

524 VOLUME 22(4), 2023

Date of publication DEC-31, 2023, date of current version MAR-05, 2023.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.22.4.3361

Coalitional Game Strategy and TSSM for
Efficient Load Balancing in Software

Defined Networking
G. NISHANTHI, R. DEEPA, S. GAYATHRI, B. JAISON

RMK Engineering College, Chennai 601206, India

Corresponding author: B. Jaison (e-mail: bjn.cse@rmkec.ac.in).

 ABSTRACT Using distributed SDN control, software defined networking (SDN) delivers additional flexibility
to network management, and it has been a significant breakthrough in network innovation. Switch migration is
often used for distributed controller workload balancing. The time-sharing switch migration (TSSM) scheme
proposed a strategy in which multiple controllers are allowed to share the workload of a switch via time sharing
during an overloaded condition, resulting in reduced ping-pong controller difficulty, fewer overload occurrences,
and improved controller efficiency. However, it requires more than one controller to accomplish, it has greater
migration costs and higher controller resource usage during the TSSM operating time. As a result, we presented a
coalitional game strategy that optimizes controller selection throughout the TSSM phase depending on flow
characteristics. The new TSSM method reduces migration costs and controller resource usage while still providing
TSSM benefits. For the sake of practicality, the proposed strategy is implemented using an open network operating
system. The experimental findings reveal that, as compared to the typical TSSM system, the proposed technique
reduces migration costs and controller resource usage by approximately 18%.

 KEYWORDS Switch migration; load balancing; coalitional game strategy; time sharing switch migration;
software defined networking.

I. INTRODUCTION
HE fast proliferation of cloud computing, big data
applications, the internet of multimedia things, and

increased data traffic have significantly raised network
management difficulties. The traditional network architecture
system consists of a data plane and a control plane in each
switch, with the former handling packet processing and the
latter handling decision making and administration. As a result,
upgrading the current algorithms and policies to the switches is
quite hard and time consuming because all the related switches
in the given network must be updated one by one by system
administrators or workers [1].

Today, the software defined networking method creates a
distinct perspective of network administration in networking
applications by shifting the control plane in switches to a
central device known as the controller. As a result, the
controller may handle many switches in the network.
Monitoring and control of network switches are simplified in
this current method as compared to traditional network
management techniques, because the controller unit can offer
such information about the switches.

Furthermore, by creating a set of rules in the controller, the

newest algorithms and control policies may be quickly updated
to the switches [2]. Aside from that, SDN may support a broad
range of applications, such as (i) defending against cyber-
attacks, (ii) recognizing malicious access points, and (iii)
offering anonymous authentication, among others [3-7].

A single controller in a large network is a difficult option
because it creates a bottleneck in network management
performance. As a result, distributed SDN control (DSC) is
demanded in network applications, and it acts as a promising
solution in large network management with many switches [8].
The DSC enables many controllers to communicate with one
another to administer the whole network. Where each
controller manages a subset of switches (i.e., a subnet), and
processes may be transferred among controllers to facilitate
cooperation. Each controller is responsible for dividing the
workload for the subnets and reassigning the burden of its
switches through the periodical check-up of each subnet, which
is known as controller placement [9]. The controller placement
is mostly focused on load balancing and is carried out using a
variety of techniques such as work group control technique
[10], deep reinforcement learning technique [11], and so on.
The upshot of such control strategies may significantly alter the

T

G. Nishanthi et al. / International Journal of Computing, 22(4) 2023, 524-533

VOLUME 22(4), 2023 525

switches in the subnet, causing the subnet to become unstable
via ping-pong operation. Furthermore, controller placement
strategies are not thought to be successful for short-term flows
such as distributed denial of service and impulses [12].

Switch migration allows for a smoother change of subnets
in a shorter amount of time and addresses the concerns. A
switch migration approach examines the workload state of each
controller in the network in each time frame (or time interval
or period) to determine if they are overloaded (busy) or lightly
occupied (available to share other works). If a network is
overloaded, the migration technique relocates a switch from the
heavily loaded controller subnet to the lightly loaded controller
subnet. Most existing switch migration methods follow the
smallest slice of the migration, which is one single switch
transferred at the start of the period. Once migrated, the switch
remains in the most recent sub-net until the switch is picked for
the following period. Most crucially, these migration methods
always need a controller to supervise a single switch for the
duration of the migration. As a result, the controller in these
systems encounters ping-pong problems under elephant flow
situations (i.e., flow conveys numerous packets) and faces the
major problem of subnet instability [13].

II. LITERATURE REVIEW
Several studies have been conducted throughout the years to
highlight the numerous difficulties in the DSC network.
Traditionally, dynamic controller placement methods are used
to achieve controller load balancing. Chan et al. [14] presented
a strategy for minimizing service interruption time by easily
moving the process from one controller to another. In [15], it
was described how a lightly loaded controller could operate as
a leader in the event of a breakdown of the standard leader
controller unit. Controller placement approaches and issues
were discussed in [9], which emphasizes the need of controllers
maintaining fairness while sharing their tasks. When compared
to previous controller placement methods, [16] provided a
dependable deployment strategy with the goal of minimizing
packet loss and improving network stability. Kim et al [17]
developed a strategy for improving the output of a distributed
datastore in an Open Daylight controller cluster by regularly
distributing shared leaders to cluster members. In [18], a
system was described in which controllers collaborate to
redirect traffic to prevent congestions during busy or
overloaded periods on switches. In [19], it was proposed a
software defined cyber seeking system with a hybrid controller
for cloudlets and local networks. Work [20] presented
prediction-based controllers, which forecast network demand
and conduct device transfers based on prediction. The
controller placement research, such as the work group control

approach and the deep reinforcement learning technique were
provided in [10, 11], where these strategies were ineffective
during impulses and distributed denial of service, etc. Aside
from the dynamic controller placement technique, approaches
for DSC workload balancing are classified into three types: (i)
switch migration, (ii) flow migration, and (iii) flow splitting.

Switch Migration: To reduce burden, switch control can be
migrated from overloaded controllers to lightly laden
controllers. In [21], switch migration in consideration of a
controller's CPU and memory allocation exceeding its
threshold level was discussed, but it did not define the method
of selecting the targeted controllers. Work [22] discussed
switch migration utilizing the Q-learning approach, which had
lowered the standard deviation of the controller workload. Cui
et al. [23] utilized the controller's reaction time to migrate
switches. This strategy transfers the switch with the greatest
load of the controller in the shortest amount of time. In [24], it
was suggested a strategy for selecting targeted controllers for
switch migration based on CPU use, memory capacity, and
bandwidth, among other factors. Hu et al. [25] suggested a
simulated annealing algorithm for selecting the targeted
controller to reduce the cost of switch migration.

Flow Migration: Instead of migrating an entire switch, the
flow migration approach merely transfers the hardness (i.e.,
flow beyond the threshold level) of the flow. Hu et al. presented
an approach in which a super controller administers each
controller in the system and controls the flow controlled by
them [26]. Work [27] presented a game theory strategy for
managing each controller flow through task exchange. When
compared to standard flow migration methods, Maity et al. [28]
offered a traffic aware consistent approach for minimizing flow
migration duration and obtained a 15% reduction in flow
migration time. Furthermore, using a traffic-aware flow
migration technique, work [29] offered a method to lower data
plane load and obtained a 13% reduction when compared to the
two-phase update approach.

Flow Splitting: This approach enables a switch to be
managed by many controllers at the same time. Gorkemli et al.
[30] presented a solution for flow splitting utilizing virtual
overlay on the data plane that switches must negotiate with
their controllers. In [31], it was developed a convex quadratic
programming-based solution for load balancing and decreasing
new switch-controller appointments by modelling the mapping
between controllers and switches.

However, due to synchronization and the complexity of the
design, a switch cannot be operated by more than one controller
at the same time. As a result, flow migration and flow splitting
methods violate the OpenFlow protocol and cannot be used in
the real-time controller platform.

(a) Hierarchical method

(a) Flat method

Figure. 1. Control methods for the DSC architecture

 G. Nishanthi et al. / International Journal of Computing, 22(4) 2023, 524-533

526 VOLUME 22(4), 2023

A. PROBLEM DESCRIPTION AND CONTRIBUTION
As described in the literature section, most switch migration
solutions struggle with the ping-pong challenge. The following
example explains the ping-pong difficulty of the controller.
Consider two controllers [𝐶௑ and 𝐶௒] and three switches
[𝑆௅, 𝑆ெ, 𝑆ே] in a network with a maximum manageable
workload of 200 PIMs per second for each controller. Switches
𝑆௅, 𝑆ெ, and 𝑆ே generate 120, 160, and 120 PIMS every period,
accordingly. 𝐶௑ manages switches 𝑆௅ and 𝑆ெ at time t, and
controller 𝐶௒ manages switch 𝑆ே. Because
Υ஼೉

= 𝛿௅(௧) + 𝛿ெ(௧)= 120 + 160 > λ஼೉
 (200 PIMS), 𝐶௑ is

overloaded and requires switch migration. In most switch
migration strategies, an overloaded controller will request and
take over a switch from other controllers for an extended
period. As a result, at time t+1, Switch 𝑆௅ is moved to controller
𝐶௒ 's subnet. However, if Υ஼ೊ

= 𝛿ே(௧) + 𝛿௅(௧) = 120 + 120 > λ஼ೊ

(200 PIMS) at period t+1, controller 𝐶௒ will be overloaded. As
a result, controller 𝐶௒ requests that 𝐶௑ take over a switch again
at time t+2, increasing the complexity of ping-pong.

W.K. Lai et al. [32] recently suggested a time-sharing
switch migration technique (TSSM) that mitigates controller
ping-pong by spreading the burden of a switch that is monitored
by two controllers at the same time during overloaded
situations. It proposes a switch migration approach in which the
burden of the switch is split across two controllers over a
certain time period. Using the preceding example, at time t+1,
𝐶௑ handles 40 PIMs of 𝑆௅, while 𝐶௒ manages the remaining 80
PIMs via migration. Both controllers 𝐶௑ and 𝐶௒ are regulating
the workload of switch 𝑆௅ currently. As a result, 𝐶௑'s workload
is Υ஼೉

= 𝛿௅(௧) + 𝛿ெ(௧) = 40 + 160 = λ஼೉
 (200 PIMS), while 𝐶௒ 's

workload is Υ஼ೊ
= 𝛿ே(௧) + 𝛿௅(௧) = 120 + 80 = λ஼ೊ

 (200 PIMS),
indicating that none of the controllers is overloaded (busy) in
period t+1. Similarly, at time t+2, 𝐶௒ processes 80 PIMs before
sending the remaining 20 PIMs to the 𝐶௑ controller subnet. The
TSSM technique can effectively overcome the controller's
ping-pong issue using this strategy.

It provides an approach in which two controllers, namely an
overload controller (one) and a lightly loaded controller (one),
are merged and the switch is relocated from an overloaded to a
lightly loaded controller subnet at an appropriate moment in
time. When compared to existing switch migration methods
such as group-based dynamical controller placement [10],
churn-triggered migration [30], and best-fit migration [32], the
results of this technique show that it significantly reduces
overload occurrences of controllers while effectively balancing
the workload of all controllers with improved controller
efficiency. Nonetheless, more than one lightly loaded
controller operation in the TSSM yields greater controller
efficacy than the original (i.e., stated in the research) despite
the additional switch migration cost. Furthermore, because the
migration switch is managed (i.e., controlled) by more than one
controller in the network, this technique consumes additional
controller resources during TSSM operation.

As a result, we suggest an approach that optimizes the
lightly loaded controller selection during the TSSM period and
enables for more than one lightly loaded controller to be used
for switch migration during the TSSM period without
increasing migration cost. The controller is chosen based on
flow characteristics using a coalitional game strategy
algorithm, which decreases controller resource consumption by
lowering the number of controllers involved in flow
processing. The new TSSM method reduces migration costs

and controller resource usage while also providing TSSM
advantages. For its feasibility, the proposed scheme is
implemented using the open network operating system
(ONOS), which can respond to approximately one million flow
processing requests per second.

B. STRUCTURE OF THE PAPER

The following shows the structure of the paper. The literature
review and problem definition of this study are presented in
Section II of this paper. Section III describes the fundamentals
of the distributed SDN control network, OpenFlow protocol
rules, and network model. Section IV discusses the proposed
enhanced TSSM scheme and matching algorithms, and Section
V presents the performance evaluation of the proposed
approach. Finally, in Section VI, the conclusion statement is
presented.

III. DISTRIBUTED SDN CONTROLLER
This section discusses the architecture of the distributed SDN
control network, the switch transfer mechanism in the
OpenFlow protocol, and network models.

A. DISTRIBUTED SDN CONTROL NETWORK
ARCHITECTURE
In a distributed SDN control network, two popular control
methods are commonly used: (i) hierarchical control and (ii)
flat control, also known as circular chain control [8]. In the
hierarchical technique, the central distributed controller (called
the leader) has a global perspective of the network and updates
network regulations and newest algorithms to the sub
controllers, as illustrated in Fig. 1. (a). The sub controller
controls (oversees) the subnet of its switches and transmits its
status to the leader. It should be emphasized that if the original
leader is broken down in the hierarchical technique, a new
leader will be chosen [15]. In the case of circular chain control,
controllers have information about the network's local
perspective and authority over its own subnet. The associated
controllers exchange information in a distributed fashion, as
shown in Fig. 1. (b).

In this article, the hierarchical technique is used to
implement the suggested switch migration methodology. The
leader oversees monitoring the condition of each sub controller
and implementing the TSSM scheme to pick the lightly loaded
controller over the overloaded controller during flow
variations, flow traffic, impulses, distributed denial of service,
and so on. Following that, two sub controllers (overloaded and
lightly laden) are committed to sharing workloads and
migrating the switch as needed.

To avoid undesired switch migrations, the threshold level
of the sub controller is likewise established in the leader. When
the workload of the controller exceeds the controller's threshold
level, it is deemed overloaded, and it is selected based on the
controller's maximum capacity and reserve capacity.
Generally, network administrators recommend that the
threshold level be set between 90 and 95% of the full capacity.
The controller's threshold level is also stated as its maximum
workload, and it is specified in Eq. (1).

𝛷஼ = 𝜆஼ − 𝜐஼ , (1)

where,

𝛷஼ ⟶ Threshold workload level of the controller

G. Nishanthi et al. / International Journal of Computing, 22(4) 2023, 524-533

VOLUME 22(4), 2023 527

𝜆஼ ⟶ Maximum workload capacity of the controller
𝜐஼ ⟶ Reserve workload capacity of the controller.

B. SWITCH TRANSFER PROCESS IN OPENFLOW
PROTOCOL
OpenFlow allows switch transfers between subnets and
establishes connections with many controllers. Each related
controller 𝐶௑ determines the following duties from the
perspective of switch 𝑆௅.

 OFPCR_ROLE_EQUAL (Equal): This default role
grants controller 𝐶௑ complete authority to switch 𝑆௅
and allows 𝐶௑ to send commands to 𝑆௅ and receive
status information. Similarly, when 𝑆௅ is operating in
this capacity, all controllers have complete access to
it.

 OFPCR_ROLE_SLAVE (Slave): When the controller
𝐶௑ role is set to slave, 𝐶௑ can only read the state of
switch 𝑆௅.

 OFPCR ROLE MASTER (Master): It is similar to an
equal role, and controller 𝐶௑ has full power over 𝑆௅. It
is insisted, however, that only one controller (e.g., 𝐶௑)
is considered a master controller for a switch 𝑆௅, and
all other controllers are considered slaves to switch 𝑆௅.

The OpenFlow protocol defines the switching process,
which is seen in Fig. 2. The master controller initiates the
switch transferring operation since it has complete control over
the switch. For example, controllers 𝐶௑ and 𝐶௒ are the master
and targeted (slave) controllers for the switch 𝑆௅, respectively.
It is insisted that overloaded controllers use leader to move a
switch to other controllers for workload balance (controller).
After receiving a directive from the leader, the master
controller (𝐶௑) sends a transferring request for switch 𝑆௅ to the
targeted controller 𝐶௒. Following that, controller Cq requests
that the switch 𝑆௅ alter the role of 𝑆௅ control to master rather
than slave using the Role Request (Master) message, and the
switch 𝑆௅ responds to 𝐶௒ with the Role Reply message
(Master). After all, 𝐶௒ sends a notification message to 𝐶௑
indicating the successful migration of switch 𝑆௅, and controller
𝐶௑ subsequently operates as a slave controller for switch 𝑆௅.

OpenFlow protocol versions 1.2, 1.3, 1.4, and 1.5 enable
switch migration (most recent version). It has been discovered
that OpenFlow regulation simply instructs how to modify
(migrate) the switches between controllers for their tasks and
exchange messages between controllers. However, OpenFlow
does not specify how to choose target controllers and switches
for migration. The proposed enhanced TSSM method
optimizes controller selection and determines when switch
migration should occur during the TSSM period.

C. NETWORK MODELLING
Let us imagine an SDN-based network with a collection 𝑆ே of
switches and a collection 𝐶ே of controllers. A switch (e.g., 𝑆௅)
in 𝑆ே is controllable by a controller in 𝐶ே (e.g., 𝐶௑) with the
model of one switch is controlled by a controller concurrently
advocated by OpenFlow, i.e., 𝐶௑ acts as a master controller for
𝑆௅ and may be altered after the switch migration.

Packet In messages (PIMs) sent from switches determine
each controller's workload. Switch workload (𝛿(௧)) is calculated
specifically by the number of PIMs created by a switch during
each period 't'. Following that, controller workload capacity is
defined as the maximum number of PIMS that may be
processed in each period. For example, if controller 𝐶௑

manages switches 𝑆௔ to 𝑆௭, the workload of controller 𝐶௑ is
determined as follows:

Υ஼೉
= ∑ 𝛿(𝑡)ௌ೥

ௌೌ
. (2)

In general, the controller's maximum workload (Υ஼) should
be smaller than its maximum capacity (𝜆஼), considering the
need for reserve load under unwanted scenarios such as flow
fluctuation, sudden demand, and so on. Hierarchical control of
DSC architecture is studied in this work; hence, the leader
receives workload from all controllers at each period and
directs switch migration across controllers, as necessary.

IV. PROPOSED SWITCH MIGRATION SCHEME
The controller placement technique or network operators are
used to set the network switches at the first stage, with each
switch managed by a master controller. As described in the
preceding section, conventional switch migration methods
include migrating a switch at the start of the period as well as
migrating the entire switch even if it is not necessary. As a
result, the link between controllers and switches remains
constant for the duration. In the case of TSSM, switch
migration is enabled via time-sharing, and switches in the
network can dynamically change their connections with the
controller at any moment. Furthermore, as mentioned in section
2.1, the TSSM approach efficiently overcomes the controller
ping-pong challenge. Nonetheless, controller resource
consumption is greater during the TSSM time, which may raise
the method's migration cost when compared to other migration
techniques since it allows more than one controller to share
their (switch) loads during the TSSM period. It is discovered
that migration costs are approximated based on the number of
controllers and switches used. As a result, this research
suggests an approach that greatly decreases the number of
controllers associated with switches during time sharing
migration depending on flow characteristics. We developed a
coalitional game strategy to establish the best possible
connection between switches and controllers during the time-
sharing migration phase, reducing the number of controllers
connected with the switch and, as a result, controller resource
consumption and migration cost are reduced. The algorithms
listed below are intended to ensure the effective completion of
the proposed switch migration method.

ALGORITHM 1: IDENTIFYING OVERLOADED AND
LIGHTLY LOADED CONTROLLERS
This algorithm ensures that all overloaded (referred to as busy)
and lightly loaded controllers (referred to as assistant or target
controllers) in the given network are found, as represented by
𝐶௕௨௦௬ and 𝐶௟௜௚௛௧ , respectively. The burden of each controller
(e.g., Υ஼೉

) is evaluated using Eq. (2) by adding the loads of each

switch in the subnet (e.g., 𝛿௅,௧
(௑)

+ 𝛿ெ,௧
(௑)

+ ⋯) and is specified in

Figure 2. Switch transferring process in OpenFlow
Protocol

 G. Nishanthi et al. / International Journal of Computing, 22(4) 2023, 524-533

528 VOLUME 22(4), 2023

the method code between 3 and 5 lines. Following that, the
controller workload (e.g., Υ஼೉

) is compared to the threshold
level (𝛷஼_௑), and if it is more than the threshold level, the
controller is deemed overloaded and included in the overload
controllers (described in lines 6 -7) unit in the leader. Then, in
line 8, lightly laden controllers are chosen based on a lightly
loaded coefficient ´𝜇´, with a value between 0.8 and 0.85
(specified by network managers). Following that, the lightly
loaded coefficient is multiplied by the threshold value, and if
the workload of the controllers is less than the multiply value,
it is regarded a lightly loaded controller and is added to the
leader's lightly loaded controller unit. It is required that switch
migration take place when both the 𝐶௕௨௦௬ and 𝐶௟௜௚௛௧ controllers
are not empty, as shown in line 10.

ALGORITHM 2: ORDERING THE OVERLOADED AND
ASSISTING CONTROLLERS, AS WELL AS SWITCH
MIGRATION
This algorithm's goal is to distribute workload across
controllers by identifying a pair of overloaded and lightly
burdened controllers. The SORT function aids in the
organization of overloaded and lightly laden controllers in

decreasing workload order. Line 1 of the code sorts the
overload controllers, whereas line 2 sorts the information about
the lightly loaded controller. As a result, a controller with very
excess capacity will be prioritized in contributing to the task of
an overloaded (busy) controller. The code in lines 3–17 tackles
each controller in the network using a for-loop, from the most
overloaded to the least overloaded. Line 4 arranges the switches
under 𝐶௑ management in decreasing order based on their
workload. The while loop on lines 5-16 continues to reduce the
burden of the 𝐶௑ by moving a switch until it reaches the
threshold workload. However, if there is no assistant controller
to assist (i.e., 𝐶௟௜௚ is empty) and there are still overloaded
controllers in the domain, algorithm 2 ends as shown in lines
6-7. Otherwise, if we wish to pick a lightly loaded controller 𝐶௒
for workload sharing, the time-sharing switch migration
technique must be enabled. Initially, Algorithm 3 is used to
determine the best controllers [𝐶௒ଵ, 𝐶௒ଶ,...] for TSSM in terms
of controller resource usage and migration cost. Following the
discovery of the optimal controllers, the TSSM scheme based
on Algorithm 4 is run. As seen in line 10, the result of
Algorithm 4 gives three output parameters. In which ´𝜏´
specifies the time switch 𝑆௅ should migrate to other controllers,

Algorithm 1: Identifying Overloaded and Lightly Loaded Controllers

1 𝐶௕௨௦௬ ← ø and 𝐶௟௜௚௛௧ ← ø ;
2 foreach 𝐶௑ ϵ 𝐶 do
3 Υ஼೉

 ← 0 ;
4 foreach 𝑆௅ ϵ 𝑆௑ do

5 Υ஼೉
← Υ஼೉

 + 𝛿௅,௧
(௑) ;

6 if Υ஼೉
 > 𝛷஼೉

 then
7 𝐶௕௨௦௬ ← 𝐶௕௨௦௬ U { 𝐶௑} ;
8 else if Υ஼೉

 < 𝜇 × 𝛷஼೉
 then

9 𝐶௟௜௚௛௧ ← 𝐶௟௜௚௛௧ U { 𝐶௑} ;
10 If 𝐶௕௨௦௬ ≠ ø and 𝐶௟௜௚௛௧ ≠ ø then
11 Use Algorithm 2 for load balancing between 𝐶௕௨௦௬ and 𝐶௟௜௚௛௧ ;

Algorithm 2: Switch Migration Segment for Load Balancing
1 SORT (𝐶௕௨௦௬ , Υ஼೉

 − 𝛷஼_௑);
2 SORT (𝐶௟௜௚௛௧ , 𝛷஼_௒ − Υ஼ೊ

);
3 foreach 𝐶௑ ϵ 𝐶௕௨௦௬ do

4 SORT (𝑆௑ , 𝛿௅,௧
(௑));

5 while Υ஼೉
 > 𝛷஼_௑ do

6 if 𝐶௟௜௚௛௧= ø then
7 Cease this module ;
8 Pick the optimized controllers [𝐶௒ଵ, 𝐶௒ଶ,...]from 𝐶௟௜௚௛௧ ;

9
 (Controller-Switch Association Matrix) ← Algorithm 3 (Request PIM´s of Switch, Switches from
𝐶௕௨௦௬)

10 (𝑆௅, [𝜏ଵ , 𝜏ଶ , …] , [𝜌ଵ , 𝜌ଶ , …]) ← Algorithm 4 (𝐶௑ , [𝐶௒ଵ, 𝐶௒ଶ,...]) ;
11 Transfer 𝑆௅ to [𝐶௒ଵ, 𝐶௒ଶ,...]’s subnet after [𝜏ଵ , 𝜏ଶ , …] units of time;
12 Υ஼೉

 ← Υ஼೉
− [𝜌ଵ , 𝜌ଶ , …];

13
 Υ஼ೊ_భ

 ← 𝛷஼_௒ + [𝜌ଵ , 𝜌ଶ , …] ;
 Υ஼ೊ_మ

 ← 𝛷஼_௒ + [𝑛ଵ , 𝑛ଶ , …] ;

14 if Υ஼ೊ[భ,మ,…]
 ≥ 𝜇 × 𝛷஼_௒[ଵ,ଶ,…] then

15 𝐶௟௜௚௛௧ ← 𝐶௟௜௚௛௧ \ , [𝐶௒ଵ, 𝐶௒ଶ,...];
16 else
17 SORT (𝐶௟௜௚௛௧ , 𝛷஼_௒ − Υ஼ೊ

) ;

G. Nishanthi et al. / International Journal of Computing, 22(4) 2023, 524-533

VOLUME 22(4), 2023 529

whilst '𝜌' specifies the number of PIMs to be migrated to each
controller. Following that, workload updates of 𝐶௑ and [𝐶௒ଵ,
𝐶௒ଶ,...] are performed in lines 11 to 13, and if [𝐶௒ଵ, 𝐶௒ଶ,...]
exceeds the threshold level, these controllers are removed from
the lightly loaded controllers as shown in line 14, otherwise
these controllers are returned to the lightly loaded controller
unit as shown in lines 17 and 2.

ALGORITHM 3: OPTIMIZATION OF THE CONTROLLER
FOR THE TSSM SCHEME TO SAVE MIGRATION COSTS
This algorithm's goal is to produce efficient controllers for
TSSM operation. The optimized controller is chosen based on
flow characteristics to decrease controller resource usage and,
as a result, switch migration cost. The coalitional game strategy
[33] is used for optimal controller selection and is shown in
Algorithm 3. This algorithm requires the PIMs of each switch
in the overloaded controller 𝐶௑, as well as the controller's
threshold level, network topology map, and so on. Between
lines 3 and 12, the flow sort function evaluates the total quantity
of flow in each path and sorts it in ascending order. Lines 4-6

execute and choose a controller that covers most of the switches
in the route.

ALGORITHM 4: TIME TO SWITCH MIGRATION
ESTIMATING SEGMENT
After defining the best lightly loaded controllers (𝐶௒ଵ, 𝐶௒ଶ,...)
using Algorithm 3, they are paired with an overloaded
controller to accomplish three tasks using Algorithm 4. The
tasks are as follows: (i) choose a switch (from an overloaded
controller) to share their burden with lightly loaded controllers,
(ii) compute the switch migration time (𝜏), and (iii) calculate
the number of PIMs (𝜌) that lighter loaded controllers will
process. Line 1 of Algorithm 4 is executed, with '∆௟௜௚௛௧ '
representing the remaining capacity of the lightly loaded
controllers and '∆௢௩௘௥ ' representing the lowest amount of
overload in the overloaded controllers. Following that,
switches in the overloaded controllers are divided into two
subnets, 𝑆௑

ఞ and 𝑆௑
ట, respectively; if the switch load is greater

than ´∆´, it is sorted in 𝑆௑
ఞ with decreasing load order, and 𝑆௑

ట

Algorithm 3: Selection of Optimized Controller for TSSM Scheme
1 Input: Organized light and busy controllers ={𝐶௕௨௦௬}, {𝐶௟௜௚௛௧} obtained from Algorithm 2 ;

2 SORT (𝛿௅,௧
(௑), 𝛿ெ,௧

(௑)
, 𝛿ே,௧

(௑)
, ..) ;

3 Capacity and redundant load for each controller under a leader
4 Traffic Matrix: 𝑇´ = [𝑇௑௒]
5 Initialization: 𝑇 = [𝑇௑௒], 𝐶ே = [𝐶௑௒

´], 𝜆஼ , 𝜐஼

6 repeat
7 Every switch performs its most desired migration.

8 Initial migration pair 𝑆௅: 𝐶௑ → 𝐶௒;

9 for all controllers do:
10 if 𝑆௅: 𝐶௑ → 𝐶௒; and Υ஼ೊ

 ≤ 𝜆஼_௒ . 𝜐஼_௒ : satisfy migration does not violate capacity constraint.

11
 if migration value (𝑆௡, 𝐶௡) < 0: consider a weight factor between control resource consumption and
 control traffic overhead.

12 Implement switch migration selection 𝑆௅ → 𝐶௒
13 Update 𝐶ே = [𝐶௑௒

´];
14 end if
15 end if

16 end for

17 Until no proposals have been made by the switches

Algorithm 4: Time to Switch Migration Estimating Segment
1 Δ௢௩௘௥ ← min (Υ஼೉

 − 𝛷஼_௑) & Δ௟௜௚௛௧ ← max (𝛷஼_௒ − Υ஼ೊ
) ;

2 𝑆௑
ఞ ← ø and 𝑆௑

ట ← ø ;
3 foreach 𝑆௅ ϵ 𝑆௑ do
4 if 𝛿௅,௧

(௑)
 ≥ Δ௢௩௘௥ then

5 𝑆௑
ఞ ← 𝑆௑

ఞ ⋃ {𝑆௅ };
6 else
7 𝑆௑

ట ← 𝑆௑
ట ⋃ {𝑆௅ };

8 if 𝑆௑
ఞ ≠ ø then

9 𝑆௅ ← the last switch of 𝑆௑
ఞ ;

10 𝜏 = ൣ% 𝑜𝑓 Δ௟௜௚௛௧ 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 Δ௢௩௘௥൧ × (𝐿௧) ;
11 else
12 𝑆௅ ←the first switch of 𝑆௑

ట;
13 𝜏 ← 0 then 𝜌 ← 𝛿௅,௧

(௑)
 ;

14 𝛿௅,௧
(௑)

 ← 𝛿௅,௧
(௑) – 𝜌 and 𝛿௅,௧

(௒) ← 𝜌 ;
15 return (𝑆௅, 𝜏, 𝜌);

 G. Nishanthi et al. / International Journal of Computing, 22(4) 2023, 524-533

530 VOLUME 22(4), 2023

includes remaining switches in the overloaded controllers;
respecting codes are given in lines 2-7. In order to reduce the
number of migrations (executed in lines 8 – 9), switches near
´∆´ (might be the very last switch in 𝑆௑

ఞ based on load soring
order) are selected in the 𝑆௑

ఞ subnet for migration. This is
because a minimal amount of overload in the overloaded
controllers can easily be placed in the lightly loaded controllers.
The estimated switch migration time is determined by the
number of PIMs generated in the switch, the ∆௟௜௚௛௧ in the
optimum lightly loaded controllers, and the ∆௢௩௘௥ in the switch.
For example, if ∆௟௜௚ is half the ∆௢௩௘௥value and the rate of
PIMs created is constant, the switch migration time is expected
to be half the period duration provided in Eq. (3). If 𝜏 = 0,
switch migration happens at the start of the period, as shown in
line 13. Furthermore, once the switches in the 𝑆௑

ఞ subnet are

empty, the 𝑆௑
ట subnet is evaluated for better load balancing

even though it is not overloaded, as seen in lines 11 and 12.
This procedure will be continued until all the controllers are
load balanced for each switch in the time-sharing scheme using
optimum controller finding (Algorithm 3) and then returned to
Algorithm 2.

V. EVALUATION AND ANALYSIS
The proposed switch migration strategy's performance is tested
using time domain simulation analysis. As illustrated in Fig. 3,
the ONOS platform is used as the test platform, and a
hierarchical DSC design is used for the experimental network,

which contains 7 controllers and 24 switches. As a result, one
controller acts as a leader, and its major purpose is to oversee
the other six controllers in the network; however, it is not
involved in switch management; the secondary six controllers
operate their switches in their subnet. This test platform
considers simulation duration to be 250 seconds divided into
50 phases. Each secondary controller has a PIMs processing
capacity of 800,000 PIMs every 5 second interval.
Furthermore, the barrier for each controller is set at 640,000
PIMs every period. As a result, the overall controller affordable
load is estimated to be 3.84 ×106 PIMs each period. The
switches loads are divided into three levels: (i) light load, (ii)
medium load, and (iii) big load. Each switch generates roughly
17,000 PIMs per second under mild load, whereas a switch
producing 33,500 PIMs per second is considered medium load.
However, if a switch generates more than 51,000 PIMs per
second, it is considered a big load. If all switches are lightly
loaded, the overall controller affordable load is 2 ×106 PIMs
per period, which is approximately 48% of the total controller
affordable load. However, if all switches are deemed heavy
loads, the overall load is 6.01 ×106 PIMs per period, which is
significantly greater than the total controller affordable load.
As a result, in this simulation research, the simulation begins
with a minimal load in all switches, and the load is randomly
raised in the switches using the cbench tool as simulation
duration advances, to evaluate the performance of the switch

(a) network topology at ‘0’ second

(b) network topology at 16th second

Figure 3. Network topology used in the simulation test platform

(a) (b)

(c)

Figure 4. Comparison of workload of controllers: (a) OpenFlow method, (b) Conventional TSSM, (c) Proposed method

G. Nishanthi et al. / International Journal of Computing, 22(4) 2023, 524-533

VOLUME 22(4), 2023 531

migration approach. For example, at the 16th second time, ten
switches (S1, S3, S4, S6, S7, S8, S9, S10, S22, S23,) are
creating about 17,000 PIMS/s, eight switches (S2, S5, S11,
S12, S15, S18, S21, S24,) are generating 33,500 PIMs/s, and
the remaining switches (S13, S14, S16, S17, S19, S20) are
carrying 51,000 PIMs/s. As a result, the total controller
workload is 3.772 ×106 PIMs each period, and switch
migration must occur using both the traditional (full switch)
and TSSM schemes. Three examples are studied for assessing
the performance of the suggested method: (i) work loads of
controllers, (ii) overload events, and (iii) controller resource
consumption.

TEST 1: WORKLOAD OF CONTROLLERS
As previously stated, each controller may process up to
640,000 PIMs every period, and if the controller has processed
more than 128,000 PIMs/s, it is deemed overloaded. Two
standards approach, (i) OpenFlow and (ii) TSSM schemes, are
studied in this test, and their test results are compared with the
proposed method for assessing performance.

Because switch migration is not done in the OpenFlow
technique, controllers C4, and C5 are significantly overloaded,
as seen in Fig. 4a, based on PIMs generated in the switches.
During this time, controllers C4 and C5 must handle about
932,000 PIMs every period, which exceeds their maximum
capacity (800,000 PIMs per period) and causes unforeseen
challenges in the networking domain. In the case of the TSSM

scheme, it distributes workload across controllers via time
sharing migration and ensures that all controllers are under
their threshold limits, as illustrated in Fig. 4b. Furthermore, the
Ping-Pong problem (no high leaps, and often transmitted
switches are treated as nil) is not detected in the test results. The
suggested switch migration scheme's test results are shown in
Fig. 4c. When compared to the TSSM scheme, load sharing
between controllers is substantially flatter (i.e., almost all
controllers are sharing around similar load, which improves
efficiency and reduces downtime or maintenance activities).

TEST 2: NUMBER OF OVERLOAD OCCURRENCES
This test is important for determining the performance of the
switch migration technique by evaluating the number of
overload occurrences for the controllers for the whole duration
(250S). Fig. 5 shows a comparison of overload occurrence for
all three approaches. It demonstrates that the OpenFlow
method provides a high number of over-load occurrences
because there is no switch migration action, and thus
controllers C1, C2, C3, and C6 are in the lightly loaded range,
whereas C4, and C5 are highly loaded, and these controllers are
completely overloaded during the given period.

In the case of TSSM, it has considerably decreased the
number of overload events for the controller since it avoids the
ping-pong problem and so switches that are repeatedly moved
are ignored. When compared to the TSSM system, the
proposed method reduces the amount of overload incidents

Figure 5. Comparison of number of overload occurrences in conventional and proposed method

Figure 6. Comparison of controller resource consumption between TSSM and proposed switch migration method

 G. Nishanthi et al. / International Journal of Computing, 22(4) 2023, 524-533

532 VOLUME 22(4), 2023

even more. During time sharing migration, the suggested
technique employs more than one optimal controller as a lightly
loaded controller, which may minimize the frequency of
overload events. Because, in the conventional TSSM method,
if one controller is not sufficient to share the load of the switch
(this controller may be considered initially as excess in this
situation), then it is necessary to find another controller for
switch sharing. This may occur when the requirement of load
sharing is high in the over-loaded controller and lightly loaded
single converters are insufficient to handle this load. The
proposed strategy, on the other hand, selects more optimal
controllers based on load sharing and minimizes unnecessary
processing and overload situations.

TEST 3: CONTROLLER RESOURCE CONSUMPTION
This test could be utilized to determine the migration cost of
switch migration techniques based on controller resource
usage. Controller resource consumption describes how many
controllers and switches are used. It should be noted that
minimizing the number of controllers associated with the
switches minimizes the network's switch migration cost.
Because OpenFlow is not conducted during the switch
migration event, it is excluded from this assessment research.
When compared to alternative switch migration methods, the
standard TSSM has a lower migration cost. However, it is
greater when compared to the proposed switch migration
technique since the proposed approach selects the appropriate
controllers for workload sharing based on flow characteristics,
which minimizes controller resource consumption and switch
migration cost. Fig. 6 depicts the control resource usage of the
switch migration strategy. When compared to the conventional
TSSM system, the suggested switch migration approach saves
approximately 18% on switch migration costs.

VI. CONCLUSION
This research offers an enhanced TSSM methodology that
addresses the issue of higher switch migration cost in the
standard TSSM method by locating several optimum target
controllers throughout the time-sharing period. Flow
characteristics are used to determine the best controllers
applying a coalitional game strategy method. Furthermore, the
suggested switch migration strategy provides TSSM benefits
that have overcome the ping-pong controller challenge. The
ONOS platform was used to evaluate the performance of this
study, and it was discovered that the modified TSSM scheme
outperformed the standard TSSM approach in terms of
controller workload sharing, number of overload events, and
controller resource consumption. When compared to the typical
TSSM, it decreases controller resource use by 18%.

References

[1] N. Anerousis, P. Chemouil, A. A. Lazar, N. Mihai, and S. B. Weinstein,
“The origin and evolution of open programmable networks and SDN,”
IEEE Commun. Surveys Tuts., vol. 23, no. 3, pp. 1956–1971, 2021.
https://doi.org/10.1109/COMST.2021.3060582.

[2] Y.-C. Wang and H. Hu, “An adaptive broadcast and multicast traffic
cutting framework to improve Ethernet efficiency by SDN,” J. Inf. Sci
Eng., vol. 35, no. 2, pp. 375–392, 2019.

[3] M. Alsaeedi, M. M. Mohamad, and A. A. Al-Roubaiey, “Toward
adaptive and scalable OpenFlow-SDN flow control: A survey,” IEEE
Access, vol. 7, pp. 107346–107379, 2019.
https://doi.org/10.1109/ACCESS.2019.2932422.

[4] J. H. Cox, R. Clark, and H. Owen, “Leveraging SDN and WebRTC for
rogue access point security,” IEEE Trans. Netw. Service Manag., vol. 14,
no. 3, pp. 756–770, 2017. https://doi.org/10.1109/TNSM.2017.2710623.

[5] Y.-C. Wang and S.-Y. You, “An efficient route management framework
for load balance and overhead reduction in SDN-based data center
networks,” IEEE Trans. Netw. Service Manag., vol. 15, no. 4, pp. 1422–
1434, 2018. https://doi.org/10.1109/TNSM.2018.2872054.

[6] W. Iqbal et al., “ALAM: Anonymous lightweight authentication
mechanism for SDN-enabled smart homes,” IEEE Internet of Things
Journal, vol. 8, no. 12, pp. 9622-9633, 2021,
https://doi.org/10.1109/JIOT.2020.3024058.

[7] Y.-C. Wang and R.-X. Ye, “Credibility-based countermeasure against
slow HTTP DoS attacks by using SDN,” Proceedings of the IEEE Annu.
Comput. Commun. Workshop Conf., 2021, pp. 890–895.
https://doi.org/10.1109/CCWC51732.2021.9375911.

[8] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN control:
Survey, taxonomy, and challenges,” IEEE Commun. Surveys Tuts., vol.
20, no. 1, pp. 333–354, 2018.
https://doi.org/10.1109/COMST.2017.2782482.

[9] J. Lu, Z. Zhang, T. Hu, P. Yi, and J. Lan, “A survey of controller
placement problem in software-defined networking,” IEEE Access, vol.
7, pp. 24290–24307, 2019.
https://doi.org/10.1109/ACCESS.2019.2893283.

[10] H. Sufiev, Y. Haddad, L. Barenboim, and J. Soler, “Dynamic SDN
controller load balancing,” Future Internet, vol. 11, no. 3, pp. 1–21, 2019.
https://doi.org/10.3390/fi11030075.

[11] Y. Wu, S. Zhou, Y. Wei, and S. Leng, “Deep reinforcement learning for
controller placement in software defined network,” Proceedings of the
IEEE INFOCOM Workshop, Toronto, Canada, 2020, pp. 1254–1259.
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162977.

[12] Y.-C. Wang and Y.-C. Wang, “Efficient and low-cost defense against
distributed denial-of-service attacks in SDN-based networks,” Int. J.
Commun. Syst., vol. 33, no. 14, pp. 1–24, 2020.
https://doi.org/10.1002/dac.4461.

[13] F. Tang, H. Zhang, L. T. Yang, and L. Chen, “Elephant flow detection
and load-balanced routing with efficient sampling and classification,”
IEEE Trans. Cloud Comput., vol. 9, no. 3, pp. 1022–1036, 2021.
https://doi.org/10.1109/TCC.2019.2901669.

[14] Y.-C. Chan, K. Wang, and Y.-H. Hsu, “Fast controller failover for
multidomain software-defined networks,” Proceedings of the Eur. Conf.
Netw. Commun., Paris, France, 2015, pp. 370–374.

[15] W. H. F. Aly, “Controller adaptive load balancing for SDN networks,”
Proceedings of the Int. Conf. Ubiquitous Future Netw., Zagreb, Croatia,
2019, pp. 514–519.

[16] T. Hu, J. Zhang, L. Cao, and J. Gao, “A reliable controller deployment
strategy based on network condition evaluation in SDN,” Proceedings of
the IEEE Int. Conf. Softw. Eng. Serv. Sci., Beijing, China, 2017, pp. 367–
370. https://doi.org/10.1109/ICSESS.2017.8342934.

[17] T. Kim, J. Myung, and S.-E. Yoo, “Load balancing of distributed
datastore in OpenDaylight controller cluster,” IEEE Trans. Netw. Service
Manag., vol. 16, no. 1, pp. 72–83, 2019.
https://doi.org/10.1109/TNSM.2019.2891592.

[18] Y.-C. Wang and E.-J. Chang, “Cooperative flow management in
multidomain SDN-based networks with multiple controllers,”
Proceedings of the IEEE Int. Conf. Smart Commun. Improving Qual. Life
Using ICT IoT AI, Charlotte, USA, 2020, pp. 82–86.
https://doi.org/10.1109/HONET50430.2020.9322815.

[19] S. Nithya, M. Sangeetha, K. N. A. Prethi, K. S. Sahoo, S. K. Panda, and
A. H. Gandomi, “SDCF: A software-defined cyber foraging framework
for cloudlet environment,” IEEE Trans. Netw. Service Manag., vol. 17,
no. 4, pp. 2423–2435, 2020.
https://doi.org/10.1109/TNSM.2020.3015657.

[20] K. S. Sahoo, P. Mishra, M. Tiwary, S. Ramasubbareddy, B. Balusamy,
and A. H. Gandomi, “Improving end-users’ utility in software-defined
wide area network systems,” IEEE Trans. Netw. Service Manag., vol. 17,
no. 2, pp. 696–707, 2020. https://doi.org/10.1109/TNSM.2019.2953621.

[21] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. Kompella,
“Towards an elastic distributed SDN controller,” ACM SIGCOMM
Comput. Commun. Rev., vol. 43, no. 4, pp. 7–12, 2013.
https://doi.org/10.1145/2534169.2491193.

[22] Z. Min, Q. Hua, and Z. Jihong, “Dynamic switch migration algorithm
with Q-learning towards scalable SDN control plane,” Proceedings of the
Int. Conf. Wireless Commun. Signal Process., Nanjing, China, 2017, pp.
1–4. https://doi.org/10.1109/WCSP.2017.8171121.

[23] J. Cui, Q. Lu, H. Zhong, M. Tian, and L. Liu, “SMCLBRT: A novel load-
balancing strategy of multiple SDN controllers based on response time,”
Proceedings of the IEEE Int. Conf. High Perform. Comput. Commun.,
Exeter, U.K., 2018, pp. 541–546.

[24] K. S. Sahoo et al., “ESMLB: Efficient switch migration-based load
balancing for multicontroller SDN in IoT,” IEEE Internet Things J., vol.

G. Nishanthi et al. / International Journal of Computing, 22(4) 2023, 524-533

VOLUME 22(4), 2023 533

7, no. 7, pp. 5852–5860, 2020.
https://doi.org/10.1109/JIOT.2019.2952527.

[25] T. Hu, J. Lan, J. Zhang, and W. Zhao, “EASM: Efficiency-aware switch
migration for balancing controller loads in software-defined networking,”
Peer-to-Peer Netw. Appl., vol. 12, pp. 452–464, 2019.
https://doi.org/10.1007/s12083-018-0632-6.

[26] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “BalanceFlow:
Controller load balancing for OpenFlow networks,” Proceedings of the
IEEE Int. Conf. Cloud Comput. Intell. Syst., Hangzhou, China, 2012, pp.
780–785. https://doi.org/10.1109/CCIS.2012.6664282.

[27] W. Lan, F. Li, X. Liu, and Y. Qiu, “A dynamic load balancing mechanism
for distributed controllers in software-defined networking,” Proceedings
of the Int. Conf. Meas. Technol. Mechatronics Autom., Changsha, China,
2018, pp. 259–262. https://doi.org/10.1109/ICMTMA.2018.00069.

[28] I. Maity, S. Misra and C. Mandal, “Traffic-aware consistent flow
migration in SDN,” Proceedings of the 2020 IEEE International
Conference on Communications (ICC-2020), 2020, pp. 1-6.
https://doi.org/10.1109/ICC40277.2020.9148983.

[29] I. Maity, S. Misra and C. Mandal, “DART: Data plane load reduction for
traffic flow migration in SDN,” IEEE Transactions on Communications,
vol. 69, no. 3, pp. 1765-1774, 2021,
https://doi.org/10.1109/TCOMM.2020.3042271.

[30] B. Gorkemli, S. Tatlcıoglu, A. M. Tekalp, S. Civanlar, and E. Lokman,
“Dynamic control plane for SDN at scale,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 12, pp. 2688–2701, 2018.
https://doi.org/10.1109/JSAC.2018.2871308.

[31] G. Cheng and H. Chen, ‘‘Game model for switch migrations in software
defined network,’’ Electron. Lett., vol. 50, no. 23, pp. 1699–1700, 2014.
https://doi.org/10.1049/el.2014.2086.

[32] W.-K. Lai, Y.-C. Wang, Y.-C. Chen and Z.-T. Tsai, “TSSM: Time-
sharing switch migration to balance loads of distributed SDN
controllers,” IEEE Trans. on Network and Service Management, vol. 19,
no. 2, pp. 1585-1597, 2022.
https://doi.org/10.1109/TNSM.2022.3146834.

[33] Y. Zhang, Y. Ran, and Z. Zhang, “A simple approximation algorithm for
minimum weight partial connected set cover,” J. Combinat. Optim., vol.
34, no. 3, pp. 956–963, 2017. https://doi.org/10.1007/s10878-017-0122-
4.

G. NISHANTHI is currently working as an
Assistant Professor in the department of
computer science and engineering, RMK
engineering college, Chennai, India. she is
having more than three years of teaching
and research experience in different
institutions in computer science and
engineering.

She completed her B.E and M.E degrees in computer
science & engineering from Anna university, Chennai in the year

2018, 2020, respectively. she published more than four papers
in international journals and national conferences. Her areas of
interest include network security, big data & data mining.

R. DEEPA is currently working as an
Assistant Professor in the department of
computer science and engineering, RMK
engineering college, Chennai, India. she is
having more than seven years of teaching
and research experience in computer
science and engineering.

She completed her B.E and M.E deg-
rees in information technology from Anna university, Chennai
in the year 2008, 2013, respectively. Her areas of interest include
Data Analytics. Machine Learning and Deep Learning. She is a
life member of ISTE.

S. GAYATHRI is currently working as an
Assistant Professor in the Department of
Computer Science and Engineering, RMK
Engineering College, Kavaraipettai,
Chennai, India. She completed her M.E in
Computer Science and Engineering
Specialization from College of Engine-
ering, Guindy, Anna University, Chennai
in the year 2022. Her areas of interest

include Data Science, Deep Learning, Image Processing and
Computer Networks. She has published conference and journal
papers in the deep learning and image processing domain. She
is a life member in ISTE.

B JAISON is currently working as a
Professor in the Department of Computer
Science and Engineering, RMK
Engineering College, Chennai, India. He is
having more than 24 years of teaching
Experience in computer science
engineering. He completed his M.E degree
in Computer Science & Engineering from

Anna University, Chennai in the year 2007 and Ph. D in
Information and Communication Engineering from Anna
University, Chennai in the Year 2015. He has published more
than 50 Research Articles in International Journals and attended
many International Conferences. His areas of interest include
Data mining, Image Processing and Cloud Computing. He is a
life member in IAENG, IACSIT and ISTE.

