective functions: maximizing mutual homogeneity, 
maximizing heterogeneity within each group, and maximizing 



 Ali Ben Ammar et al. / International Journal of Computing, 23(3) 2024, 458-467 

460 VOLUME 23(3), 2024 

empathy so that group members have affinity for each other. 
[21] proposes a multi-objective heuristic to achieve multiple 
predetermined targets of learning group formation 
simultaneously, especially the inter-homogeneity and intra-
heterogeneity of each learning group. In [9], a multi-objective 
ant colony system for group formation is developed in which 
sensing/intuitive learning methods and interests in subjects are 
used to improve group homogeneity, while active/reflective 
learning and previous knowledge are used to establish group 
heterogeneity. 

Learner attributes used by related works as criteria in group 
formation are mainly knowledge level, learning styles, 
communication skills, leadership skills, gender, age, and self-
confidence. [15] classified these characteristics as static and 
dynamic. Static characteristics are those that do not change or 
at least do not change during a short period of learning, such as 
gender, age, previous levels of knowledge, or learning styles. 
Dynamic characteristics, which cannot be captured at a fixed 
point, are constantly changing during students' learning 
processes, such as levels of interaction or emotional status. 
Dynamic criteria are especially used in collaborative 
environments. However, when and how to define its value has 
been a shortcoming in most related works, because failure to 
define it properly leads to undesirable collaborative outcomes. 
Therefore, to solve the problem of the unavailability of student 
characteristics at the starting point, dynamic grouping was 
used, in which groups are created and then modified by 
dynamic swapping [12, 15, 29]. But dynamic grouping causes 
an expensive runtime. Also, with dynamic grouping, it takes a 
long time to form and stabilize groups, and it takes a long time 
for students to work regularly. Because of the multiplicity and 
dynamism of these criteria and the multiplicity of students to 
be divided into groups, the issue of forming learning groups 
becomes more complex, and is therefore considered NP-hard, 
as stated in [2]. Hence, it is necessary to use optimization 
techniques to address them, such as genetic algorithms [1, 2, 
10, 11, 13, 15, 17, 25, 27, 28, 30], ant-colony [9], and machine 
learning [24, 31, 32]. 

In summary, most related works were interested in forming 
groups for the purpose of collaborative tasks, which spread 
rapidly thanks to technological development. However, 
collaborative activities are only a complement to in-person 
learning, which is still needed and desirable, as reported in 
several recent studies [3-5]. In in-person learning, the teacher's 
contribution is greater than that of the student, and the number 
of students is large. Therefore, in order to achieve learning 
outcomes and facilitate the teacher’s task, it is necessary to 
form homogeneous learning groups that are balanced in terms 
of size and homogeneity. This combination of intra- and inter-
homogeneity of groups is treated in [6], where a self-balancing 
BST was used as a data structure to improve the homogeneity 
of groups, but achieving both objectives (intra- and inter-
homogeneity) at the same level was not possible. In this 
research, to overcome the drawbacks of the algorithm proposed 
in [6], the same data structure will be reused, a cost model will 
be proposed and used to distribute students, and group 
formation will be formulated as a generalized assignment 
problem. 

III. METHOD 
This section introduces the proposed method for automating the 
formation of learning groups. This method seeks to improve the 
homogeneity of students' performance within learning groups 
for the same course and to achieve a balance between those 

groups in terms of size and degree of homogeneity. Student 
grouping is based on GPA (grade point average), which means 
that students with homogeneous GPAs are likely to be in the 
same group. According to [33-35], GPA is positively related to 
subsequent academic performance. The contributions of this 
method are: 

 Formulate the learning group formation problem as a 
generalized assignment problem (GAP). The aim of this 
formulation is to minimize the cost of assigning students 
into groups while respecting the carrying capacity of 
each group. It should be noted here that every reduction 
in the assignment cost must be matched by an 
improvement in the intra- and inter- homogeneity of 
groups and in the balance of their sizes, which is the 
main goal of this work.  

 A cost model that the objective function of GAP will use 
to minimize the assignment cost and to perform the 
matching between minimizing the assignment cost and 
improving both homogeneity and size balance. The 
proposed cost model combines several parameters, such 
as the intra-homogeneity of the groups, the size of the 
item to be assigned, and the size of the group to which 
the item will be assigned. It is also characterized by the 
use of a reference value to which the intra-homogeneity 
of the groups tends. The use of a reference value aims 
to bring the intra-homogeneity of the groups closer to 
each other and thus improve their inter-homogeneity. 

This method uses self-balancing binary search trees (self-
balancing BST) to form learning groups. Self-balancing BST 
can classify and sort data. They were used in [6] to classify 
students according to their GPA. The result was branches 
representing small groups of students who were nearly 
homogeneous in performance, as shown in Figure 1. For 
example, the branches B1 = {2.78, 1.88, 1.62, 1.00} and B2 = 
{2.78, 3.75, 3.3, 3.29} in figure 1.a are two blocks of students 
whose GPAs are approximately homogeneous. These branches 
are then used as blocks to form learning groups. Therefore, in 
this section, some concepts for using self-balancing BST will 
be summarized. More details on how to use these trees are 
presented in [6]. Then the focus will be on explaining the two 
contributions of this work and how to implement them. This 
section will conclude with the development of an algorithm that 
summarizes all the steps involved in the formation of learning 
groups. 

A. USING SELF-BALANCING BINARY SEARCH TREES TO 
FORM LEARNING GROUPS. 
Binary search trees (BST) are a data structure used to sort and 
classify data [36]. Self-balancing BSTs are a class of binary 
search trees whose branches are balanced, and therefore 
approximately equal in size or number of elements. For these 
reasons, it has been used in [6] to form learning groups. The 
two trees in Figure 1 are two implementations of self-balancing 
BSTs. The 2-3 tree (Figure 1.a) allows each node to have one 
or two data elements and two or three children. The 2-3-4 tree 
(figure 1.b) allows each node to contain one to three data 
elements and two, three, or four children. If 2-3 and 2-3-4 trees 
are used for the same sample of data, the 2-3 will produce fewer 
branches than the 2-3-4 tree, but its branch size will still be 
larger than the 2-3-4 tree. For additional information about 
balanced trees and their implementation, see [36]. For example, 
the two trees in Figure 1 represent the structure of the GPA of 
17 students. They were used in [6] in two stages. In the first 
stage, the tree was built to sort the students and arrange them 
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according to their GPA. The tree branches were then used as 
blocks to build the learning groups. They represented small 
groups of students who were roughly homogeneous in terms of 
GPA or performance. For example, in figure 1.a, the branches 
B1 = {2.78, 1.88, 1.62, 1.00} and B2 = {2.78, 3.75, 3.3, 3.29} 
represent two small sets of students whose GPAs are not very 
different. But some of its components (mostly the top nodes of 
the branch) are outliers, and this is useful because it is not 
recommended that groups be completely homogeneous in order 
to maintain social integration and exchange of experiences 
among students [37, 38]. 
 

 

Figure 1. Examples of self-balancing BSTs recording the 
GPAs of 17 students. 

The inclusion of a small group of students (a tree branch) in 
a learning group is determined by the improvement in group 
homogeneity (intra-homogeneity). In [6], the following 
formulas were used to measure intra-homogeneity and inter-
homogeneity (homogeneity between groups). Intra-
homogeneity (formula 1) and inter-homogeneity (formula 2) 
are used in the form of percentage values: 

 

𝐻௜௡௧௥௔(g௜) =
𝑆(g௜)

𝜇(g௜)
× 100,                          (1) 

𝐻௜௡௧௘௥(G) =
𝑆(H)

𝜇(H)
× 100,                        (2) 

where: 
­ g௜: a learning group.  
­ 𝐻௜௡௧௥௔(g௜): intra-homogeneity of g௜ 
­ 𝜇(g௜): The mean of the students’ GPAs within a group 

g௜ 
­ 𝑆(g௜): The standard deviation of the students’ GPAs 

within a group g௜.  
­ 𝐺 = {𝑔ଵ, … , 𝑔௡}: set of learning groups  

­ H = {
ௌ(୥భ)

ఓ(୥భ)
, … ,

ௌ(୥೙)

ఓ(୥೙)
}: set of intra-homogeneities of 

groups. 
­ 𝐻௜௡௧௘௥(G): inter-homogeneity of learning groups in G 

Formulas (1) and (2) measure what is known in statistics as 
the coefficient of variation (CV), which is the ratio of the 
dispersion of the data from its mean. In this work, the CV was 
used as an indicator of both homogeneity and heterogeneity 
within the group. A group with a CV ≤ 30% is considered 
homogeneous. Otherwise, it is considered heterogeneous.  

The most important advantages of using self-balancing 
search tree branches to form learning sets are the following: 

 Reducing the complexity of the algorithm by reducing 
the number of iterations, as more than one student is 
included in a learning group in each iteration rather than 
one student. 

 Helping in the formation of homogeneous learning 
groups while limiting the achievement of complete 
homogeneity. 

In this research, self-balancing BSTs will be used in the 
same way and with the same homogeneity measurement 
formulas as was done in [6].   

B. FORMULATE THE PROBLEM OF FORMING LEARNING 
GROUPS AS A GENERALIZED ASSIGNMENT PROBLEM. 
This subsection presents the formulation of the learning group 
formation problem as a Generalized Assignment Problem 
(GAP). [39] defines the GAP as follow: “The generalized 
assignment problem (GAP) seeks the minimum cost 
assignment of m tasks to n agents such that each task is assigned 
to precisely one agent subject to capacity restrictions on the 
agents.”. The aim of formulating the learning group formation 
problem as a GAP is to minimize the assignment costs of 
students to learning groups. The proposed cost model, as will 
be explained later, will reflect this improvement in the 
assignment cost in achieving the goal of this work, which is to 
improve intra-group homogeneity, inter-group homogeneity, 
and group balance.  

The formulation of the GAP as presented in [39] is: 
 

𝑚𝑖𝑛 ෍ ෍ 𝑐௜,௝𝑥௜,௝

௠

௝ୀଵ

௡

௜ୀଵ

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ෍ 𝑎௜,௝𝑥௜,௝ ≤ 𝑝௜      𝑖 = 1, … , 𝑛

௠

௝ୀଵ

  

෍ 𝑥௜,௝ = 1     𝑗 = 1, … , 𝑚

௡

௜ୀଵ

 

𝑥௜,௝ ∈ {0,1} 𝑖 = 1, … , 𝑛;  𝑗 = 1, … , 𝑚  
 
where: 

­ 𝑐௜,௝ is the cost of assigning task 𝑗 to agent 𝑖. 
­  𝑎௜,௝ is the capacity used when task 𝑗 is assigned to 

agent 𝑖. 
­ 𝑝௜  is the available capacity of agent 𝑖.  
­ 𝑥௜,௝ is equals 1 if task 𝑗 is assigned to agent 𝑖, and 0 

otherwise. 
In this work, the following matching will be applied to 

formulate the problem of constructing learning groups as a 
GAP: 

 The branches of self-balancing binary search trees are 
the tasks to be assigned. After each branch 𝑏௝  is assigned 
to a group 𝑔௜, it is necessary to restructure the branches 
that contain common elements with 𝑏௝. For example, if 
the assignment algorithm processes branches B1 = 
{2.78, 1.88, 1.62, 1.00} and B2 = {2.78, 3.75, 3.3, 3.29} 
(as shown in Figure 1.a here above), and if B1 is 
assigned during the first stage, the GPA with value 2.78 
must be removed from B2 because the student with this 
GPA has been assigned to a group. 

 The available capacity of each group, represented by 𝑝௜  
in the formulation above, corresponds to the maximum 
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number of students the learning group can contain. 
Since the goal was to create groups of balanced size, it 
was necessary to divide the total number of students by 
the number of groups to be formed to obtain the 𝑝௜  
value. Euclid division is what is applied here, where the 
result (group size) must be an integer. But if the total 
number of students is not divisible by the number of 
groups to be formed, the resulting groups will not 
accommodate all students. For example, if the total 
number of students is 65 and the number of groups is 3, 
the maximum number of each group will be 21 
(63/3=21, remainder=2), which means that two students 
will not be included in any of the three groups. To avoid 
this problem, the value 1 is added to the division result. 
Thus, the formula for calculating 𝑝௜  becomes as follows: 

 

𝑝௜ =
𝑁

𝑛
+ 1                        (3) 

Where 𝑁 is the total number of students and 𝑛 is the number of 
groups to be formed. Adding 1 to the quotient, in formula 3, 
will allow for a small difference between group sizes of no 
more than 𝑛 in both cases, whether 𝑁 is divisible by 𝑛 or not. 
However, as long as this size difference does not exceed 𝑛, it 
will not significantly upset the balance between the groups 
because 𝑛 is very small compared to the sizes of the groups. 
For example, if 𝑁 =  96 and 𝑛 =  4 (i.e. 𝑁 is divisible by 𝑛), 
the maximum group size will be 25 students (96/4 = 24 and 
24+1=25). So, the difference between groups will not exceed a 
maximum of 4 (i.e. n value) students. This means that in 
extreme cases, the composition of the four groups will be as 
follows: 25, 25, 25 and 21. If N = 96 and n = 5 (i.e. N is not 
divisible by n), the maximum group size will be 20 students 
(96/5 = 19 and 19+1=20). Therefore, the difference between 
the groups will not exceed a maximum of 5 students (i.e. n 
value). This means that in extreme cases, the composition of 
the five groups will be as follows: 20, 20, 20, 20 and 16.  

 𝑎௜,௝ represents the capacity occupied by 𝑏௝   in 𝑔௜. In the 
current problem, it is measured by the number of seats, 
which means that the value of 𝑎௜,௝  will be the number 
of elements (students) in branch 𝑏௝ and will be constant 
for all groups. 

 𝑐௜,௝ is a measure of how much the assignment of the 
branch 𝑏௝ to the group 𝑔௜ affects the intra-homogeneity 
of 𝑔௜, the inter-homogeneity between groups, and the 
balance of their sizes. Its measurement formula will be 
explained in the next subsection. According to the above 
problem formulation, the objective would be to 
minimize the sum of 𝑐௜,௝. 

To form the learning groups, the proposed algorithm 
iterates to select, at each iteration, the assignment 𝑥௜,௝ that gives 
the best assignment cost. This selection was based on the idea 
of heuristic proposed by [40] for GAP. The heuristic proposed 
by [40] was well suited to the problem of forming learning 
groups and it was also easy to apply. It states that the 
assignment of job 𝑗 to machine 𝑖 is measured by a weight 
function 𝑓(𝑖, 𝑗). For each job 𝑗, the difference (called minimum 
difference) between the second smallest and smallest values of 
𝑓(𝑖, 𝑗) is computed, and the jobs are assigned in decreasing 
order of this difference. This minimum difference represents 
the advantage of assigning j to i over the other assignments, i.e., 
the minimal decrease in cost (or increase in profit) it provides 
over them.  This heuristic assumes that the jobs are independent 
of each other and that the result of 𝑓(𝑖, 𝑗) for job j is 

independent of the prior contents of machine i, which is not the 
case in the learning group formation problem where the jobs 
(branches) are intersected (have common elements) and the 
weight function is calculated based on the prior content of the 
group. Therefore, the heuristic proposed by [40] will not be 
applied in all its details, but rather the idea of the minimum 
difference between the second smallest and smallest values of 
𝑓(𝑖, 𝑗) will be used as a criterion for selecting the best 
assignment and will be applied in a different way. The proposal 
is that for each group 𝑔௜, the difference (or minimum difference 
𝑀𝐷௜) between the second smallest and smallest values of 𝑐௜,௝  is 
calculated. 𝑀𝐷௜  represents the benefit that the best assignment 
in 𝑔௜ can make compared to the rest of the assignments. Then, 
the group 𝑔௞ with the maximum 𝑀𝐷 value, for example 𝑀𝐷௞, 
will have priority to include the branch that creates 𝑀𝐷௞. Next, 
the proposed algorithm updates the branches by deleting the 
common elements included in 𝑔௞ and iterates again to select 
the best assignment between the remaining branches and the 
groups that have not yet reached the available capacity. The 
selection of the best assignment is formulated as follows: 

Let: 
­ 𝜑௝ = ൛𝑖 ∶ 𝑎𝑐𝑡𝑢𝑎𝑙𝑆𝑖𝑧𝑒(𝑔௜) + 𝑎௜,௝ ≤ 𝑝௜ൟ  for 𝑗 = 1, … , 𝑚.  

This determines for each branch 𝑏௝ which groups it can be 
a member of.  

­ 𝑠௜ = arg 𝑚𝑖𝑛௝ / ௜∈ఝೕ
{𝑐௜,௝} for 𝑗 = 1, … , 𝑚. This 

determines which branch has the minimum cost of 

assignment in the group 𝑔௜. 

­ 𝑀𝐷௜ = min௝ / ௜∈ఝೕ  ௔௡ௗ ௝ஷ ௦೔
 {𝑐௜,௝ − 𝑐௜,௦೔

} This determines 

the least minimum difference between the best cost and 
the other costs in each group 𝑔௜. 

­  𝚤̂ = arg max௜ 𝑀𝐷௜   for 𝑖 = 1, … , 𝑛 . This determines 
which group has the best assignment. 

­ 𝚥̂ = 𝑠ప̂. 
So, to apply the best assignment: 

­ 𝑥ప̂,ఫ̂ = 1 
­ 𝑥௜,ఫ̂=0 for all 𝑖 = 1, … , 𝑛 𝑎𝑛𝑑 𝑖 ≠ 𝚤̂  
­ 𝑝ప̂=𝑝ప̂ − 𝑎ప,ො ఫ̂   

C. PROPOSED COST MODEL 
This subsection presents the cost model that has been used, in 
formulating the learning group formation problem as a GAP, to 
minimize the cost of assigning branches to groups. This cost, 
denoted by 𝑐௜,௝, is a measure of how much the assignment of 
the branch 𝑏௝ to the group 𝑔௜ affects the intra-homogeneity of 
𝑔௜, the inter-homogeneity between groups, and the balance of 
their sizes. It is calculated as follow: 
 

𝑐௜,௝ =
(ℎ௜,௝ × |ℎ௜,௝−∝ 𝐺𝐻|)

(1 + 𝑠𝑖𝑧𝑒(𝑔௧)) × 𝑎௜,௝

                   (4) 

where: 
­ 𝑔௧ = 𝑔௜ ∪ ൛𝑏௝ൟ.  This is a temporary learning group.  
­ ℎ௜,௝ = 𝐻௜௡௧௥௔(𝑔௧). The intra-homogeneity of 𝑔௧ which is 

calculated using formula 1.  
­ 𝐺𝐻 = 𝐻௜௡௧௥௔(𝐺): Called the general homogeneity of G. It 

is the intra-homogeneity of 𝐺 that is calculated using 
formula 1, where G is the set of GPAs of all students. 

­ ∝ ∈ [0,1] : a percentage. 
As explained above in the problem formulation, the goal is 

to minimize the sum of cost 𝑐௜,௝. To achieve this goal, the value 
of ℎ௜,௝ in formula (4) must be small, which means that the 
assignment priority will be to the branches that contribute most 
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to achieving homogeneity of the group. However, relying on 
ℎ௜,௝ alone may lead to the formation of highly homogeneous 
learning groups, which is undesirable and may also cause 
failure to achieve inter-homogeneity. Therefore, a percentage 
∝ of 𝐺𝐻 (The general homogeneity value for all GPAs before 
distributing them), was determined to be a reference value 
towards which the homogeneity of the groups would tend. Then 
ℎ௜,௝ was multiplied by the value of the distance between it and 
∝ 𝐺𝐻, so that minimizing this calculation (ℎ௜,௝ × |ℎ௜,௝−∝ 𝐺𝐻|) 
requires a small value for ℎ௜,௝ and a small value for            
|ℎ௜,௝−∝ 𝐺𝐻|. This means that the branches that contribute the 
most to improving intra-homogeneity without deviating from 
the homogeneity of the rest of the groups have priority in 
assignment.  Then, in the first stage, the result of the calculation      
ℎ௜,௝ × |ℎ௜,௝−∝ 𝐺𝐻| was divided by the temporary size of the 
group i.e. 1 + 𝑠𝑖𝑧𝑒(𝑔௧). The +1 here is added to avoid division 
by zero when the group is still empty. This division aims to 
improve inter-homogeneity between groups and achieve 
balance in their sizes. It forces the cost of assignment, i.e.  𝑐௜,௝, 
to be proportional to the size of the group. This means that if 
only the numerator in Formula (4) is used as the assignment 
criterion, the algorithm will speed up the completion of the 
formation of groups whose size has increased and delay it for 
groups that are still empty or have few members. This is 
because adding branches to large groups often results in a 
significant improvement in the numerator in Formula (4) 
compared to small groups. What would happen in this case is 
high intra-homogeneity for the groups that formed quickly in 
the first iterations of the algorithm because they chose what was 
best for them, and low intra-homogeneity for the other groups 
because they had to contain the remaining elements that might 
be dispersed. It will also happen that the groups formed quickly 
in the first iterations of the algorithm will have larger sizes than 
those formed in the last iterations. Then the result of this 
calculation was divided by the size of the branch, i.e., 𝑎௜,௝ , so 
that there is a proportionality between the cost resulting from 
the branch and its size. Also, this division aims to make the 
assignment fair, meaning there is no absolute priority in 
assigning long branches, which may cause a weak balance in 
homogeneity and sizes between groups. 

Thus, the proposed cost model for assignment provides all 
necessary conditions to ensure homogeneity within and 
between groups and a balance of their sizes. It also has a 
mechanism to prioritize groups in branch inclusion. 

D. THE ALGORITHM FOR FORMING LEARNING GROUPS. 
To form a predetermined number n of learning groups that are 
intra- and inter-homogeneous and of balanced size, an 
algorithm is developed, denoted for simplicity as GAGF 
(Generalized Assignment strategy for Group Formation), and 
shown in figures 2, 3, and 4. GAGF considers the formation of 
learning groups as a general assignment problem (described 
here above) and determines the best assignment for each branch 
such that the intra- and inter-homogeneity of the groups is 
optimized. It iterates (from line 10 to line 19 in Figure 2) to 
assign each branch to the most appropriate group, until all 
branches are assigned. At each iteration, for each group, the 
branches whose addition does not overflow the group are 
selected (line 5 in Figure 3). The cost that each of those 
branches would achieve if it were added to the group is then 
calculated using the formula 4 (lines 6 and 7 in Figure 3). The 
branch with the minimum cost is then kept with the minimum 
difference (called MD) between its cost and the cost of the 

second-best branch (Figure 4). At the end of each iteration, the 
group with the best MD is selected, and the branch that 
achieved the best cost is assigned to it (from lines 12 to 13 in 
Figure 2). Also, at the end of each iteration, the algorithm 
reconstructs the candidate branches by removing elements in 
common with the selected branch. The following is the notation 
used to write the pseudocode for this algorithm: 
­ 𝐺𝑃𝐴𝑠: Students' GPAs that will be divided into groups. 
­ 𝑇𝑇: The used tree kind which is either 2-3 or 2-3-4.  
­ 𝑇: The self-balancing BST of kind TT which will be 

constructed to contain 𝐺𝑃𝐴𝑠  
­ 𝑆: The generated branches from the 𝑇 tree 
­ 𝑏: A branch in 𝑆  
­ 𝑛: The predetermined number of learning groups 
­ 𝐺: The set of learning groups 
­ 𝑔: A learning group. 
­ 𝐻௜௡௧௥௔(𝑔): Intra-homogeneity of the learning group 𝑔 
­ maxSize: The allowed size for groups. 
­ 𝑐: The cost of assigning a branch 𝑏  to group 𝑔. It is 

calculated according to formula (4). 
­ 𝑀𝐷: The minimum difference (MD) in group g is the 

difference between the best cost resulting from 
assigning a branch 𝑏 to 𝑔 and the cost of the second-
best branch. 

 

Figure 2. The Algorithm GAGF (Generalized Assignment 
strategy for Group Formation). 

 

 GAGF- Algorithm(GPAs, TT, n) 
INPUT: 
‐ GPAs: list of students’ GPAs 
‐ TT: the type of balanced tree 
‐ n: number of predetermined learning groups 
OUTPUT: 
‐ G: the set of created learning groups 
BEGIN 
1. T← ConstructTree(GPAs, TT) // Construct the T tree of type TT  

                  // from the list of GPAs 
2. S← generateBranches(T)    // Extract all the branches of T 
3. 𝐺 ← ∅              // Initialize the Learning groups list to be empty 
4. GH← 𝐻௜௡௧௥௔(𝐺𝑃𝐴𝑠) // calculate the general homogeneity (GH)  
                                       // of all GPAs 

5. maxSize←
௦௜௭௘(ீ௉஺௦)

௡
+ 1 // calculate the allowed size for groups.  

6. For 𝑖 ← 1 𝑡𝑜 𝑛 do   //Initialize all groups to an empty set and add  
                                     // them to G  
7.     𝑔௜ ← ∅ 
8.     𝐺 ← 𝐺 ∪ {𝑔௜} 
9. End for  

 While (S not empty) do  // iterate to fill in the groups of G from S 
11.    A ←searchBestLocalAssign(S, G) // subfunction to search the  
                                    // best assignment for each group (see figure 3) 
12.    (𝑔௕௘௦௧, 𝑏௕௘௦௧, 𝑀𝐷௕௘௦௧) ←  arg(௚,௕,ெ஽)∈ ஺ max (𝑀𝐷) // Find the  

                  //best assignment i.e. the triplet (group, branch, minimum  
                 //difference) that has the maximum MD in A   
13.   𝑔௕௘௦௧ ← 𝑔௕௘௦௧ ∪ {𝑏௕௘௦௧}  // add the branch 𝑏௕௘௦௧ to the group 𝑔௕௘௦௧ 
14.    For each:𝑏 ∈  𝑆 // delete from any branch in S the elements in  
                                   //common with 𝑏௕௘௦௧ 
15.         𝑏 ← 𝑏 − {𝑏 ∩ 𝑏௕௘௦௧}    
16.    End for 
17.  Refresh S   // Remove from S any branch that has become empty.  
                        //after deleting its elements in common with 𝑏௕௘௦௧ 
18. End while                         
19. Return G         // return the set of created learning groups. 
STOP  
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Figure 3. The searchBestLocalAssign function to search the 
best local assignment. 

 

 

Figure 4. The BestForAGroup function to selecting the best 
assignment in a group. 

IV. RESULTS  
Two experiments were conducted to examine the effectiveness 
of the proposed method in improving the intra- and inter-
homogeneity of groups and achieving balance in their sizes. 
They were carried out on a sample of 82 students who self-
enrolled in four learning groups in the computer skills course 
at the University of Tabuk. The GPAs of students in this sample 

were heterogeneous, as the general homogeneity reached 
37.14%. During these experiments, the proposed method, 
which is referred to as the GAGF algorithm for simplicity, was 
applied to form four learning groups. Its results were then 
compared to the results of two other formation methods: (i) the 
self-formation method (the student registers himself and 
chooses the group) applied at the University of Tabuk; (ii) the 
related algorithm, presented in [6] and referred to for simplicity 
as the GF-SBT algorithm. GAGF and GF-SBT use 2-3 and 2-
3-4 self-balancing BSTs to generate GPA branches (student 
blocks). The average intra-homogeneity and inter-homogeneity 
of the four generated groups are determined for each formation 
method. The total number of students in each group was 
calculated as well.  

The first experiment tests the effectiveness of the proposed 
cost model in improving intra- and inter-homogeneity and 
balancing group sizes. In particular, this experiment focuses on 
the role of the reference value in improving the homogeneity of 
groups and the balance of their sizes. Therefore, the GAGF 
algorithm was applied first without using the reference value 
∝, and then other times using the reference value ∝ that was 
moved from 30% to 100%. If the reference value is not used in 
the cost model, it means that the numerator of the proposed cost 
model (formula 4) consists of ℎ௜,௝ only without multiplying it 
by the distance between it and a reference point (|ℎ௜,௝−∝ 𝐺𝐻|). 
Small values of ∝ mean that the reference value (∝ 𝐺𝐻) to 
which the homogeneity of the groups is pulled will be very 
small compared to the general homogeneity (𝐺𝐻) value. A 
value of 100% means that the reference value is the same as the 
general homogeneity (𝐺𝐻) value. The results of using the 
reference value were then compared with the results of not 
using it to determine whether the cost model had a role in 
improving the homogeneity of the groups and the balance of 
their sizes.  In this experiment, a 2-3-4 tree was used. The results 
of this experiment are presented in Table 1.  

The results in Table 1 show that using the proposed cost 
model with its reference value contributed to an improvement 
in intra-homogeneity, especially for ∝ < 80%, where this 
improvement peaked in case ∝ = 30% when there was a ten-
percentage point difference with the case of not using the 
reference value. However, in cases where the ∝ value was less 
than 60%, this improvement resulted in poor inter-
homogeneity. Therefore, applying the cost model with an ∝ 
value ranging between 60% and 80% (60% ≤∝<  80%) gave 
acceptable results for both intra- and inter-homogeneity. The 
best result was for the case ∝=70%, where the intra-
homogeneity was 24.37% and the inter-homogeneity was 
7.83%, which means an advantage over the results of not using 

the reference value of 25.34% (
ଷଶ.଺ସିଶସ.ଷ଻

ଷଶ.଺ସ
%) for intra-

homogeneity and 48.14% (
ଵହ.ଵ଴ି଻.଼ଷ

ଵହ.ଵ଴
%) for inter-homogeneity. 

The sizes of the groups formed by the algorithm were 
approximately balanced, as one group included 19 students 
while the rest of the groups included 21 students. This slight 
difference is due to the maximum group size, which is defined 

in the algorithm as 
ே

௡
+ 1. To summarize this experiment, the 

proposed cost model was effective in improving both intra- and 
inter-homogeneities for ∝ values between 60% and 80%. It was 
also able to generate learning groups with near-balanced sizes. 

searchBestLocalAssign(S, G) 
INPUT: 
‐ S: list of branches 
‐ G: set of learning groups 
OUTPUT: 
‐ A: a set containing the best local assignment for each learning 

group 
BEGIN 
1.    For each:𝑔 ∈  𝐺 
2.      P ← ∅   // declare an empty set of branch assignment costs to groups. 

3.     For each:𝑏 ∈  𝑆 
4.       𝑔𝑡 ←  𝑔 ∪ {𝑏}  // declare gt as a temporary group. 
5.       if (size(gt)<=maxSize) 
6.           h← 𝐻௜௡௧௥௔(𝑔𝑡)  // calculate the homogeneity of the group 𝑔𝑡 
7.              𝑐 ← (ℎ × |ℎ−∝ 𝐺𝐻|)/((1 + 𝑠𝑖𝑧𝑒(𝑔𝑡)) × 𝑠𝑖𝑧𝑒(𝑏))            
                     // calculate the cost of assigning the branch b to g 
8.              P ← 𝑃 ∪ {(𝑏, 𝑐)}  // add the b and its cost c as pair              
                                            //to the cost list 
9.          End if 
10.  End for 
11.    (𝑏௠, 𝑀𝐷) ← BestForAGroup(P) // subfunction to find  
              //the branch 𝑏௠ ∈  𝑃 that has the best cost (best local  
             //assignment) for group g and the difference  
            //(MD = minimum difference in P) between the cost of 𝑏௠  
           //and the cost of the second-best branch. (see figure 4) 
12. A ← 𝐴 ∪ {(𝑔, 𝑏௠, 𝑀𝐷)}  // add to A the best local  
                //assignment (𝑔, 𝑏௠) with its minimum advantage  
       // (𝑀𝐷) that it provides over other possible assignments. 
13. End for     
14. Return A         // return the set of best local assignments. 
STOP  

BestForAGroup (P) 
INPUT: 
‐ P: set of branch assignment costs to groups. 
OUTPUT: 
‐ (𝑏௠, 𝑀𝐷): the best branch in P that achieved the best cost plus the  

         difference (MD = minimum difference in P) between the cost of  
         that branch and the cost of the second-best branch. 

BEGIN 
1.  (𝑏௠, 𝑐௠) ←  arg min(௕,௖)∈ ௉(𝑐) // Find the pair (b, c) that has  
                                                             // the minimum cost in P 
2.  MD← arg max(௕,௖)∈ ௉(𝑐) // Initialize the minimum difference  

               //(MD) between the cost of the branch selected for            
               //assignment and the costs of other possible branches to the    
              //maximum cost in P   
3. For each:(𝑏, 𝑐) ∈  𝑃 − {(𝑏௠, 𝑐௠)} 
4.       diff ← 𝑐 − 𝑐௠ 
5.       if (diff< MD) 
6.            MD ← diff 
7.       End if 
8. End for 
9. Return (𝑏௠, MD)   // return the set of best local assignment     
                                       //in the group. 
STOP  
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Table 1. Results of applying the proposed cost model with 
different refence values. 

Reference 
value 

Average 
intra-

homogeneity 

Inter-
homogeneity 

Group sizes 

Without 
reference value 

32.64% 15.10% 21, 21, 21, 19 

 21.84% 26.44% 21, 21, 21, 19 

 26.70% 34.94% 21, 21, 19, 21 

 29.89% 44.87% 21, 21, 19, 21 

 24.52% 19.83% 21, 19, 21, 21 

 24.37% 7.83% 21, 19, 21, 21 

 32.67% 15.84% 21, 19, 21, 21 

 35.43% 8.70% 21, 19, 21, 21 

The second experiment was concerned with comparing the 
results of applying the proposed method with the results of the 
related work, which is the GF-BST algorithm, and the results 
of the self-formation method. The goal is to study the 
effectiveness of the proposed method, with its two 
contributions, in improving the intra- and inter-homogeneity of 
groups and achieving balance in their sizes. For this purpose, 
the GAGF algorithm was applied with a reference value             
∝ = 70%. In order to determine the type of self-balancing BST 
that enhances the effectiveness of the proposed method, the 
GAGF and GF-BST algorithms were applied twice, first using 
2-3 tree and then using 2-3-4 tree.  

The results of this experiment are shown in Table 2. It was 
found that the GAGF algorithm was more effective than the 
GF-BST algorithm and self-formation in improving intra-
homogeneity in both uses of 2-3 tree and 2-3-4 tree. The 
average intra-homogeneity difference between the GAGF 
algorithm and the other two methods ranged between 10 and 12 
percentage points, giving an improvement rate between 29% 
and 32%. It was also found that the type of self-balancing BST 
used did not have a significant impact on the intra-homogeneity 
of the groups formed. However, the type of self-balancing BST 
used had a significant impact on improving inter-homogeneity, 
as using 2-3-4 tree produced better inter-homogeneity than 2-3 
tree.  In both uses of 2-3 tree and 2-3-4 tree, the GAGF 
algorithm formed learning groups with more balanced 
homogeneity than those formed by the GF-BST algorithm. 
However, the best difference between the two methods was 
with the use of the 2-3-4 tree, where the inter-homogeneity 
value of the GAGF algorithm represents 20.25% of the inter-
homogeneity value produced by the GF-BST algorithm, i.e. an 

improvement of 79.75% (
ଷ଼.଺଻ି .଼ଷ

ଷ଼.଺଻
%). The self-formation 

method was better than the GF-BST and GAGF algorithms in 
improving inter-homogeneity. In this regard, the difference 
between its results and the results of the proposed method was 
not significant, especially when using tree 234.  The groups 
formed using the GAGF algorithm were approximately 
balanced in size, unlike the groups formed using the self-
formation method, whose sizes were unbalanced. The 
algorithm GF-BST was better in this regard because it was 
more stringent in balancing the size of groups. 

 

Table 2. Comparison between the results of GAGF,  
GF-SBT, and self-formation method. 

Method 
Self-

balanced 
BST 

Average intra-
homogeneity 

Inter-
homogeneity 

Group sizes 

GF-SBT 
2-3Tree 34.88% 20.95% 21, 21, 20, 20 

2-3-4 Tree 34.65% 38.67% 21, 21, 20, 20 

GAGF 
2-3 Tree 24.14% 11.99% 21, 19, 21, 21 

2-3-4 Tree 24.37% 7.83% 21, 21, 19, 21 

Self-
formation 

- 35.82% 5.08% 21, 23, 16, 22 

V. DISCUSSION 
The results of this study are discussed based on the two 
research questions, as follows:  

Question1: Is the proposed cost model and its reference 
value effective in improving the intra- and inter-homogeneity 
of learning groups and ensuring a balance between their sizes? 
If yes, what is the recommended reference value? 

The proposed cost model is used to measure the cost of 
including a student or a small set of students in a group. It is 
based on the idea of approximating the homogeneity of the 
groups around a reference value that represents ∝% of the 
general homogeneity of the students. The experiment's results 
have shown that the proposed cost model was a significant 
contribution. Its effect was most evident in achieving an 
excellent balance between the homogeneity of the groups. To 
achieve good levels of intra- and inter-group homogeneity, it is 
recommended to apply the proposed method with an ∝ value 
between 60% and 80% (60% ≤∝< 80%). With a reference value 
∝=70%, the proposed method outperforms the related work, 
presented in [6], in improving the homogeneity between groups 
by more than 79%. The proposed method outperformed the 
same work in improving the intra-homogeneity value by about 
30%.  

Question2: Compared with related works, what is the 
advantage of the proposed algorithm in improving intra- and 
inter-homogeneity of learning groups and ensuring balance 
between their sizes? 

Combining the two contributions of this work had a positive 
impact on improving the intra- and inter-homogeneity of 
learning groups and ensuring their balance. This made the 
GAGF algorithm 79.75% better than the GF-BST algorithm, 
presented in [6], in improving inter-homogeneity and 29.66% 
better in improving intra-homogeneity. It also enabled it to 
outperform the self-formation method by 31.96% in improving 
intra-homogeneity.  

Using the 2-3-4 trees was better than using the 2-3 trees, 
because it provided the optimum balance of enhancing both 
intra- and inter-homogeneity. This is because the 2-3-4 trees, 
with their short and homogeneous branches, contributed to the 
formation of groups with improved intra-homogeneity, which 
was also confirmed in [6]. The use of the reference value in the 
cost model contributed to balancing the homogeneity of the 
groups, and this is an advantage compared to the algorithm GF-
BST. Therefore, it is recommended to use a self-balancing BST 
with short branches to form learning groups. Since the branch 
length is the height of the tree + 1 and the total number of 
students N does not exceed a few hundred in most cases, 2-3-4 
trees are very suitable for achieving excellent results because 
they produce short branches with length in the range of log2N 
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(when there is only one member at each node) and log4(N/3) 
(when each node has 4 children). 

The proposed algorithm groups students based on one static 
characteristic, which is the students' GPAs. It would be 
interesting to include other group characteristics, preferably 
dynamic data such as interaction or emotional state, which 
would allow the instructor to adjust the composition of the 
groups after a few lectures. 

I. CONCLUSION 
In this paper, an algorithm, called GAGF (Generalized 
Assignment strategy for Group Formation), has been proposed 
and tested for forming intra-homogeneous (student 
performance similarity within the group) and inter-
homogeneous (group performance similarity between groups) 
learning groups with a balanced size. GAGF considers the 
learning group formation as an assignment-type optimization 
problem where the goal is to find a feasible least-cost 
assignment of a given set of students to a given set of learning 
groups. It is based on a cost model that is used to minimize the 
assignment cost and perform the matching between minimizing 
the assignment cost on the one hand and improving intra- and 
inter-homogeneity and size balance on the other hand. The 
specificity of this cost model is the use of a reference value 
towards which the homogeneity of the groups tends and thus 
improves the inter-group homogeneity. 

The results of the experiments have shown the efficiency of 
GAGF in balancing the size of the groups, balancing the 
homogeneity between them (inter-homogeneity), and 
improving their intra-homogeneity. It was found that GAGF 
was 79.75% better than the GF-BST algorithm, presented in 
[6], in improving inter-homogeneity and 29.66% better in 
improving intra-homogeneity. It was also found that GAGF 
outperforms the self-formation method by 31.96% in 
improving intra-homogeneity. Therefore, the GAGF algorithm 
is recommended for in-person learning where the groups are 
large and the teacher's contribution is greater than the students' 
contribution, which requires balance between groups to 
achieve learning outcomes and make the teacher's effort 
balanced between groups. 

The algorithm GAGF provides a mechanism for grouping 
students according to a static characteristic, which is the 
students' GPAs. Future work could include other dynamic 
characteristics that make the formation of learning groups 
dynamic and responsive to the teacher's desires. For example, 
it will be important to incorporate dynamic student data such 
as interaction and adjust student distribution when there is an 
imbalance between groups. 
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