
 

524 VOLUME 22(4), 2023 

Date of publication DEC-31, 2023, date of current version MAR-05, 2023. 
www.computingonline.net / computing@computingonline.net 

Print ISSN 1727-6209 
Online ISSN 2312-5381 
DOI 10.47839/ijc.22.4.3361 

Coalitional Game Strategy and TSSM for 
Efficient Load Balancing in Software 

Defined Networking 
G. NISHANTHI, R. DEEPA, S. GAYATHRI, B. JAISON 

RMK Engineering College, Chennai 601206, India 

Corresponding author: B. Jaison (e-mail: bjn.cse@rmkec.ac.in). 

 

 ABSTRACT Using distributed SDN control, software defined networking (SDN) delivers additional flexibility 
to network management, and it has been a significant breakthrough in network innovation. Switch migration is 
often used for distributed controller workload balancing. The time-sharing switch migration (TSSM) scheme 
proposed a strategy in which multiple controllers are allowed to share the workload of a switch via time sharing 
during an overloaded condition, resulting in reduced ping-pong controller difficulty, fewer overload occurrences, 
and improved controller efficiency. However, it requires more than one controller to accomplish, it has greater 
migration costs and higher controller resource usage during the TSSM operating time. As a result, we presented a 
coalitional game strategy that optimizes controller selection throughout the TSSM phase depending on flow 
characteristics. The new TSSM method reduces migration costs and controller resource usage while still providing 
TSSM benefits. For the sake of practicality, the proposed strategy is implemented using an open network operating 
system. The experimental findings reveal that, as compared to the typical TSSM system, the proposed technique 
reduces migration costs and controller resource usage by approximately 18%. 
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I. INTRODUCTION 
HE fast proliferation of cloud computing, big data 
applications, the internet of multimedia things, and 

increased data traffic have significantly raised network 
management difficulties. The traditional network architecture 
system consists of a data plane and a control plane in each 
switch, with the former handling packet processing and the 
latter handling decision making and administration. As a result, 
upgrading the current algorithms and policies to the switches is 
quite hard and time consuming because all the related switches 
in the given network must be updated one by one by system 
administrators or workers [1]. 

Today, the software defined networking method creates a 
distinct perspective of network administration in networking 
applications by shifting the control plane in switches to a 
central device known as the controller. As a result, the 
controller may handle many switches in the network. 
Monitoring and control of network switches are simplified in 
this current method as compared to traditional network 
management techniques, because the controller unit can offer 
such information about the switches. 

Furthermore, by creating a set of rules in the controller, the 

newest algorithms and control policies may be quickly updated 
to the switches [2]. Aside from that, SDN may support a broad 
range of applications, such as (i) defending against cyber-
attacks, (ii) recognizing malicious access points, and (iii) 
offering anonymous authentication, among others [3-7]. 

A single controller in a large network is a difficult option 
because it creates a bottleneck in network management 
performance. As a result, distributed SDN control (DSC) is 
demanded in network applications, and it acts as a promising 
solution in large network management with many switches [8]. 
The DSC enables many controllers to communicate with one 
another to administer the whole network. Where each 
controller manages a subset of switches (i.e., a subnet), and 
processes may be transferred among controllers to facilitate 
cooperation. Each controller is responsible for dividing the 
workload for the subnets and reassigning the burden of its 
switches through the periodical check-up of each subnet, which 
is known as controller placement [9]. The controller placement 
is mostly focused on load balancing and is carried out using a 
variety of techniques such as work group control technique 
[10], deep reinforcement learning technique [11], and so on. 
The upshot of such control strategies may significantly alter the 
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switches in the subnet, causing the subnet to become unstable 
via ping-pong operation. Furthermore, controller placement 
strategies are not thought to be successful for short-term flows 
such as distributed denial of service and impulses [12]. 

Switch migration allows for a smoother change of subnets 
in a shorter amount of time and addresses the concerns. A 
switch migration approach examines the workload state of each 
controller in the network in each time frame (or time interval 
or period) to determine if they are overloaded (busy) or lightly 
occupied (available to share other works). If a network is 
overloaded, the migration technique relocates a switch from the 
heavily loaded controller subnet to the lightly loaded controller 
subnet. Most existing switch migration methods follow the 
smallest slice of the migration, which is one single switch 
transferred at the start of the period. Once migrated, the switch 
remains in the most recent sub-net until the switch is picked for 
the following period. Most crucially, these migration methods 
always need a controller to supervise a single switch for the 
duration of the migration. As a result, the controller in these 
systems encounters ping-pong problems under elephant flow 
situations (i.e., flow conveys numerous packets) and faces the 
major problem of subnet instability [13]. 

II.  LITERATURE REVIEW 
Several studies have been conducted throughout the years to 
highlight the numerous difficulties in the DSC network. 
Traditionally, dynamic controller placement methods are used 
to achieve controller load balancing. Chan et al. [14] presented 
a strategy for minimizing service interruption time by easily 
moving the process from one controller to another. In [15], it 
was described how a lightly loaded controller could operate as 
a leader in the event of a breakdown of the standard leader 
controller unit. Controller placement approaches and issues 
were discussed in [9], which emphasizes the need of controllers 
maintaining fairness while sharing their tasks. When compared 
to previous controller placement methods, [16] provided a 
dependable deployment strategy with the goal of minimizing 
packet loss and improving network stability. Kim et al [17] 
developed a strategy for improving the output of a distributed 
datastore in an Open Daylight controller cluster by regularly 
distributing shared leaders to cluster members. In [18], a 
system was described in which controllers collaborate to 
redirect traffic to prevent congestions during busy or 
overloaded periods on switches. In [19], it was proposed a 
software defined cyber seeking system with a hybrid controller 
for cloudlets and local networks. Work [20] presented 
prediction-based controllers, which forecast network demand 
and conduct device transfers based on prediction. The 
controller placement research, such as the work group control 

approach and the deep reinforcement learning technique were 
provided in [10, 11], where these strategies were ineffective 
during impulses and distributed denial of service, etc. Aside 
from the dynamic controller placement technique, approaches 
for DSC workload balancing are classified into three types: (i) 
switch migration, (ii) flow migration, and (iii) flow splitting. 

Switch Migration: To reduce burden, switch control can be 
migrated from overloaded controllers to lightly laden 
controllers. In [21], switch migration in consideration of a 
controller's CPU and memory allocation exceeding its 
threshold level was discussed, but it did not define the method 
of selecting the targeted controllers. Work [22] discussed 
switch migration utilizing the Q-learning approach, which had 
lowered the standard deviation of the controller workload. Cui 
et al. [23] utilized the controller's reaction time to migrate 
switches. This strategy transfers the switch with the greatest 
load of the controller in the shortest amount of time. In [24], it 
was suggested a strategy for selecting targeted controllers for 
switch migration based on CPU use, memory capacity, and 
bandwidth, among other factors. Hu et al. [25] suggested a 
simulated annealing algorithm for selecting the targeted 
controller to reduce the cost of switch migration. 

Flow Migration: Instead of migrating an entire switch, the 
flow migration approach merely transfers the hardness (i.e., 
flow beyond the threshold level) of the flow. Hu et al. presented 
an approach in which a super controller administers each 
controller in the system and controls the flow controlled by 
them [26]. Work [27] presented a game theory strategy for 
managing each controller flow through task exchange. When 
compared to standard flow migration methods, Maity et al. [28] 
offered a traffic aware consistent approach for minimizing flow 
migration duration and obtained a 15% reduction in flow 
migration time. Furthermore, using a traffic-aware flow 
migration technique, work [29] offered a method to lower data 
plane load and obtained a 13% reduction when compared to the 
two-phase update approach. 

Flow Splitting: This approach enables a switch to be 
managed by many controllers at the same time. Gorkemli et al. 
[30] presented a solution for flow splitting utilizing virtual 
overlay on the data plane that switches must negotiate with 
their controllers. In [31], it was developed a convex quadratic 
programming-based solution for load balancing and decreasing 
new switch-controller appointments by modelling the mapping 
between controllers and switches. 

However, due to synchronization and the complexity of the 
design, a switch cannot be operated by more than one controller 
at the same time. As a result, flow migration and flow splitting 
methods violate the OpenFlow protocol and cannot be used in 
the real-time controller platform. 

 

 

 
(a) Hierarchical method 

 

 
(a) Flat method 

Figure. 1. Control methods for the DSC architecture 

 



 G. Nishanthi et al. / International Journal of Computing, 22(4) 2023, 524-533 

526 VOLUME 22(4), 2023 

A. PROBLEM DESCRIPTION AND CONTRIBUTION 
As described in the literature section, most switch migration 
solutions struggle with the ping-pong challenge. The following 
example explains the ping-pong difficulty of the controller. 
Consider two controllers [𝐶௑ and 𝐶௒] and three switches  
[𝑆௅, 𝑆ெ, 𝑆ே] in a network with a maximum manageable 
workload of 200 PIMs per second for each controller. Switches 
𝑆௅, 𝑆ெ, and 𝑆ே generate 120, 160, and 120 PIMS every period, 
accordingly. 𝐶௑ manages switches 𝑆௅ and 𝑆ெ at time t, and 
controller 𝐶௒ manages switch 𝑆ே. Because  
Υ஼೉

= 𝛿௅(௧) + 𝛿ெ(௧)= 120 + 160 > λ஼೉
 (200 PIMS), 𝐶௑ is 

overloaded and requires switch migration. In most switch 
migration strategies, an overloaded controller will request and 
take over a switch from other controllers for an extended 
period. As a result, at time t+1, Switch 𝑆௅ is moved to controller 
𝐶௒ 's subnet. However, if Υ஼ೊ

= 𝛿ே(௧) + 𝛿௅(௧) = 120 + 120 > λ஼ೊ
 

(200 PIMS) at period t+1, controller 𝐶௒ will be overloaded. As 
a result, controller 𝐶௒ requests that 𝐶௑ take over a switch again 
at time t+2, increasing the complexity of ping-pong. 

W.K. Lai et al. [32] recently suggested a time-sharing 
switch migration technique (TSSM) that mitigates controller 
ping-pong by spreading the burden of a switch that is monitored 
by two controllers at the same time during overloaded 
situations. It proposes a switch migration approach in which the 
burden of the switch is split across two controllers over a 
certain time period. Using the preceding example, at time t+1, 
𝐶௑ handles 40 PIMs of 𝑆௅, while 𝐶௒ manages the remaining 80 
PIMs via migration. Both controllers 𝐶௑ and 𝐶௒ are regulating 
the workload of switch 𝑆௅ currently. As a result, 𝐶௑'s workload 
is Υ஼೉

= 𝛿௅(௧) + 𝛿ெ(௧) = 40 + 160 = λ஼೉
 (200 PIMS), while 𝐶௒ 's 

workload is Υ஼ೊ
= 𝛿ே(௧) + 𝛿௅(௧) = 120 + 80 = λ஼ೊ

 (200 PIMS), 
indicating that none of the controllers is overloaded (busy) in 
period t+1. Similarly, at time t+2, 𝐶௒ processes 80 PIMs before 
sending the remaining 20 PIMs to the 𝐶௑ controller subnet. The 
TSSM technique can effectively overcome the controller's 
ping-pong issue using this strategy. 

It provides an approach in which two controllers, namely an 
overload controller (one) and a lightly loaded controller (one), 
are merged and the switch is relocated from an overloaded to a 
lightly loaded controller subnet at an appropriate moment in 
time. When compared to existing switch migration methods 
such as group-based dynamical controller placement [10], 
churn-triggered migration [30], and best-fit migration [32], the 
results of this technique show that it significantly reduces 
overload occurrences of controllers while effectively balancing 
the workload of all controllers with improved controller 
efficiency. Nonetheless, more than one lightly loaded 
controller operation in the TSSM yields greater controller 
efficacy than the original (i.e., stated in the research) despite 
the additional switch migration cost. Furthermore, because the 
migration switch is managed (i.e., controlled) by more than one 
controller in the network, this technique consumes additional 
controller resources during TSSM operation. 

As a result, we suggest an approach that optimizes the 
lightly loaded controller selection during the TSSM period and 
enables for more than one lightly loaded controller to be used 
for switch migration during the TSSM period without 
increasing migration cost. The controller is chosen based on 
flow characteristics using a coalitional game strategy 
algorithm, which decreases controller resource consumption by 
lowering the number of controllers involved in flow 
processing. The new TSSM method reduces migration costs 

and controller resource usage while also providing TSSM 
advantages. For its feasibility, the proposed scheme is 
implemented using the open network operating system 
(ONOS), which can respond to approximately one million flow 
processing requests per second. 

B.  STRUCTURE OF THE PAPER 

The following shows the structure of the paper. The literature 
review and problem definition of this study are presented in 
Section II of this paper. Section III describes the fundamentals 
of the distributed SDN control network, OpenFlow protocol 
rules, and network model. Section IV discusses the proposed 
enhanced TSSM scheme and matching algorithms, and Section 
V presents the performance evaluation of the proposed 
approach. Finally, in Section VI, the conclusion statement is 
presented. 

III.  DISTRIBUTED SDN CONTROLLER 
This section discusses the architecture of the distributed SDN 
control network, the switch transfer mechanism in the 
OpenFlow protocol, and network models. 

A.  DISTRIBUTED SDN CONTROL NETWORK    
ARCHITECTURE 
In a distributed SDN control network, two popular control 
methods are commonly used: (i) hierarchical control and (ii) 
flat control, also known as circular chain control [8]. In the 
hierarchical technique, the central distributed controller (called 
the leader) has a global perspective of the network and updates 
network regulations and newest algorithms to the sub 
controllers, as illustrated in Fig. 1. (a). The sub controller 
controls (oversees) the subnet of its switches and transmits its 
status to the leader. It should be emphasized that if the original 
leader is broken down in the hierarchical technique, a new 
leader will be chosen [15]. In the case of circular chain control, 
controllers have information about the network's local 
perspective and authority over its own subnet. The associated 
controllers exchange information in a distributed fashion, as 
shown in Fig. 1. (b). 

In this article, the hierarchical technique is used to 
implement the suggested switch migration methodology. The 
leader oversees monitoring the condition of each sub controller 
and implementing the TSSM scheme to pick the lightly loaded 
controller over the overloaded controller during flow 
variations, flow traffic, impulses, distributed denial of service, 
and so on. Following that, two sub controllers (overloaded and 
lightly laden) are committed to sharing workloads and 
migrating the switch as needed. 

To avoid undesired switch migrations, the threshold level 
of the sub controller is likewise established in the leader. When 
the workload of the controller exceeds the controller's threshold 
level, it is deemed overloaded, and it is selected based on the 
controller's maximum capacity and reserve capacity. 
Generally, network administrators recommend that the 
threshold level be set between 90 and 95% of the full capacity. 
The controller's threshold level is also stated as its maximum 
workload, and it is specified in Eq. (1). 

 
𝛷஼ = 𝜆஼ − 𝜐஼ ,    (1) 

 
where,  

𝛷஼ ⟶ Threshold workload level of the controller 
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𝜆஼ ⟶ Maximum workload capacity of the controller  
𝜐஼ ⟶ Reserve workload capacity of the controller. 

B.  SWITCH TRANSFER PROCESS IN OPENFLOW 
PROTOCOL 
OpenFlow allows switch transfers between subnets and 
establishes connections with many controllers. Each related 
controller 𝐶௑ determines the following duties from the 
perspective of switch 𝑆௅. 

 OFPCR_ROLE_EQUAL (Equal): This default role 
grants controller 𝐶௑ complete authority to switch 𝑆௅ 
and allows 𝐶௑ to send commands to 𝑆௅ and receive 
status information. Similarly, when 𝑆௅ is operating in 
this capacity, all controllers have complete access to 
it. 

 OFPCR_ROLE_SLAVE (Slave): When the controller 
𝐶௑ role is set to slave, 𝐶௑ can only read the state of 
switch 𝑆௅. 

 OFPCR ROLE MASTER (Master): It is similar to an 
equal role, and controller 𝐶௑ has full power over 𝑆௅. It 
is insisted, however, that only one controller (e.g., 𝐶௑) 
is considered a master controller for a switch 𝑆௅, and 
all other controllers are considered slaves to switch 𝑆௅.  

The OpenFlow protocol defines the switching process, 
which is seen in Fig. 2. The master controller initiates the 
switch transferring operation since it has complete control over 
the switch. For example, controllers 𝐶௑ and 𝐶௒ are the master 
and targeted (slave) controllers for the switch 𝑆௅, respectively. 
It is insisted that overloaded controllers use leader to move a 
switch to other controllers for workload balance (controller). 
After receiving a directive from the leader, the master 
controller (𝐶௑) sends a transferring request for switch 𝑆௅ to the 
targeted controller 𝐶௒. Following that, controller Cq requests 
that the switch 𝑆௅ alter the role of 𝑆௅ control to master rather 
than slave using the Role Request (Master) message, and the 
switch 𝑆௅ responds to 𝐶௒ with the Role Reply message 
(Master). After all, 𝐶௒ sends a notification message to 𝐶௑ 
indicating the successful migration of switch 𝑆௅, and controller 
𝐶௑  subsequently operates as a slave controller for switch 𝑆௅. 

OpenFlow protocol versions 1.2, 1.3, 1.4, and 1.5 enable 
switch migration (most recent version). It has been discovered 
that OpenFlow regulation simply instructs how to modify 
(migrate) the switches between controllers for their tasks and 
exchange messages between controllers. However, OpenFlow 
does not specify how to choose target controllers and switches 
for migration. The proposed enhanced TSSM method 
optimizes controller selection and determines when switch 
migration should occur during the TSSM period. 

C.  NETWORK MODELLING 
Let us imagine an SDN-based network with a collection 𝑆ே of 
switches and a collection 𝐶ே of controllers. A switch (e.g., 𝑆௅) 
in 𝑆ே is controllable by a controller in 𝐶ே (e.g., 𝐶௑) with the 
model of one switch is controlled by a controller concurrently 
advocated by OpenFlow, i.e., 𝐶௑ acts as a master controller for 
𝑆௅ and may be altered after the switch migration. 

Packet In messages (PIMs) sent from switches determine 
each controller's workload. Switch workload (𝛿(௧)) is calculated 
specifically by the number of PIMs created by a switch during 
each period 't'. Following that, controller workload capacity is 
defined as the maximum number of PIMS that may be 
processed in each period. For example, if controller 𝐶௑ 

manages switches 𝑆௔ to 𝑆௭, the workload of controller 𝐶௑ is 
determined as follows: 

Υ஼೉
= ∑  𝛿(𝑡)ௌ೥

ௌೌ
.   (2) 

In general, the controller's maximum workload (Υ஼) should 
be smaller than its maximum capacity (𝜆஼), considering the 
need for reserve load under unwanted scenarios such as flow 
fluctuation, sudden demand, and so on. Hierarchical control of 
DSC architecture is studied in this work; hence, the leader 
receives workload from all controllers at each period and 
directs switch migration across controllers, as necessary.   

IV. PROPOSED SWITCH MIGRATION SCHEME 
The controller placement technique or network operators are 
used to set the network switches at the first stage, with each 
switch managed by a master controller. As described in the 
preceding section, conventional switch migration methods 
include migrating a switch at the start of the period as well as 
migrating the entire switch even if it is not necessary. As a 
result, the link between controllers and switches remains 
constant for the duration. In the case of TSSM, switch 
migration is enabled via time-sharing, and switches in the 
network can dynamically change their connections with the 
controller at any moment. Furthermore, as mentioned in section 
2.1, the TSSM approach efficiently overcomes the controller 
ping-pong challenge. Nonetheless, controller resource 
consumption is greater during the TSSM time, which may raise 
the method's migration cost when compared to other migration 
techniques since it allows more than one controller to share 
their (switch) loads during the TSSM period. It is discovered 
that migration costs are approximated based on the number of 
controllers and switches used. As a result, this research 
suggests an approach that greatly decreases the number of 
controllers associated with switches during time sharing 
migration depending on flow characteristics. We developed a 
coalitional game strategy to establish the best possible 
connection between switches and controllers during the time-
sharing migration phase, reducing the number of controllers 
connected with the switch and, as a result, controller resource 
consumption and migration cost are reduced. The algorithms 
listed below are intended to ensure the effective completion of 
the proposed switch migration method. 

ALGORITHM 1:  IDENTIFYING OVERLOADED AND 
LIGHTLY LOADED CONTROLLERS 
This algorithm ensures that all overloaded (referred to as busy) 
and lightly loaded controllers (referred to as assistant or target 
controllers) in the given network are found, as represented by 
𝐶௕௨௦௬ and 𝐶௟௜௚௛௧ , respectively. The burden of each controller 
(e.g., Υ஼೉

) is evaluated using Eq. (2) by adding the loads of each 

switch in the subnet (e.g., 𝛿௅,௧
(௑)

+ 𝛿ெ,௧
(௑)

+ ⋯ ) and is specified in 

 

 

Figure 2. Switch transferring process in OpenFlow 
Protocol 
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the method code between 3 and 5 lines. Following that, the 
controller workload (e.g., Υ஼೉

) is compared to the threshold 
level (𝛷஼_௑), and if it is more than the threshold level, the 
controller is deemed overloaded and included in the overload 
controllers (described in lines 6 -7) unit in the leader. Then, in 
line 8, lightly laden controllers are chosen based on a lightly 
loaded coefficient ´𝜇´, with a value between 0.8 and 0.85 
(specified by network managers). Following that, the lightly 
loaded coefficient is multiplied by the threshold value, and if 
the workload of the controllers is less than the multiply value, 
it is regarded a lightly loaded controller and is added to the 
leader's lightly loaded controller unit. It is required that switch 
migration take place when both the 𝐶௕௨௦௬ and 𝐶௟௜௚௛௧  controllers 
are not empty, as shown in line 10.  

ALGORITHM 2:  ORDERING THE OVERLOADED AND 
ASSISTING CONTROLLERS, AS WELL AS SWITCH 
MIGRATION 
This algorithm's goal is to distribute workload across 
controllers by identifying a pair of overloaded and lightly 
burdened controllers. The SORT function aids in the 
organization of overloaded and lightly laden controllers in 

decreasing workload order. Line 1 of the code sorts the 
overload controllers, whereas line 2 sorts the information about 
the lightly loaded controller. As a result, a controller with very 
excess capacity will be prioritized in contributing to the task of 
an overloaded (busy) controller. The code in lines 3–17 tackles 
each controller in the network using a for-loop, from the most 
overloaded to the least overloaded. Line 4 arranges the switches 
under 𝐶௑ management in decreasing order based on their 
workload. The while loop on lines 5-16 continues to reduce the 
burden of the 𝐶௑ by moving a switch until it reaches the 
threshold workload. However, if there is no assistant controller 
to assist (i.e., 𝐶௟௜௚  is empty) and there are still overloaded 
controllers in the domain, algorithm 2 ends as shown in lines 
6-7. Otherwise, if we wish to pick a lightly loaded controller 𝐶௒ 
for workload sharing, the time-sharing switch migration 
technique must be enabled. Initially, Algorithm 3 is used to 
determine the best controllers [𝐶௒ଵ, 𝐶௒ଶ,...] for TSSM in terms 
of controller resource usage and migration cost. Following the 
discovery of the optimal controllers, the TSSM scheme based 
on Algorithm 4 is run. As seen in line 10, the result of 
Algorithm 4 gives three output parameters. In which ´𝜏´ 
specifies the time switch 𝑆௅ should migrate to other controllers, 

Algorithm 1: Identifying Overloaded and Lightly Loaded Controllers 

1 𝐶௕௨௦௬ ← ø and 𝐶௟௜௚௛௧  ← ø ; 
2 foreach  𝐶௑ ϵ 𝐶 do 
3  Υ஼೉

 ← 0 ; 
4  foreach 𝑆௅ ϵ 𝑆௑ do 

5   Υ஼೉
← Υ஼೉

 +  𝛿௅,௧
(௑) ; 

6  if Υ஼೉
 > 𝛷஼೉

 then 
7   𝐶௕௨௦௬ ← 𝐶௕௨௦௬   U { 𝐶௑} ; 
8  else if Υ஼೉

 < 𝜇 × 𝛷஼೉
 then 

9   𝐶௟௜௚௛௧  ← 𝐶௟௜௚௛௧   U { 𝐶௑} ; 
10 If 𝐶௕௨௦௬ ≠ ø and 𝐶௟௜௚௛௧ ≠ ø then 
11  Use Algorithm 2 for load balancing between  𝐶௕௨௦௬ and 𝐶௟௜௚௛௧  ; 

 

Algorithm 2:  Switch Migration Segment for Load Balancing 
1 SORT (𝐶௕௨௦௬ , Υ஼೉

 − 𝛷஼_௑); 
2 SORT (𝐶௟௜௚௛௧ , 𝛷஼_௒ − Υ஼ೊ

);  
3 foreach  𝐶௑ ϵ 𝐶௕௨௦௬  do  

4  SORT (𝑆௑  , 𝛿௅,௧
(௑)); 

5  while Υ஼೉
 > 𝛷஼_௑  do 

6  if 𝐶௟௜௚௛௧=  ø then 
7   Cease this module ; 
8  Pick the optimized controllers [𝐶௒ଵ, 𝐶௒ଶ,...]from 𝐶௟௜௚௛௧  ;  

9 
 (Controller-Switch Association Matrix ) ← Algorithm 3 (Request  PIM´s of Switch, Switches from 
𝐶௕௨௦௬) 

10   (𝑆௅, [𝜏ଵ , 𝜏ଶ , …] , [𝜌ଵ , 𝜌ଶ  , … ]) ← Algorithm 4 (𝐶௑ , [𝐶௒ଵ,   𝐶௒ଶ,...]) ; 
11  Transfer 𝑆௅ to [𝐶௒ଵ, 𝐶௒ଶ,...]’s subnet after [𝜏ଵ , 𝜏ଶ , …] units of  time;  
12   Υ஼೉

 ← Υ஼೉
− [𝜌ଵ , 𝜌ଶ  , … ]; 

13 
  Υ஼ೊ_భ

 ← 𝛷஼_௒ +  [𝜌ଵ , 𝜌ଶ  , … ] ; 
  Υ஼ೊ_మ

 ← 𝛷஼_௒ +  [𝑛ଵ , 𝑛ଶ , … ] ; 

14   if  Υ஼ೊ[భ,మ,… ]
 ≥ 𝜇 × 𝛷஼_௒[ଵ,ଶ,… ] then  

15   𝐶௟௜௚௛௧   ← 𝐶௟௜௚௛௧  \ , [𝐶௒ଵ, 𝐶௒ଶ,...]; 
16   else 
17   SORT (𝐶௟௜௚௛௧ , 𝛷஼_௒ − Υ஼ೊ

) ; 
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whilst '𝜌' specifies the number of PIMs to be migrated to each 
controller. Following that, workload updates of 𝐶௑ and [𝐶௒ଵ, 
𝐶௒ଶ,...] are performed in lines 11 to 13, and if [𝐶௒ଵ, 𝐶௒ଶ,...] 
exceeds the threshold level, these controllers are removed from 
the lightly loaded controllers as shown in line 14, otherwise 
these controllers are returned to the lightly loaded controller 
unit as shown in lines 17 and 2. 

ALGORITHM 3:  OPTIMIZATION OF THE CONTROLLER 
FOR THE TSSM SCHEME TO SAVE MIGRATION COSTS 
This algorithm's goal is to produce efficient controllers for 
TSSM operation. The optimized controller is chosen based on 
flow characteristics to decrease controller resource usage and, 
as a result, switch migration cost. The coalitional game strategy 
[33] is used for optimal controller selection and is shown in 
Algorithm 3. This algorithm requires the PIMs of each switch 
in the overloaded controller 𝐶௑, as well as the controller's 
threshold level, network topology map, and so on. Between 
lines 3 and 12, the flow sort function evaluates the total quantity 
of flow in each path and sorts it in ascending order. Lines 4-6 

execute and choose a controller that covers most of the switches 
in the route. 

ALGORITHM 4:  TIME TO SWITCH MIGRATION 
ESTIMATING SEGMENT 
After defining the best lightly loaded controllers (𝐶௒ଵ, 𝐶௒ଶ,...)  
using Algorithm 3, they are paired with an overloaded 
controller to accomplish three tasks using Algorithm 4. The 
tasks are as follows: (i) choose a switch (from an overloaded 
controller) to share their burden with lightly loaded controllers, 
(ii) compute the switch migration time (𝜏), and (iii) calculate 
the number of PIMs (𝜌) that lighter loaded controllers will 
process. Line 1 of Algorithm 4 is executed, with '∆௟௜௚௛௧ ' 
representing the remaining capacity of the lightly loaded 
controllers and '∆௢௩௘௥ ' representing the lowest amount of 
overload in the overloaded controllers. Following that, 
switches in the overloaded controllers are divided into two 
subnets, 𝑆௑

ఞ and 𝑆௑
ట, respectively; if the switch load is greater 

than ´∆´, it is sorted in 𝑆௑
ఞ with decreasing load order, and 𝑆௑

ట 

Algorithm 3:  Selection of Optimized Controller for TSSM Scheme 
1 Input: Organized light and busy controllers ={𝐶௕௨௦௬}, {𝐶௟௜௚௛௧}  obtained from Algorithm 2 ; 

2 SORT ( 𝛿௅,௧
(௑), 𝛿ெ,௧

(௑)
, 𝛿ே,௧

(௑)
, ..) ; 

3 Capacity and redundant load for each controller under a leader 
4 Traffic Matrix: 𝑇´ = [𝑇௑௒] 
5 Initialization: 𝑇 = [𝑇௑௒], 𝐶ே = [𝐶௑௒

´ ], 𝜆஼ , 𝜐஼ 

6 repeat  
7   Every switch performs its most desired migration. 

8   Initial migration pair 𝑆௅: 𝐶௑ → 𝐶௒; 

9  for all controllers do: 
10  if 𝑆௅: 𝐶௑ → 𝐶௒; and Υ஼ೊ

 ≤ 𝜆஼_௒ . 𝜐஼_௒ : satisfy migration does not  violate capacity constraint. 

11 
 if migration value (𝑆௡, 𝐶௡) < 0: consider a weight factor between  control resource consumption and 
 control traffic overhead. 

12   Implement switch migration selection 𝑆௅ → 𝐶௒ 
13   Update 𝐶ே = [𝐶௑௒

´ ]; 
14   end if 
15  end if 

16 end for 

17 Until no proposals have been made by the switches 

 
Algorithm 4:  Time to Switch Migration Estimating Segment 
1 Δ௢௩௘௥  ← min (Υ஼೉

 − 𝛷஼_௑) &  Δ௟௜௚௛௧  ← max (𝛷஼_௒ −   Υ஼ೊ
) ; 

2 𝑆௑
ఞ  ←  ø  and 𝑆௑

ట  ←  ø  ; 
3 foreach  𝑆௅ ϵ 𝑆௑  do 
4  if  𝛿௅,௧

(௑)
 ≥  Δ௢௩௘௥  then 

5   𝑆௑
ఞ  ← 𝑆௑

ఞ  ⋃ {𝑆௅ };  
6  else 
7   𝑆௑

ట  ← 𝑆௑
ట  ⋃ {𝑆௅ }; 

8 if 𝑆௑
ఞ  ≠ ø then  

9  𝑆௅ ← the last switch of 𝑆௑
ఞ ; 

10 𝜏 = ൣ% 𝑜𝑓 Δ௟௜௚௛௧  𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 Δ௢௩௘௥൧ × (𝐿௧) ; 
11 else   
12  𝑆௅ ←the first switch of 𝑆௑

ట; 
13  𝜏 ← 0 then 𝜌 ←  𝛿௅,௧

(௑)
 ;  

14 𝛿௅,௧
(௑)

 ← 𝛿௅,௧
(௑) – 𝜌 and 𝛿௅,௧

(௒) ← 𝜌 ; 
15 return  (𝑆௅, 𝜏, 𝜌 );  

 



 G. Nishanthi et al. / International Journal of Computing, 22(4) 2023, 524-533 

530 VOLUME 22(4), 2023 

includes remaining switches in the overloaded controllers; 
respecting codes are given in lines 2-7. In order to reduce the 
number of migrations (executed in lines 8 – 9), switches near 
´∆´ (might be the very last switch in 𝑆௑

ఞ based on load soring 
order) are selected in the 𝑆௑

ఞ subnet for migration. This is 
because a minimal amount of overload in the overloaded 
controllers can easily be placed in the lightly loaded controllers. 
The estimated switch migration time is determined by the 
number of PIMs generated in the switch, the ∆௟௜௚௛௧  in the 
optimum lightly loaded controllers, and the ∆௢௩௘௥ in the switch. 
For example, if ∆௟௜௚  is half the ∆௢௩௘௥value and the rate of 
PIMs created is constant, the switch migration time is expected 
to be half the period duration provided in Eq. (3). If 𝜏 = 0, 
switch migration happens at the start of the period, as shown in 
line 13. Furthermore, once the switches in the 𝑆௑

ఞ subnet are 

empty, the 𝑆௑
ట subnet is evaluated for better load balancing 

even though it is not overloaded, as seen in lines 11 and 12. 
This procedure will be continued until all the controllers are 
load balanced for each switch in the time-sharing scheme using 
optimum controller finding (Algorithm 3) and then returned to 
Algorithm 2. 

V. EVALUATION AND ANALYSIS 
The proposed switch migration strategy's performance is tested 
using time domain simulation analysis. As illustrated in Fig. 3, 
the ONOS platform is used as the test platform, and a 
hierarchical DSC design is used for the experimental network, 

which contains 7 controllers and 24 switches. As a result, one 
controller acts as a leader, and its major purpose is to oversee 
the other six controllers in the network; however, it is not 
involved in switch management; the secondary six controllers 
operate their switches in their subnet. This test platform 
considers simulation duration to be 250 seconds divided into 
50 phases. Each secondary controller has a PIMs processing 
capacity of 800,000 PIMs every 5 second interval. 
Furthermore, the barrier for each controller is set at 640,000 
PIMs every period. As a result, the overall controller affordable 
load is estimated to be 3.84 ×106 PIMs each period. The 
switches loads are divided into three levels: (i) light load, (ii) 
medium load, and (iii) big load. Each switch generates roughly 
17,000 PIMs per second under mild load, whereas a switch 
producing 33,500 PIMs per second is considered medium load. 
However, if a switch generates more than 51,000 PIMs per 
second, it is considered a big load. If all switches are lightly 
loaded, the overall controller affordable load is 2 ×106 PIMs 
per period, which is approximately 48% of the total controller 
affordable load. However, if all switches are deemed heavy 
loads, the overall load is 6.01 ×106 PIMs per period, which is 
significantly greater than the total controller affordable load. 
As a result, in this simulation research, the simulation begins 
with a minimal load in all switches, and the load is randomly 
raised in the switches using the cbench tool as simulation 
duration advances, to evaluate the performance of the switch 

 

 
(a) network topology at ‘0’ second  

(b) network topology at 16th second 

Figure 3. Network topology used in the simulation test platform 

 

 

(a)  (b)  

 
(c) 

Figure 4. Comparison of workload of controllers: (a) OpenFlow method, (b) Conventional TSSM, (c) Proposed method 
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migration approach. For example, at the 16th second time, ten 
switches (S1, S3, S4, S6, S7, S8, S9, S10, S22, S23,) are 
creating about 17,000 PIMS/s, eight switches (S2, S5, S11, 
S12, S15, S18, S21, S24,) are generating 33,500 PIMs/s, and 
the remaining switches (S13, S14, S16, S17, S19, S20) are 
carrying 51,000 PIMs/s. As a result, the total controller 
workload is 3.772 ×106 PIMs each period, and switch 
migration must occur using both the traditional (full switch) 
and TSSM schemes. Three examples are studied for assessing 
the performance of the suggested method: (i) work loads of 
controllers, (ii) overload events, and (iii) controller resource 
consumption. 

TEST 1: WORKLOAD OF CONTROLLERS 
As previously stated, each controller may process up to 
640,000 PIMs every period, and if the controller has processed 
more than 128,000 PIMs/s, it is deemed overloaded. Two 
standards approach, (i) OpenFlow and (ii) TSSM schemes, are 
studied in this test, and their test results are compared with the 
proposed method for assessing performance.  

Because switch migration is not done in the OpenFlow 
technique, controllers C4, and C5 are significantly overloaded, 
as seen in Fig. 4a, based on PIMs generated in the switches. 
During this time, controllers C4 and C5 must handle about 
932,000 PIMs every period, which exceeds their maximum 
capacity (800,000 PIMs per period) and causes unforeseen 
challenges in the networking domain. In the case of the TSSM 

scheme, it distributes workload across controllers via time 
sharing migration and ensures that all controllers are under 
their threshold limits, as illustrated in Fig. 4b. Furthermore, the 
Ping-Pong problem (no high leaps, and often transmitted 
switches are treated as nil) is not detected in the test results. The 
suggested switch migration scheme's test results are shown in 
Fig. 4c. When compared to the TSSM scheme, load sharing 
between controllers is substantially flatter (i.e., almost all 
controllers are sharing around similar load, which improves 
efficiency and reduces downtime or maintenance activities). 

TEST 2: NUMBER OF OVERLOAD OCCURRENCES 
This test is important for determining the performance of the 
switch migration technique by evaluating the number of 
overload occurrences for the controllers for the whole duration 
(250S). Fig. 5 shows a comparison of overload occurrence for 
all three approaches. It demonstrates that the OpenFlow 
method provides a high number of over-load occurrences 
because there is no switch migration action, and thus 
controllers C1, C2, C3, and C6 are in the lightly loaded range, 
whereas C4, and C5 are highly loaded, and these controllers are 
completely overloaded during the given period. 

In the case of TSSM, it has considerably decreased the 
number of overload events for the controller since it avoids the 
ping-pong problem and so switches that are repeatedly moved 
are ignored. When compared to the TSSM system, the 
proposed method reduces the amount of overload incidents 

 

 
Figure 5. Comparison of number of overload occurrences in conventional and proposed method 

 

 

Figure 6. Comparison of controller resource consumption between TSSM and proposed switch migration method 
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even more. During time sharing migration, the suggested 
technique employs more than one optimal controller as a lightly 
loaded controller, which may minimize the frequency of 
overload events. Because, in the conventional TSSM method, 
if one controller is not sufficient to share the load of the switch 
(this controller may be considered initially as excess in this 
situation), then it is necessary to find another controller for 
switch sharing. This may occur when the requirement of load 
sharing is high in the over-loaded controller and lightly loaded 
single converters are insufficient to handle this load. The 
proposed strategy, on the other hand, selects more optimal 
controllers based on load sharing and minimizes unnecessary 
processing and overload situations. 

TEST 3: CONTROLLER RESOURCE CONSUMPTION 
This test could be utilized to determine the migration cost of 
switch migration techniques based on controller resource 
usage. Controller resource consumption describes how many 
controllers and switches are used. It should be noted that 
minimizing the number of controllers associated with the 
switches minimizes the network's switch migration cost. 
Because OpenFlow is not conducted during the switch 
migration event, it is excluded from this assessment research. 
When compared to alternative switch migration methods, the 
standard TSSM has a lower migration cost. However, it is 
greater when compared to the proposed switch migration 
technique since the proposed approach selects the appropriate 
controllers for workload sharing based on flow characteristics, 
which minimizes controller resource consumption and switch 
migration cost. Fig. 6 depicts the control resource usage of the 
switch migration strategy. When compared to the conventional 
TSSM system, the suggested switch migration approach saves 
approximately 18% on switch migration costs. 

VI. CONCLUSION 
This research offers an enhanced TSSM methodology that 
addresses the issue of higher switch migration cost in the 
standard TSSM method by locating several optimum target 
controllers throughout the time-sharing period. Flow 
characteristics are used to determine the best controllers 
applying a coalitional game strategy method. Furthermore, the 
suggested switch migration strategy provides TSSM benefits 
that have overcome the ping-pong controller challenge. The 
ONOS platform was used to evaluate the performance of this 
study, and it was discovered that the modified TSSM scheme 
outperformed the standard TSSM approach in terms of 
controller workload sharing, number of overload events, and 
controller resource consumption. When compared to the typical 
TSSM, it decreases controller resource use by 18%. 

References 

[1] N. Anerousis, P. Chemouil, A. A. Lazar, N. Mihai, and S. B. Weinstein, 
“The origin and evolution of open programmable networks and SDN,” 
IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1956–1971, 2021. 
https://doi.org/10.1109/COMST.2021.3060582. 

[2] Y.-C. Wang and H. Hu, “An adaptive broadcast and multicast traffic 
cutting framework to improve Ethernet efficiency by SDN,” J. Inf. Sci 
Eng., vol. 35, no. 2, pp. 375–392, 2019. 

[3] M. Alsaeedi, M. M. Mohamad, and A. A. Al-Roubaiey, “Toward 
adaptive and scalable OpenFlow-SDN flow control: A survey,” IEEE 
Access, vol. 7, pp. 107346–107379, 2019. 
https://doi.org/10.1109/ACCESS.2019.2932422. 

[4] J. H. Cox, R. Clark, and H. Owen, “Leveraging SDN and WebRTC for 
rogue access point security,” IEEE Trans. Netw. Service Manag., vol. 14, 
no. 3, pp. 756–770, 2017. https://doi.org/10.1109/TNSM.2017.2710623. 

[5] Y.-C. Wang and S.-Y. You, “An efficient route management framework 
for load balance and overhead reduction in SDN-based data center 
networks,” IEEE Trans. Netw. Service Manag., vol. 15, no. 4, pp. 1422–
1434, 2018. https://doi.org/10.1109/TNSM.2018.2872054. 

[6] W. Iqbal et al., “ALAM: Anonymous lightweight authentication 
mechanism for SDN-enabled smart homes,” IEEE Internet of Things 
Journal, vol. 8, no. 12, pp. 9622-9633, 2021, 
https://doi.org/10.1109/JIOT.2020.3024058. 

[7] Y.-C. Wang and R.-X. Ye, “Credibility-based countermeasure against 
slow HTTP DoS attacks by using SDN,” Proceedings of the IEEE Annu. 
Comput. Commun. Workshop Conf., 2021, pp. 890–895. 
https://doi.org/10.1109/CCWC51732.2021.9375911. 

[8] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN control: 
Survey, taxonomy, and challenges,” IEEE Commun. Surveys Tuts., vol. 
20, no. 1, pp. 333–354, 2018. 
https://doi.org/10.1109/COMST.2017.2782482. 

[9] J. Lu, Z. Zhang, T. Hu, P. Yi, and J. Lan, “A survey of controller 
placement problem in software-defined networking,” IEEE Access, vol. 
7, pp. 24290–24307, 2019. 
https://doi.org/10.1109/ACCESS.2019.2893283. 

[10] H. Sufiev, Y. Haddad, L. Barenboim, and J. Soler, “Dynamic SDN 
controller load balancing,” Future Internet, vol. 11, no. 3, pp. 1–21, 2019. 
https://doi.org/10.3390/fi11030075. 

[11]  Y. Wu, S. Zhou, Y. Wei, and S. Leng, “Deep reinforcement learning for 
controller placement in software defined network,” Proceedings of the 
IEEE INFOCOM Workshop, Toronto, Canada, 2020, pp. 1254–1259. 
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162977. 

[12] Y.-C. Wang and Y.-C. Wang, “Efficient and low-cost defense against 
distributed denial-of-service attacks in SDN-based networks,” Int. J. 
Commun. Syst., vol. 33, no. 14, pp. 1–24, 2020. 
https://doi.org/10.1002/dac.4461. 

[13] F. Tang, H. Zhang, L. T. Yang, and L. Chen, “Elephant flow detection 
and load-balanced routing with efficient sampling and classification,” 
IEEE Trans. Cloud Comput., vol. 9, no. 3, pp. 1022–1036, 2021. 
https://doi.org/10.1109/TCC.2019.2901669. 

[14] Y.-C. Chan, K. Wang, and Y.-H. Hsu, “Fast controller failover for 
multidomain software-defined networks,” Proceedings of the Eur. Conf. 
Netw. Commun., Paris, France, 2015, pp. 370–374. 

[15] W. H. F. Aly, “Controller adaptive load balancing for SDN networks,” 
Proceedings of the Int. Conf. Ubiquitous Future Netw., Zagreb, Croatia, 
2019, pp. 514–519. 

[16] T. Hu, J. Zhang, L. Cao, and J. Gao, “A reliable controller deployment 
strategy based on network condition evaluation in SDN,” Proceedings of 
the IEEE Int. Conf. Softw. Eng. Serv. Sci., Beijing, China, 2017, pp. 367–
370. https://doi.org/10.1109/ICSESS.2017.8342934. 

[17] T. Kim, J. Myung, and S.-E. Yoo, “Load balancing of distributed 
datastore in OpenDaylight controller cluster,” IEEE Trans. Netw. Service 
Manag., vol. 16, no. 1, pp. 72–83, 2019. 
https://doi.org/10.1109/TNSM.2019.2891592. 

[18] Y.-C. Wang and E.-J. Chang, “Cooperative flow management in 
multidomain SDN-based networks with multiple controllers,” 
Proceedings of the IEEE Int. Conf. Smart Commun. Improving Qual. Life 
Using ICT IoT AI, Charlotte, USA, 2020, pp. 82–86. 
https://doi.org/10.1109/HONET50430.2020.9322815. 

[19] S. Nithya, M. Sangeetha, K. N. A. Prethi, K. S. Sahoo, S. K. Panda, and 
A. H. Gandomi, “SDCF: A software-defined cyber foraging framework 
for cloudlet environment,” IEEE Trans. Netw. Service Manag., vol. 17, 
no. 4, pp. 2423–2435, 2020. 
https://doi.org/10.1109/TNSM.2020.3015657. 

[20] K. S. Sahoo, P. Mishra, M. Tiwary, S. Ramasubbareddy, B. Balusamy, 
and A. H. Gandomi, “Improving end-users’ utility in software-defined 
wide area network systems,” IEEE Trans. Netw. Service Manag., vol. 17, 
no. 2, pp. 696–707, 2020. https://doi.org/10.1109/TNSM.2019.2953621. 

[21] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella, 
“Towards an elastic distributed SDN controller,” ACM SIGCOMM 
Comput. Commun. Rev., vol. 43, no. 4, pp. 7–12, 2013. 
https://doi.org/10.1145/2534169.2491193. 

[22] Z. Min, Q. Hua, and Z. Jihong, “Dynamic switch migration algorithm 
with Q-learning towards scalable SDN control plane,” Proceedings of the 
Int. Conf. Wireless Commun. Signal Process., Nanjing, China, 2017, pp. 
1–4. https://doi.org/10.1109/WCSP.2017.8171121. 

[23] J. Cui, Q. Lu, H. Zhong, M. Tian, and L. Liu, “SMCLBRT: A novel load-
balancing strategy of multiple SDN controllers based on response time,” 
Proceedings of the IEEE Int. Conf. High Perform. Comput. Commun., 
Exeter, U.K., 2018, pp. 541–546. 

[24] K. S. Sahoo et al., “ESMLB: Efficient switch migration-based load 
balancing for multicontroller SDN in IoT,” IEEE Internet Things J., vol. 



G. Nishanthi et al. / International Journal of Computing, 22(4) 2023, 524-533  

VOLUME 22(4), 2023 533 

7, no. 7, pp. 5852–5860, 2020. 
https://doi.org/10.1109/JIOT.2019.2952527. 

[25] T. Hu, J. Lan, J. Zhang, and W. Zhao, “EASM: Efficiency-aware switch 
migration for balancing controller loads in software-defined networking,” 
Peer-to-Peer Netw. Appl., vol. 12, pp. 452–464, 2019. 
https://doi.org/10.1007/s12083-018-0632-6. 

[26] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “BalanceFlow: 
Controller load balancing for OpenFlow networks,” Proceedings of the 
IEEE Int. Conf. Cloud Comput. Intell. Syst., Hangzhou, China, 2012, pp. 
780–785. https://doi.org/10.1109/CCIS.2012.6664282. 

[27] W. Lan, F. Li, X. Liu, and Y. Qiu, “A dynamic load balancing mechanism 
for distributed controllers in software-defined networking,” Proceedings 
of the Int. Conf. Meas. Technol. Mechatronics Autom., Changsha, China, 
2018, pp. 259–262. https://doi.org/10.1109/ICMTMA.2018.00069. 

[28] I. Maity, S. Misra and C. Mandal, “Traffic-aware consistent flow 
migration in SDN,” Proceedings of the 2020 IEEE International 
Conference on Communications (ICC-2020), 2020, pp. 1-6. 
https://doi.org/10.1109/ICC40277.2020.9148983. 

[29] I. Maity, S. Misra and C. Mandal, “DART: Data plane load reduction for 
traffic flow migration in SDN,” IEEE Transactions on Communications, 
vol. 69, no. 3, pp. 1765-1774, 2021, 
https://doi.org/10.1109/TCOMM.2020.3042271. 

[30] B. Gorkemli, S. Tatlcıoglu, A. M. Tekalp, S. Civanlar, and E. Lokman, 
“Dynamic control plane for SDN at scale,” IEEE J. Sel. Areas Commun., 
vol. 36, no. 12, pp. 2688–2701, 2018. 
https://doi.org/10.1109/JSAC.2018.2871308. 

[31] G. Cheng and H. Chen, ‘‘Game model for switch migrations in software 
defined network,’’ Electron. Lett., vol. 50, no. 23, pp. 1699–1700, 2014. 
https://doi.org/10.1049/el.2014.2086. 

[32] W.-K. Lai, Y.-C. Wang, Y.-C. Chen and Z.-T. Tsai, “TSSM: Time-
sharing switch migration to balance loads of distributed SDN 
controllers,” IEEE Trans. on Network and Service Management, vol. 19, 
no. 2, pp. 1585-1597, 2022. 
https://doi.org/10.1109/TNSM.2022.3146834. 

[33] Y. Zhang, Y. Ran, and Z. Zhang, “A simple approximation algorithm for 
minimum weight partial connected set cover,” J. Combinat. Optim., vol. 
34, no. 3, pp. 956–963, 2017. https://doi.org/10.1007/s10878-017-0122-
4. 

 
 

 

G. NISHANTHI is currently working as an 
Assistant Professor in the department of 
computer science and engineering, RMK 
engineering college, Chennai, India. she is 
having more than three years of teaching 
and research experience in different 
institutions in computer science and 
engineering.  

She completed her B.E and M.E degrees in computer 
science & engineering from Anna university, Chennai in the year 

2018, 2020, respectively. she published more than four papers 
in international journals and national conferences. Her areas of 
interest include network security, big data & data mining. 

 

 

R. DEEPA is currently working as an 
Assistant Professor in the department of 
computer science and engineering, RMK 
engineering college, Chennai, India. she is 
having more than seven years of teaching 
and research experience in computer 
science and engineering.  

She completed  her B.E  and M.E  deg- 
rees in information technology from Anna university, Chennai 
in the year 2008, 2013, respectively. Her areas of interest include 
Data Analytics. Machine Learning and Deep Learning. She is a 
life member of ISTE. 

 

 

S. GAYATHRI is currently working as an 
Assistant Professor in the Department of 
Computer Science and Engineering, RMK 
Engineering College, Kavaraipettai, 
Chennai, India. She completed her M.E in 
Computer Science and Engineering 
Specialization from College of Engine-
ering, Guindy, Anna University, Chennai 
in  the  year  2022.   Her  areas  of  interest 

include Data Science, Deep Learning, Image Processing and 
Computer Networks. She has published conference and journal 
papers in the deep learning and image processing domain. She 
is a life member in ISTE. 

 

 

B JAISON is currently working as a 
Professor in the Department of Computer 
Science and Engineering, RMK 
Engineering College, Chennai, India. He is 
having more than 24 years of teaching 
Experience in computer science 
engineering. He completed his M.E degree 
in Computer Science & Engineering from  

Anna University, Chennai in the year 2007 and Ph. D in 
Information and Communication Engineering from Anna 
University, Chennai in the Year 2015. He has published more 
than 50 Research Articles in International Journals and attended 
many International Conferences. His areas of interest include 
Data mining, Image Processing and Cloud Computing. He is a 
life member in IAENG, IACSIT and ISTE. 
 

 
 

 


