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 ABSTRACT Breast cancer is a primary cause of cancer-associated mortality among women globally, and early 
detection and personalized treatment are critical for improving patient outcomes. In this study, we propose an optimal 
framework for predicting breast cancer patient survivability using the GentleBoost algorithm and Bayesian 
optimization. The proposed framework combines the strengths of the GentleBoost algorithm, which is a powerful 
machine-learning algorithm for classification, and Bayesian optimization, which is a powerful optimization technique 
for hyperparameter tuning. We evaluated the proposed framework using the publicly available breast cancer dataset 
provided by The Surveillance, Epidemiology, and End Results (SEER) program and compared its performance with 
several popular single algorithms, including support vector machine (SVM), artificial neural network (ANN), and k-
nearest neighbors (KNN). The experimental results demonstrate that the proposed framework outperforms these 
methods in terms of accuracy (mean= 95.16%, best = 95.35, worst = 95.1%, and SD = 0.008). The values of 
precision, recall, and f1-score of the best experiment were 92.3 %, 98.2 %, and 95.2 %, respectively, with 
hyperparameters of (number of learners = 246, learning rate = 0.0011, and maximum number of splits = 1240). The 
proposed framework has the potential to improve breast cancer patient survival predictions and personalized 
treatment plans, leading to the improved patient outcomes and reduced healthcare costs. 
 

 KEYWORDS Data Exploration, GentleBoost algorithm, Hyperparameters Tuning, Machine Learning, SEER 
breast cancer dataset. 
 

I. INTRODUCTION 
REAST cancer (BC) refers to a cancer that develops 
within the cells of breast tissue. It is the most prevalent 

cancer in women worldwide and the second most common 
cancer worldwide, following lung cancer [1]. According to the 
World Health Organization (WHO), BC is the most common 
cancer among women worldwide, with an estimated 2.3 
million new cases diagnosed and 685 000 deaths in 2020 [2]. 
In Yemen, the ranking of cancer types is possibly different 
from that of nearby Gulf nations. Yemen had the highest BC 
rate (30.5 per 100,000 population), followed by the 
colorectum (10.7), stomach (7.1), esophagus (6.4), lung (5.8), 
liver (5.1), leukemia (4.2), Hodgkin lymphoma (4.0), and 
ovary (3.4) [3]. The incidence of BC varies with age, with the 
risk increasing with age. The median age at the time of 
diagnosis was 62 years. In 2022, approximately 287,850 cases 
of invasive BC were diagnosed in the U.S. BC can also occur 

in men, although it is much less common, accounting for less 
than 1% of all BC cases [4-7].  

Several risk factors are associated with breast cancer, 
including age, sex, family history of breast cancer, genetic 
mutations, exposure to radiation, and lifestyle factors such as 
alcohol consumption, physical inactivity, and obesity. Regular 
screening and early detection are important for improving 
outcomes, as BC is more treatable when detected at an early 
stage [8-14]. 

Early detection of BC allows for a wider range of 
treatment options, including less-invasive surgeries, radiation 
therapy, and targeted drug therapies [15]. These treatments 
can improve the chance of survival. Women with early-stage 
BC have a higher chance of survival. According to the 
American Cancer Society, the five-year survival rate of 
women with BC that has not spread beyond the breast is 99%. 
Early detection may allow for less aggressive treatment 
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options, which can reduce the physical and emotional tolls of 
cancer treatment. Additionally, early detection can reduce the 
healthcare costs associated with cancer treatment [16-18]. 

Machine learning (ML) has emerged as a promising tool 
for improving BC detection and treatment. Numerous studies 
have investigated the utilization of ML algorithms with the 
SEER BC dataset and how they can enhance the capacity to 
diagnose and treat breast cancer [19]. SEER program is a 
population-based cancer registry in the United States that 
collects data on cancer incidence, mortality, and survival. The 
SEER BC dataset is a rich source of information, containing 
data on patient demographics, tumor characteristics, treatment 
regimens, and outcomes. ML algorithms can be trained on this 
dataset to identify patterns and make predictions that can 
inform clinical decision-making [20]. 

One of the most significant applications of ML with the 
SEER BC dataset is the development of predictive models for 
BC risk assessments. These models use patient information 
such as age, family history, and genetic markers to estimate 
the likelihood of developing breast cancer. Several studies 
have shown that ML algorithms can outperform traditional 
risk assessment models in terms of accuracy and predictive 
power [21, 22]. Other studies have explored the use of ML 
algorithms with SEER BC data to predict patient survival. 

In 2019, Lu et al. [23] explored the use of a genetic 
optimizer to improve the performance of a gradient-boosting 
machine for BC prognosis. The results showed 28% accuracy 
improvement over other ML models. Huber et.al. [24] proved 
that gradient-boosted supervised ML achieves a better 
performance than linear models. 

In 2020, Wang et al. [25] developed an improved random-
forest (RF)-based rule extraction method. The method was 
assessed using three datasets: WDBC, WOBC, and SEER 
breast cancer. According to the experimental results, the 
proposed method surpasses various widely used single 
algorithms, ensemble learning methods, and rule extraction 
methods in terms of accuracy and interpretability. 

In 2022, Kajala and Jaiswal [26] proved that balancing 
dataset classes using oversampling techniques improved the 
performance of SVM models, achieving 100% precision and 
99.35%  AUC. Similarly, Haque et al. [27] applied RF models 
to the SEER BC dataset, and the results showed an accuracy 
of 94.64 %. 

The structure of this paper is as follows: Section II 
outlines the methodology, Section III delves into the 
experimental findings, and Section IV concludes the paper. 

 
II. METHODOLOGY 
This section discusses the proposed framework, research 
aims, and objectives that will be addressed. The primary 
objective of this study is to develop a framework that can 
accurately predict the survival of BC patients based on 
clinical and pathological features. The secondary objectives 
are as follows: 

1. To evaluate the performance of the proposed 
framework in terms of accuracy, recall, specificity, 
and f1-score. 

2. To compare the performance of the proposed 
framework with other existing models. 

To accomplish these objectives, a framework is presented 
in Figure 1. The framework comprises of eight notable steps, 
as outlined below: 

1. Acquiring the BC patient dataset from the November 

2017 update of the SEER Program of the NCI 
(https://ieee-dataport.org/open-access/seer-breast-
cancer-data#). 

2. Exploring the dataset. 
3. Cleaning the dataset (instances that contain missing 

values and duplicates will be eliminated). 
4. Using the SMOTE technique to balance the target 

class. 
5. Dividing the dataset into two groups (training and 

testing data) 
6. Applying GentleBoost model with Bayesian 

optimization. 
7. Evaluating the proposed model using the matrices of 

accuracy, precision, recall, and F1-Score.  
8. Comparing the performance of the proposed model 

to the state-of-the-art models' performance. 
 

A. DATA EXPLORATION AND PREPROCESSING: 
The SEER BC dataset is a publicly available database 
containing information on BC patients diagnosed between 
2006-2010. Patients with unknown tumor size, examined 
regional lymph nodes, regional positive lymph nodes, and 
those with less than one month of survival were excluded. 
Consequently, 4024 patients were included in the dataset. 
Table 1 presents a description of SEER BC features. 
 

Table 1. SEER BC Dataset Features. 

No. Feature Type 
No. of 

instance 
F1 AGE Intervals 

4024 

F2 RACE Categorical 
F3 MARITAL STATUS Categorical 
F4 T STAGE Categorical 
F5 N STAGE Categorical 
F6 6TH STAGE Categorical 
F7 GRADE Categorical 
F8 A STAGE Categorical 
F9 TUMOR SIZE Intervals 
F10 ESTROGEN STATUS Categorical 
F11 PROGESTERONE STATUS Categorical 
F12 REGIONAL NODES EXAMINED Intervals 
F13 REGIONAL NODES POSITIVE Intervals 
F14 SURVIVAL MONTHS Intervals 
F15 STATUS Categorical 

 
As shown in Figure 2, there are some data points that are 

significantly different from the rest (outliers), an imbalanced 
distribution of the target class within the data, and some 
features with overlapping data. These problems are addressed 
as follows: 

 Handling Outliers: Outliers are removed using three 
standard deviations (3 SD) above and below the mean. 
The use of the outlier removal method of 3-SD above 
and below the mean can be an effective way to deal 
with extreme data points that may skew the analysis or 
modeling results. This method is based on the 
assumption that the data follows a normal distribution, 
as shown in Figure 3. 

 Handling Imbalanced Distribution: Utilizing the 
SMOTE technique is beneficial for addressing the 
imbalance problem in machine learning. By generating 
synthetic data points for the minority class, this 
technique can balance the data distribution and 
enhance the performance of the ML models. The 
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balanced data obtained after implementing SMOTE are 
shown in Figure 4. 

 

 

Figure 1. The proposed framework block diagram 

 

Figure 2. Colormap Visualization Technique 

 
Figure 3. Outliers Detection 

 

 
Figure 4. Target Class Distribution 

B. BAYESIAN HYPERPARAMETER OPTIMIZATION: 
Bayesian hyperparameter optimization is a powerful approach 
for tuning the hyperparameters of ML models. It is a 
probabilistic method that uses Bayesian optimization to search 
for the optimal hyperparameters of a model. The goal of 
Bayesian hyperparameter optimization is to find the set of 
hyperparameters that maximizes the expected improvement 
(EI) of the objective function. EI is defined as the difference 
between the expected value of the objective function at the 
current best set of hyperparameters and the expected value of 
the objective function at the candidate set of hyperparameters. 
The candidate set of hyperparameters was selected based on 
the probabilistic model of the objective function.  

The equations for Bayesian hyperparameter optimization 
can be written as follows: 

1. Define the prior distribution over the objective 
function:  

f ~ GP (m, k),  (1) 

where m is the mean function and k is the covariance 
function. 

2. Evaluate the objective function at the current best set 
of hyperparameters:  

y_best = max (y_1, y_2, ..., y_n). (2) 

3. Compute the expected improvement: 

EI(x) = E [max (y – y_best, 0)], (3) 

where y is the value of the objective function at x. 
4. Update the probabilistic model based on the 

observed data:  

f | D ~ GP (m_post, k_post), (4) 

where D is the set of observed data and m_post and 
k_post are the posterior mean and covariance 
functions, respectively. 

5.  Select the next set of hyperparameters to evaluate:  

x_next = argmax (EI(x).          (5) 
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B. GENTLEBOOST: 
The GentleBoost algorithm is an ML algorithm used to 
transform weak classifiers into strong classifiers. It is a variant 
of the AdaBoost algorithm, designed to be more robust to 
noisy data and outliers. The GentleBoost algorithm works by 
iteratively adding weak classifiers to the ensemble, with each 
new classifier trained on a weighted version of the training 
data. The weights are adjusted after each iteration to give 
more importance to the misclassified examples, which helps 
improve the performance of the ensemble. The algorithm is 
called “gentle” because it places less emphasis on 
misclassified examples than AdaBoost, which can be more 
prone to overfitting. The equations for the GentleBoost 
algorithm are as follows:   

1. Initializing the weights for the training examples: 

    𝒘𝒊 = 1/N, for i = 1, 2, ..., N, (6) 

where N is the number of training examples. 
2. For t = 1, 2, ..., T, do: 

𝑎௧ = argmin_a 𝑠𝑢𝑚௜ 𝑊௜ exp (-𝑦௜  𝑎௧ ℎ௧( (𝑥௜)),     (7) 

where ℎ௧ is the weak classifier being trained, 𝑦௜  is 
the label of the i-th training example, and a is a scalar 
parameter that controls the contribution of the weak 
classifier to the ensemble. 

Updating the weights: 

   𝑊௜ = 𝑊௜ exp (-𝑦௜  𝑎௧ ℎ௧( (𝑥௜))      (8) 

Normalizing the weights: 

    𝑊௜= 𝑊௜ / 𝑠𝑢𝑚௝ 𝑊௝  (9) 

3. Returning the final classifier: 

    H(x) = sign (𝑠𝑢𝑚௧ 𝑎௧ ℎ௧(x))) (10) 

C. EVALUATION METRICS:  
The proposed model is evaluated using accuracy, recall, F-
measure, and precision, which are calculated through the 
following:  
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
்௉ା்ே

்௉ା்ேାிேାி
                (11) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்௉

்௉ାி௉
                            (12) 

𝑅𝑐𝑎𝑙𝑙 =
்௉

்௉ା
                                    (13) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
ଶ×௉௥௘௖௜௦௜௢௡×ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖
,       (14) 

where:  
TP = True Positive 
FP = False Positive  
TN = True Negative 
FN = False Negative. 
 

III. RESULTS AND DISCUSSION 
Two distinct approaches are employed to assess the 
performance of the proposed framework. In the first approach, 
the original dataset without preprocessing was used to train 
the proposed optimized GentleBoost model. The resulting 
performance of this model was then compared with that of 
three other cutting-edge models.    

In the second approach, outliers were eliminated and the 
target class distribution was balanced using the SMOTE 
technique. Subsequently, the ML models were trained. 

The outcomes of all the approaches under different 
circumstances are given below. 

A. THE FIRST APPROACH (DOING MODELS TRAINING 
WITH ORIGINALDATASET): 
In this approach, every model is trained using the original 
dataset. Using 5-fold cross-validation, the study validated the 
performance of each model. The performance outcomes for 
all models are discussed below: 

- SVM Classifier with Bayesian Optimization: 
Table 2 shows that the accuracy of the optimized SVM 
classifier varied from 90.2% to 91%. The mean accuracy was 
90.6%, with the highest score being 91% and the minimum 
score falling to 90.2%. A standard deviation of 0.23 was 
noted. 

Table 2. First approach SVM classifier performance 
analysis  

Experiments Accuracy (%) Mean (%) SD 
#1 91 

90.6 0.23 

#2 90.7 
#3 90.5 
#4 90.2 
#5 90.7 
#6 90.5 
#7 90.7 
#8 90.7 
#9 90.3 

#10 90.8 

 
The confusion matrix for the top-performing SVM is 

displayed in Figure 5, and Table 3 presents the ideal 
hyperparameters for the SVM classifier. This classifier 
achieved a recall of 89.3%, precision of 47.2%, and F1-score 
of 61.8%. 

Table 3. Evaluation metrics and SVM optimal 
hyperparameter of the first approach 

Hyperparameter Value 
Evaluation metrics 

Recall Precision F1-score 
Multiclass method One-VS-One 

89.3% 47.2% 61.8% 
BOX constraint level 965.3563 

Kernel function Gaussian 
Kernel scale 115.5548 
Standardize data  False 

 

 

Figure 5. Confusion matrix of SVM classifier 

- ANN classifier with Bayesian Optimization: 

As shown in Table 4, the accuracy of the optimized ANN 
classifier ranges between 90.2% and 91%, with an average 
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accuracy of 90.8%. The maximum accuracy achieved is 91%, 
whereas the lowest is 90.2%. A standard deviation of 0.3 is 
observed. 

Table 4. First approach ANN classifier performance 
analysis 

Experiments Accuracy (%) Mean (%) SD 
#1 90.9 

90.8 0.3 

#2 90.2 
#3 91 
#4 91 
#5 91 
#6 90.4 
#7 91 
#8 90.5 
#9 90.5 

#10 91 

 
Figure 6 displays the confusion matrix of the ANN that 

performs the best, and the optimal hyperparameters for the 
ANN classifier are presented in Table 5. The ANN classifier 
attained a recall of 90.5%, precision of 46.3%, and F1-score 
of 61.3%. 

Table 5. Evaluation metrics and ANN Classifier optimal 
hyperparameter of the first approach 

Hyperparameter Value 
Evaluation metrics 

Recall Precision 
F1-

score 
Number of fully connected 
layers 

1 

90.5% 46.3% 61.3% 
Activation None 
Standardize data Yes 
Regularization strength 
(Lambda) 

1.711e-08 

First layer size 7 

 

 

Figure 6. Confusion matrix of ANN Classifier 

- KNN classifier with Bayesian Optimization: 

As shown in Table 6, the accuracy of the optimized KNN 
classifier fluctuates between 89.3% and 91%. The average 
accuracy is 90.48%, with the peak score reaching 91% and the 
lowest score dipping up to 89.3%. A standard deviation of 
0.44 is observed. 

The best-performing KNN confusion matrix is shown in 
Figure 7, and the optimal hyperparameters for the KNN 
classifier are listed in Table 7. The classifier achieved a recall 
of 82.3%, a precision of 52.8%, and an F1-score of 64.3%. 

Table 6. First approach KNN performance analysis  
Experiments Accuracy (%) Mean (%) SD 

#1 90.5 

90.48 0.44 

#2 90.5 
#3 90.7 
#4 89.3 
#5 90.5 
#6 90.3 
#7 90.7 
#8 90.8 
#9 91 

#10 90.5 

 

Table 7. Evaluation metrics and KNN Classifier optimal 
hyperparameter of the first approach 

Hyperparameter Value 
Evaluation metrics 

Recall Precision F1-score 
Number of neighbors 15 

82.3% 52.8% 64.3% 
Distance metrics Chebyshev 
Distance weight Equal 
Standardize data False 

 
 

 

Figure 7. Confusion matrix of KNN Classifier 

- GentleBoost with Bayesian Optimization: 

As shown in Table 8, the accuracy of the optimized 
GentleBoost classifier varies from 90.7% to 91.7%. The mean 
accuracy is 91.1%, with the highest score reaching 91.7% and 
the lowest score dropping to 90.7%. A standard deviation of 
0.35 is noted. 
 

Table 8. First approach GentleBoost performance analysis 
Experiments Accuracy (%) Mean (%) SD 

#1 91.3 

91.1 0.35 

#2 91.2 
#3 90.7 
#4 91.7 
#5 91.4 
#6 90.7 
#7 90.7 
#8 90.7 
#9 91.4 

#10 91.2 

 
The optimal hyperparameters for the GentleBoost 

classifier, resulted in an accuracy of 91.7%, recall of 88.8%, 
precision of 52%, and F1-score of 65.6%, are presented in 
Table 9. The best-performing confusion matrix for 
GentleBoost is shown in Figure 8. 
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Table 9. Evaluation metrics and GentleBoost optimal 
hyperparameter of the first approach 

Hyperparameter Value 
Evaluation metrics 

Recall Precision F1-score 
Number of learners 10 

88.8% 52% 65.6% Learning rate 0.0274 
Maximum number of splits 4 

 
 

 

Figure 8. Confusion matrix of GentleBoost Classifier 

B. SECOND APPROACH (DOING OUTLIERS DETECTION 
AND DOING SMOTE TECHNIQUE): 

SMOTE technology and outlier removal are two important 
techniques used in data preprocessing for ML models. These 
techniques help improve the model performance by balancing 
imbalanced datasets and eliminating extreme values that may 
skew our results. 

A discussion of the results showed by the models is given 
below. 

- SVM Classifier with Bayesian Optimization: 

As indicated in Table 10, the accuracy of the optimized SVM 
classifier ranges from 87.7% to 95.6%. The accuracy rate of 
the model is 90.8%, with the highest accuracy at 95.6% and 
the worst accuracy at 87.7%. The standard deviation is 2.3. 

 

Table 10. Second approach SVM performance analysis 
Experiments  Accuracy (%) Mean (%) SD 

#1 89.6 

90.8 2.3 

#2 90.1 
#3 88.3 
#4 89.5 
#5 92.3 
#6 92.5 
#7 92.6 
#8 89.5 
#9 95.6 

#10 87.7 

 
Figure 9 shows the confusion matrix of the best 

performance of SVM, and Table 11 lists the optimal 
hyperparameters of the SVM classifier, which has the best 
accuracy of 95.6%, recall of 94%, precision of 97.4%, and F1-
score of 95.7%. 
 

Table 11. Evaluation metrics and SVM optimal 
hyperparameter of the second approach 

Hyperparameter Value 
Evaluation metrics 

Recall Precision F1-score 
Multiclass method One-VS-All 

94% 97.4% 95.7 
BOX constraint level 2.4105 
Kernel function Gaussian 
Kernel scale 5.2326 
Standardize data  False 

 
 

 

Figure 9. Confusion matrix of SVM classifier 

 
- ANN classifier with Bayesian Optimization: 

Table 12 shows that the accuracy of the optimized ANN 
classifier varies from 91.6% to 94%. The accuracy rate of the 
model is 92.7%, with the highest accuracy at 94% and the 
worst accuracy at 91.6%. The standard deviation is 0.79. 

Table 12. Second approach ANN performance analysis 
Experiments Accuracy (%) Mean (%) SD 

#1 92.5 

92.7 0.79 

#2 91.9 
#3 92 
#4 92.3 
#5 92.5 
#6 93.8 
#7 93.2 
#8 91.6 
#9 93.5 

#10 94 

 
The optimal hyperparameters for the ANN classifier, 

which has the best accuracy of 94%, recall of 92.9%, 
precision of 95.1%, and F1-score of 94%, are listed in Table 
13, and Figure 10 shows the confusion matrix of the best 
performance of the ANN. 

Table 13. Evaluation metrics and ANN optimal 
hyperparameter of the second approach 

Hyperparameter Value 
Evaluation metrics 

Recall Precision 
F1-

score 
Number of fully connected 
layers 

3 

92.9% 95.1% 94% 

Activation Relu 
Standardize data Yes 
Regularization strength 
(Lambda) 

0.00018859 

First layer size 290 
Second layer size 109 
Third layer size 34 
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- KNN classifier with Bayesian Optimization: 

As demonstrated in Table 14, the accuracy of the optimized 
KNN classifier fluctuates between 93.3% and 94.8%. The 
average accuracy is 94.1%, with the peak score reaching 
94.8% and the lowest score dipping to 93.3%. A standard 
deviation of 0.56 is observed. 
 

 

Figure 10. Confusion matrix of ANN Classifier 

 

Table 14. Second approach KNN classifier performance 
analysis 

Experiments Accuracy (%) Mean (%) SD 
#1 94.8 

94.1 0.56 

#2 94.3 
#3 93.3 
#4 94.3 
#5 93.3 
#6 94.3 
#7 94.4 
#8 93.3 
#9 93.9 

#10 94.8 

 
The ideal hyperparameters for the KNN classifier yielding 

an accuracy of 94.8%, recall of 93.4%, precision of 96.2%, 
and F1-score of 94.8% are listed in Table 15. Additionally, 
Figure 11 illustrates the confusion matrix for the KNN top-
performing results. 

Table 15. Evaluation metrics and KNN Classifier optimal 
hyperparameter of the second approach 

Hyperparameter Value 
Evaluation metrics 

Recall Precision F1-score 
Number of neighbors 2 

93.4% 96.2% 94.8% 
Distance metrics City block 
Distance weight Inverse 
Standardize data True 

 

 

Figure 11. Confusion matrix of KNN Classifier 

- GentleBoost with Bayesian Optimization: 

As evidenced in Table 16, the performance of the optimized 
GentleBoost classifier exhibits a range of 95.1% to 95.3% in 
terms of accuracy. The average accuracy marks at 95.2%, 
with the peak at 95.3% and the nadir at 95.1%. A standard 
deviation of 0.008 is documented. 

Table 16. Second approach GentleBoost classifier 
performance analysis 

Experiments Accuracy (%) Mean (%) SD 
#1 95.1 

95.16 0.008 

#2 95.1 
#3 95.3 
#4 95.1 
#5 95.2 
#6 95.3 
#7 95.1 
#8 95.1 
#9 95.1 

#10 95.2 

 
The optimal hyperparameters for the GentleBoost 

classifier, resulted in an accuracy of 95.3%, recall of 98.2%, 
precision of 92.3%, and F1-score of 95.2%, are presented in 
Table 17. The best-performing confusion matrix for 
GentleBoost is shown in Figure 12. 

Table 17. Evaluation metrics and GentleBoost Classifier 
optimal hyperparameter of the second approach 

Hyperparameter Value 
Evaluation metrics 

Recall Precision F1-score 
Number of learners 246 

98.2% 92.3% 95.2% Learning rate 0.0011 
Maximum number of splits 1240 

 

 

Figure 12. Confusion matrix of GentleBoost Classifier 

C. PERFORMANCE COMPARISION: 

As demonstrated in Tables 18 and 19, the performance 
evaluation of the proposed model and three other state-of-the-
art models is conducted based on their test accuracy rates. The 
optimized GentleBoost model outperforms the others with an 
average test accuracy of approximately 95.16% (mean), 
reaching 95.3% at its best, 95.1% at its lowest, a recall of 
98.2%, and a precision of 92.35. f1-score is 95.2%, and the 
standard deviation is 0.008. 
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Table 18. Performance analysis of the second approach in 
terms of test accuracy 

Models 
Mean 
(%) 

Best 
(%) 

Worst 
(%) 

SD 

SVM classifier with Bayesian 
Optimization 90.8 95.6 87.7 2.3 

ANN classifier with Bayesian 
Optimization 

92.7 94 91.6 0.79 

KNN classifier with Bayesian 
Optimization 

94.1 94.8 93.3 0.56 

Proposed  95.16 95.3 95.1 0.008 

 
Table 19. Performance comparison of the second 

approach 

ML Models 
Precision 

(%) 
Recall 

(%) 
F1-Score 

(%) 
SVM classifier with Bayesian 
Optimization 

97.4 94 95.7 

ANN classifier with Bayesian 
Optimization 

95.1 92.9 94 

KNN classifier with Bayesian 
Optimization 

96.2 93.4 94.8 

Proposed  92.3 98.2 95.2 

 
Furthermore, Table 20 shows the superiority of the 

proposed model compared with previous studies, with an 
accuracy rate of 95.2%. 
 

Table 20. Evaluation of performance in comparison to 
similar works of literature 

Author Year Method Accuracy (%) 

[28] 2018 

Twelve Different SVMs, based 
on the proposed Weighted Area 
Under the Receiver Operating 
Characteristic Curve Ensemble 
(WAUCE) 

76.42 

[23] 2019 
Gradient Boosting with Genetic 
Algorithm 

75.03 

[25] 2020 
Improved Random Forest (RF)-
based rule extraction (IRFRE) 

80.45 

[29] 2020 J48 93.02 
[27] 2022 RF 94.64% 

Proposed 2023 
GentleBoost with Bayesian 
Optimization 

Test accuracy rate 
= 95.2  

 

IV. CONCLUSION  
According to the above mentioned, we can conclude that the 
proposed framework based on the GentleBoost algorithm and 
Bayesian optimization has the potential to improve the 
accuracy and efficiency of predicting the survivability of BC 
patients. The technique of removing outliers is used to 
improve the performance of the ML models. Additionally, the 
SMOTE technique is applied to balance the target class. 

Table 17 exhibited the superiority of the proposed method 
in terms of accuracy rate compared with a broad spectrum of 
related studies. With the preprocessed dataset, the proposed 
optimized GentleBoost algorithm obtained an accuracy rate of 
95.2 %, whereas the prediction accuracy rate of the optimized 
GentleBoost algorithm using the original dataset was 91.1%. 
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