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 ABSTRACT The proliferation of threats within the Internet of Things (IoT) environment is intensifying, largely 
due to the inherent limitations of this technology. The panoply of anti-threats based on artificial intelligence suffer 
from the complete embedment of models in limited resources. Tiny Machine Learning (TinyML) is presented as 
an opportunity in optimizing and selecting machine learning algorithms specifically tailored for intrusion detection 
systems (IDS) on limited-resource devices. This article addresses the challenges that must be overcome to enable 
the deployment of machine learning models on devices with constrained resources. In particular, it introduces 
additional indicators that could influence the algorithmic design of IoT models. Utilizing the PyCaret tool on the 
TON_IoT dataset, which encompasses nine distinct attacks, we developed and evaluated our approach for selecting 
the optimal algorithm from fourteen supervised learning models. The proposed tool, beyond the traditional six 
performance metrics, emphasizes resource consumption metrics, including memory, processor usage, battery life, 
and execution time – key considerations for TinyML in model refinement and selection. This study has identified 
less resource-intensive models suitable for developers in the design of IDS for IoT systems. We believe this 
research offers a foundational framework for the development of lightweight and efficient IoT vulnerability 
detection solutions. 
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I. INTRODUCTION 
HE Internet of Things (IoT) represents a technology that is 
seamlessly integrated across various sectors of society [1]. 

However, in contrast to conventional computing systems, the 
IoT's heterogeneous nature introduces significant limitations 
that exacerbate its security vulnerabilities [2, 3]. The frequency 
of IoT attacks is increasing exponentially, with distinct 
variations in their manufacturing processes, usage patterns, and 
testing environments. A notable example is the emergence of 
the RapperBot malware in June 2022, a variant of the Mirai 
class that specifically targets Linux servers through SSH brute-
force attacks [2], adding to the prevalence of attacks such as 
Broken Access Control, identified as the most common threat 
in the OWASP-IoT-2022 report [4]. The IoT ecosystem relies 
heavily on wireless sensor networks, which inherently lack 
robust security, making them susceptible to advanced attacks 
like the Google Attack, AWS DDoS attack, Mirai Krebs, and 

OVH DDoS attacks [3]. For companies utilizing smart devices, 
there is a pressing need for cybersecurity solutions to 
effectively manage the services these devices provide. The 
development of such security solutions typically involves the 
application of machine learning techniques, including Logistic 
Regression (LR), Support Vector Machine (SVM), Decision 
Tree (DT), Random Forest (RF), and Gaussian Naive Bayes 
(GNB). Although multiple solutions exist for addressing these 
security challenges, further optimization is required to ensure 
that these programs are both efficient and lightweight, enabling 
them to adapt to evolving IoT security threats [5-7]. 

Extensive efforts are undertaken to propose solutions for 
binary and multi-class classifications of IoT attacks, which are 
currently being developed across various layers, from gateway 
sensors to the broader Internet [8, 9]. The primary function of 
an Intrusion Detection System (IDS) is to safeguard IoT 
systems against unauthorized access, as failure to do so can 

T
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compromise fundamental security principles [5]. IDSs play a 
critical role in real-time traffic analysis, enabling the detection 
of abnormal behaviors that arise from various IoT-specific 
attacks [10, 11]. To enhance understanding of IoT cybercrime, 
several studies have utilized the TON_IoT dataset, which 
provides heterogeneous data suitable to build machine learning 
based models for intrusion detection systems [12-14]. Such 
models that running in computers cannot be suitable in low-
resources devices. TinyML comes into play to compress 
existing machine learning models for microcontrollers without 
relying on the cloud servers to run the algorithms. The 
following operations serve to reach these objectives for 
compressing models [5, 15, 16]. Knowledge Distillation (KD) 
evaluates whether a large model trained on a computer can 
be effectively scaled down for deployment on embedded 
systems. Pruning reduces dense neural networks to lighter, 
more efficient versions by eliminating redundant 
connections. Quantization minimizes the number of 
parameters, thereby reducing the model's size and 
complexity. Encoding, particularly through Huffman 
coding, can decrease the network's initial size by up to 49 
times while preserving accuracy by using fewer bits for 
frequent weights and more bits for less frequent ones. 
Finally, Compilation involves transforming the program 
written in any language into a format that can be executed 
by the microcontroller. 

The TON_IoT dataset adopted in this study reflects reality 
of IoT with heterogeneity in terms of attacks and target devices.   
Seven distinct attack types are included: scanning attack that 
involves reconnaissance activities where attackers gather 
network information by probing devices within the target 
system [6], denial of service (DoS) that aims to incapacitate a 
system by overwhelming it with excessive requests, rendering 
it unable to provide its intended services [17], ransomware that 
restricts user access to systems or personal data, demanding a 
ransom in exchange for restoring access, backdoor that refers 
to malware that enables unauthorized remote access to a 
compromised system, allowing attackers to control it covertly 
[8], injection attack which entails injecting malicious code into 
SQL queries, exploiting vulnerabilities within the application 
to execute unauthorized commands, Cross-Site Scripting 
(XSS) that involves injecting malicious scripts into web 
content, which are then executed in the victim's browser, 
leading to potential data theft or unauthorized actions [18] and 
password attack that comprises techniques used to bypass or 
exploit user authentication mechanisms to gain unauthorized 
access to accounts. 

The selection of these attack types is substantiated by the 
established reputation and ranking of certain certified platforms 
used for evaluating vulnerabilities and IoT security solutions 
[19-21]. In contrast, other datasets featuring representative IoT 
scenarios lack diversity in their characteristics [22-25]. While 
other studies have proposed effective models with promising 
performance, they still require further experimentation to 
establish confidence in the employed learning models [26, 27]. 
The significant limitation of these works lies in the insufficient 
confidence elements within the learning models, which are 
likely influenced by factors such as network traffic flow 
(whether balanced or unbalanced), data quantity, evaluation 
metrics, and the number of features incorporated by the models. 
Additionally, we acknowledge the substantial progress made in 
data sampling techniques and the optimization of 

hyperparameters in machine learning [7, 28]. 
The objective of this study is to introduce additional 

indicators for assessing the reliability of supervised learning 
models in IoT intrusion detection. We aim to emphasize that 
selecting appropriate metrics is critical in evaluating machine 
learning models and that the effectiveness of a classification 
model is influenced by factors beyond the commonly used 
metrics. The quality of a model cannot be fully determined by 
performance metrics alone, even when those metrics have been 
optimized through hyperparameter tuning.       

The proposed approach involves evaluating several 
machine learning techniques using six distinct performance 
metrics. We also emphasize the importance for developers to 
carefully consider the selection of high-performance models, as 
there are additional challenges beyond performance metrics 
that must be addressed – namely, data size, the number of 
features, and testing time, which we explore in this study.  

The rest of the paper is organized as follows. Section 2 
outlines the mathematical formulations used to evaluate the 
models during training. Section 3 details the experimental 
methodology. Section 4 describes the hardware configuration 
and provides a comprehensive account of the various 
evaluations conducted. The penultimate section discusses the 
results, highlights key observations from the experiments, and 
compares them with existing work. Finally, we identify 
limitations that will be the focus of future research. 

II. BACKGROUND 
To realize the innovative potential desired by IoT users, 
memory, power, and processing capabilities are critical 
elements that necessitate the application of Artificial 
Intelligence techniques for efficient utilization. Memory is 
essential for storing and processing data collected by IoT 
devices; without sufficient memory, data may be lost or 
become corrupted. Energy powers the operation of the network 
of connected devices, while the processor is responsible for 
managing information and making decisions [10]. 

Supervised learning provides effective tools for designing 
cybersecurity measures [29, 30], with machine learning models 
being particularly suited for analyzing IoT data in the context 
of intrusion detection. Typically, trust and model selection are 
guided by specific performance metrics [19, 31, 32]. 
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Pe= P1+P2 ,                                       (8) 
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In Equation (6), Po represents the observed agreement, 

while Pe denotes the expected agreement. These values 
indicate the classifier's performance relative to a classifier that 
makes random predictions based solely on class frequencies. 
The last two metrics in Equations (5) and (6) are particularly 
suitable for evaluating unbalanced datasets, unlike the four 
previous metrics [33, 34]. The Matthews Correlation 
Coefficient (MCC) is a more robust statistical measure, 
yielding a high score only when the classifier performs well 
across all four categories of the confusion matrix: true 
positives, false negatives, true negatives, and false positives. 

The advancement of computer technology has transitioned 
from lightweight learning models to micro models based on 
TinyML. Consequently, the quality of service provided by IoT 
security solutions now hinges on additional factors such as 
network scalability and resource consumption, including 
memory, energy, processing power, and execution time [10]. 
These resources function in a highly interdependent manner; 
for instance, a high-performance processor may experience 
delays if memory access is restricted. Currently, some 

researchers focus on developing optimal resource management 
strategies and addressing attacks targeting these resources. 
They have also demonstrated that reducing these factors 
minimally impacts system performance and can enhance 
operational efficiency post-deployment [23, 35]. 

III.  METHODOLOGY 
We focused on analyzing a range of algorithms, including Light 
Gradient Boosting Machine, Random Forest, Decision Tree, 
Extra Trees, Gradient Boosting, AdaBoost, K-Nearest 
Neighbors, Linear Discriminant Analysis, Ridge Regression, 
Logistic Regression, SVM-Linear, Naive Bayes, Dummy 
Classifier, and Quadratic Discriminant Analysis to develop an 
intrusion detection system (IDS) for IoT. The objective was to 
assess their specific capabilities in detecting IoT 
vulnerabilities.      

The objective is to provide a high-performance, lightweight 
solution suitable for embedded systems. Following the training 
and testing of our AI models, we evaluated their performance 
using metrics such as accuracy, AUC, recall, precision, F1 
score, Kappa, and MCC. Considering the resource constraints 
of small devices, we also assessed the models based on their 
memory usage, processor demand, energy consumption, and 
training time. 

The dataset selected for this study is TON_IoT, a recent and 
highly heterogeneous dataset comprising 2,540,044 attack 
events and 49 input features. We partitioned the data into one-
third for testing and two-thirds for training. 

Based on these evaluations, we present an IoT intrusion 
detection solution with a comprehensive analysis of its 
performance and detailed insights into its operational state 
post-deployment (see Fig. 1). 

 

 

Figure 1. Execution of the dataset on the different models 
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IV.  EXPERIMENTATION 
A. HARDWARE SETUP 
Some materials have been utilized during experiments: a 
Lenovo laptop equipped with a Linux 20.04 operating system, 
an Intel Core i7 processor, and 12 GB of RAM. The program 
code was developed using the PyCaret tool in conjunction with 
various Python libraries. Figure 1 illustrates the network traffic 
patterns from which the TON_IoT dataset was derived. 

B.  RESULTS ANALYSIS 
The dataset utilized for supervised learning in this study is 
TON_IoT, which represents a new generation of heterogeneous 
datasets designed for Industry 4.0, the Internet of Things (IoT), 
and Industrial IoT (IIoT). It is specifically intended for 
evaluating the accuracy and effectiveness of various AI-based 
cybersecurity applications. The dataset is categorized into two 
main classes: normal (45,332 instances) and attacks (37,000 
instances). Additionally, it provides a statistical overview of 
IoT data from Linux and Windows systems, as well as network 
data and connected devices. 

Fourteen supervised learning techniques have been applied 
to our samples and evaluated using eight performance metrics, 
ranked in descending order of effectiveness. 

Rating 1 
This initial analysis results from training all models using 
PyCaret, a tool that facilitates the implementation of efficient, 
optimized, precise, and effective code. In this section, we focus 
exclusively on examining the performance metrics of the 
evaluated models.  

Overall, the seven models ranked in descending order of 
performance are identified as the most optimal based on the 
experiment: LightGBM, Random Forest, Decision Tree, Extra 
Trees, Gradient Boosting Classifier, AdaBoost, and K-Nearest 
Neighbors. Conversely, seven other models exhibited metrics 
with zero values, including Ridge and SVM (with AUC = 0) 
and Dummy Classifier (with Kappa and MCC both at 0). An 
AUC of zero indicates poor model performance during 
training, while a zero MCC suggests inadequate classification 
quality. 

Light Gradient Boosting Machine is considered the optimal 
model, despite being surpassed by two other models on the 
Recall and F1 score metrics. It outperforms in most metrics, 
including accuracy, ROC curve, F1 score, Kappa, and MCC. 
The remaining two metrics are shared between the Random 
Forest Classifier and Dummy Classifier models. Random 
Forest is also the second most efficient model, while the 
Dummy Classifier, despite its very low and sometimes zero 
performance values, is among the least effective in this 
experiment. According to the PyCaret tool, Quadratic 
Discriminant Analysis (QDA) ranks last, but a more objective 
analysis reveals that it exhibits better AUC performance 
compared to SVM and Ridge Regression and provides slightly 
better classification than the Dummy Classifier. 

In alignment with our goals for a lightweight and compact 
security solution based on TinyML, relying solely on these 
metrics is insufficient. It is essential to validate the reliability 
of these metric values through considerations of the training 
process, execution time, and resource consumption (including 
memory, processor, and energy). These resources are critical to 
monitor during the refinement of IoT solutions. 

 

Rating 2 
In this evaluation, we investigated the effect of data size on the 
performance of learning models. As the data size decreased, the 
previously top-performing model exhibited reduced 
effectiveness on certain metrics. Specifically, at a data 
threshold of 500, the Extra Trees classifier outperformed the 
Light Gradient Boosting Machine, which was previously the 
best model and dropped to 5th place. At data sizes of 1000, 
10,000, and 50,000, the Light Gradient Boosting Machine 
emerged as the leading model. However, the rankings of the 
other models were also affected, with the Gradient Boosting 
Classifier and the Random Forest Classifier securing the 
second place in these datasets. 

Rating 3 
Similar to evaluation 2, this assessment examines the impact of 
the number of features on model performance. Using the same 
test thresholds as before, we evaluated the models with a 
reduced number of features (half of the original). Each 
threshold highlighted a different model as superior. At the 
10,000-feature threshold, the Light Gradient Boosting Machine 
(LightGBM) was the top performer. For the other thresholds, 
the Ridge Classifier and Decision Tree Classifier emerged as 
the best models, respectively. It is important to note that the 
number of features should not be chosen arbitrarily for testing, 
as their quantity can significantly influence model 
performance. 

Rating 4 
The final evaluation represents the primary objective of this 
work, focusing on optimizing programs for deployment on an 
IoT network. Beyond performance metrics, this evaluation 
includes an objective analysis of TinyML-specific factors such 
as memory usage, processor demand, energy consumption, and 
execution time. Resource consumption is measured for each of 
the 14 models. Models with higher resource requirements are 
less favorable for our goal, which is to identify the most 
efficient solution with minimal resource costs. Consequently, 
Light Gradient Boosting Machine (LightGBM) is not yet 
deemed the best option in this context. 

V.  DISCUSSION 
This initial phase of the work addresses additional challenges 
in selecting and adopting models according to the TinyML 
principles for IoT applications. Beyond traditional performance 
metrics, we propose incorporating other critical factors for 
evaluating the suitability of models for embedded devices. 
These factors include resource consumption (memory, 
processor, and battery), execution time, quality and size of 
training data, and the selection and number of features. 

TinyML emphasizes the need for programs to be less 
resource-intensive. Therefore, the primary focus is on 
optimizing models that are less demanding in terms of 
resources, ensuring their deployment and operation on 
microcontrollers are more efficient and secure. Figure 2 
illustrates performance metrics for the models. If the program 
were designed for a computer with generally more powerful 
resources, the top seven models identified through 
experimentation – Random Forest (RF), Decision Tree (DT), 
Extra Trees (ET), Gradient Boosting Classifier (GBC), 
AdaBoost (ADA), and K-Nearest Neighbors (KNN), with 
LightGBM being the most powerful – would be preferable. 
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However, Figure 3 introduces another critical factor: 
execution times for each model. Notably, two of the top-
performing models (LightGBM and GBC) exhibit very long 
execution times, which can pose significant challenges for 
embedded devices where real-time performance is crucial. 
Execution time is also related to resource consumption, such as 
processor time and memory access. Excluding LightGBM, 
which has a significantly higher execution time than the others, 
the average execution time across models is 15.6 seconds. This 
suggests that models with average execution times, such as RF, 
ET, ADA, KNN, IDA, LR, SVM, Dummy, and QDA, are more 
suitable. Four models, as shown in Figure 4, are considered less 
efficient, and this criterion warrants particular attention. 

This experimentation revealed that the two models 
previously identified would be highly resource-intensive if 
selected. In the subsequent sections, we will evaluate resource 
consumption and examine its correlation with execution time. 

Beyond the effects of data thresholds and feature selection 
on metric values, we observed that some of the top seven 
models (as shown in Figure 4) exhibit long execution times, 
which can affect energy consumption – an important factor 
distinct from memory and CPU usage. We will first analyze the 
consumption of individual resources and then conduct a 
comprehensive study of all three resources to draw final 
conclusions. 

 

 

Figure 2. Model performance curve 

 

 

Figure 3. Model execution time 
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Memory: This metric reflects the percentage of RAM 

utilized by each model. Among the most efficient models 
identified earlier – LightGBM, Extra Trees (ET), and K-
Nearest Neighbors (KNN) – we observe high memory 
consumption. In contrast, Logistic Regression (LR), although 
less efficient overall, also demonstrates relatively low memory 
usage. Other models exhibit similar memory usage, 

approximately 5 MB of RAM. 
CPU: This metric measures the percentage of CPU usage, also 
referred to as processor time, during model testing. High CPU 
consumption is noted in two high-performance models – KNN 
and LightGBM – along with two less efficient models – 
Logistic Regression (LR) and Naive Bayes (NB), as indicated 
in Figure 4. 

 

 

Figure 4. Resource consumption diagram 

 
Battery: The psutil.sensors_battery() function provides 

information on the battery state. If no battery is present or if 
metrics cannot be determined, no value is returned. In this 
context, we measured the remaining battery power, expressed 
as a percentage, after training each model. Since all 14 models 
were run concurrently, a higher percentage of remaining 
battery power indicates lower resource consumption by that 
model. The experiment identified four models with high battery 
consumption: Decision Tree (DT), K-Nearest Neighbors 
(KNN), Logistic Regression (LR), and Naive Bayes (NB). 
Although LR and NB are less efficient, they are also notably 
power-intensive, with LR exhibiting the highest consumption. 

The four resource factors analyzed are crucial for IoT 
solutions, as they ensure the system remains compact and 
suitable for deployment on a microcontroller. Initially, 
performance metrics highlighted seven top models: 
LightGBM, Random Forest (RF), Decision Tree (DT), Extra 
Trees (ET), Gradient Boosting Classifier (GBC), AdaBoost 
(ADA), and K-Nearest Neighbors (KNN). However, the study 
revealed that LightGBM, ET, and KNN could be excessively 
energy-consuming if used for IoT security tools. Consequently, 
given TinyML's requirements for fast, low-power, and 
resource-efficient algorithms, we recommend the following 
four models – RF, DT, GBC, and ADA – for vulnerability 
detection using the TON_IoT dataset. 

VI. CONCLUSION 
TinyML is an emerging technology that integrates machine 
learning into connected and autonomous devices. It offers 

advantages such as real-time data analysis, reduced data 
processing costs, enhanced local data security, and lower 
bandwidth requirements for remote server communication. 

Nevertheless, optimizing machine learning models for 
TinyML remains a challenging task. It is crucial to establish 
further criteria for assessing models initially designed for 
conventional computing environments. This study aimed to 
evaluate machine learning models for network-based anomaly 
detection in IoT systems, specifically analyzing their 
performance on the TON_IoT dataset, identifying high-
performance classifiers, and assessing resource utilization. The 
experiments revealed factors that could impact the stability of 
models when adapted for embedded devices, providing new 
insights into the evaluation of IoT security solutions. Although 
LightGBM emerged as the top-performing model in this study, 
our objectives suggest that four models – Random Forest (RF), 
Decision Tree (DT), Gradient Boosting Classifier (GBC), and 
AdaBoost (ADA) – are preferable due to their lower resource 
consumption. 

Future research will focus on optimizing models by 
identifying the most relevant features using techniques such as 
Graph Neural Networks (GNN), Convolutional Neural 
Networks (CNN), or Recurrent Neural Networks (RNN), and 
employing hybrid sampling methods like SMOTEENN. 
Additionally, the study will aim to generalize the algorithms 
tested here by defining reference functionalities to facilitate a 
broader comparison of classifiers. 
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