

VOLUME 22(4), 2023 509

Date of publication DEC-31, 2023, date of current version NOV-23, 2023.
www.computingonline.net / computing@computingonline.net

Print ISSN 1727-6209
Online ISSN 2312-5381
DOI 10.47839/ijc.22.4.3359

Exploring the Performance of Container
Runtimes within Kubernetes Clusters

MOULINA HAZRA BHATTACHARYA1, HARISH KUMAR MITTAL2
1Master of Computer Science Liverpool John Moores University (LJMU), UK

2Upgrad Education, India, Principal, BM Institute of Engineering and Technology, Sonepat, India

Corresponding author: Harish Kumar Mittal (Email: mittalberi@gmail.com)

 ABSTRACT The advent of cloud computing, with its Pay-As-You-Go model, has significantly simplified IT
maintenance and revolutionized the industry. In the era of Microservices, containerized deployment and
Kubernetes orchestration have permeated almost every working domain, drastically reducing the time to market
for software releases. Kubernetes utilizes container runtimes to manage Containers, with the Container Runtime
Interface (CRI) serving as a communication medium with low-level container runtimes such as runc and kata
container. With the deprecation of Dockershim, developers are left to choose between CRI-O and Containerd, two
CRI implementations. This study configures a Kubernetes cluster with both Containerd and CRI-O separately and
analyzes performance parameters such as throughput, response time, CPU, memory, and network utilization.
Additionally, we examine the impact of using runc and kata container runtimes together within the cluster. The
study, conducted using a performance script created by JMeter, reveals that different container runtimes cater to
distinct business use-cases and can complement each other when used together in a cluster environment. High
compute applications are best run using runc, while high-security requirements are fulfilled by kata. The study
provides a comprehensive performance comparison between Containerd and CRI-O, shedding light on the depth
and versatility of container runtimes.

 KEYWORDS Kubernetes; Containerd; CRI-O; runc; kata container; Microservice; Cloud computing.

I. INTRODUCTION
HE advent of cloud computing has revolutionized the IT
industry, offering a flexible Pay-As-You-Go model that

simplifies maintenance and reduces costs [1]. In the current era
of Microservices, the deployment of containerized applications
and orchestration through Kubernetes has significantly
impacted various domains, accelerating the software release
process and reducing time to market [2]. Kubernetes employs
container runtimes to manage and execute containers, utilizing
the Container Runtime Interface (CRI) for communication with
low-level container runtimes such as runc and kata
container [3].

Several implementations of CRI are currently available,
including Dockershim, CRI-O, and Containerd. However, with
the recent announcement of Dockershim's deprecation by
Kubernetes, developers are now primarily considering CRI-O
and Containerd for their projects [4].

In the realm of container technologies, the pursuit of high
availability and optimal performance has become paramount,
especially in Linux container infrastructures. As demonstrated
in the work by Šimon et al. [5], the evaluation of high
availability solutions, including Docker, Kubernetes, and

Proxmox, reveals significant variations in performance metrics
like service recovery time, data transfer rate, and failure rates.
This study underscores the critical nature of choosing the right
container platform based on specific performance and
reliability needs. Our research complements these findings by
delving into the performance nuances of Containerd and
CRI-O within Kubernetes clusters, offering a detailed
comparison that aids in selecting the most suitable container
runtime for diverse application demands.

This study aims to configure a Kubernetes cluster
separately with Containerd and CRI-O, and subsequently
analyze performance parameters such as throughput, response
time, CPU, memory, and network utilization. Furthermore, we
aim to investigate the impact of using both runc and kata
container concurrently within the cluster. Fig. 1 represents
typical Kubernetes architecture.

The subsequent sections of this paper will delve into the
literature review, methodology, results, and conclusion of our
study.

T

 Moulina Hazra Bhattacharya et al. / International Journal of Computing, 22(4) 2023, 509-514

510 VOLUME 22(4), 2023

Figure 1. Kubernetes architectural design overview

II. LITERATURE REVIEW
The main objective behind cloud computing is to reduce the
cost of setting up own physical infrastructure and resource
wastage with its reusable computing architecture [6].

Cloud communities offer four deployment models: Public,
Private, Community, and Hybrid clouds. Public clouds offer
on-demand infrastructure accessible to diverse clients
worldwide, suitable for non-sensitive data. Private clouds offer
on-premises services for specific organizations through a
private network, providing high security for sensitive data.
Community clouds allow closely associated companies to share
resources, minimizing costs. Hybrid clouds combine the
benefits of public and private clouds, providing secure data
storage, and meeting peak demand through scalability and
elasticity. Each model offers unique benefits in data security
and accessibility, tailored to various organizational needs [7].

Virtualization is a technology which uses the same physical
server to host multiple virtual instances using hypervisor
software. To manage and deploy micro applications as a
distributed system inside cloud, we need to use virtualization
and containerization technologies. Virtualization creates
individual guest OS to deploy each component, where the
containerization strategy uses multiple containers sharing the
same OS kernel with isolation using Linux isolation strategies
(namespace, cgroup). Eliminating the guest OS makes
containers light weight and reduce the performance overhead
compared to VMs [8].

For better microservice architecture, virtualization
technology has been revolutionized to lightweight virtual
framework called containerization [9]. Containers do not
virtualize the hardware. Hence, performance overhead is lower
than that of the virtual machine [10]. Containers are lightweight
and highly scalable, using the same Kernel. So, they are ideal
for distributed system deployments [11]. Moreover, they give
application portability across platforms, which means
application can be bundled with all its dependency inside
containers and then it can be used in all platforms smoothly
[12].

The performance of various container runtimes has been the
subject of numerous studies. For instance, Wang, Du, and Liu
in [13] conducted a comprehensive analysis of performance
parameters such as CPU usage, memory allocation, storage,
network functionality, system call, startup and destruction
time, density, and isolation across RunC, gVisor, and Kata
Container. Their findings indicated that while RunC containers
offer a shorter startup time and smaller memory footprint, they
fall short in terms of security compared to gVisor and Kata.
However, this study did not explore the behavior of these
containers within any orchestration tool, nor did it evaluate

Container Runtime Implementations like Containerd and CRI-
O.

Complex architecture of application can introduce hundred
thousand of services which cause huge number of containers.
This brings container orchestration tools on the stage.
Orchestration tool helps to automate container lifecycle and
container management [14].

In another study, Viktorsson, Klein, and Tordsson in [15]
compared Kata, gVisor, and runc within the same Kubernetes
cluster with Containerd, focusing on deploy time and
throughput. They concluded that while Kata offers a more
secure environment than gVisor and RunC, this enhanced
security comes at a cost. Nevertheless, this study did not
incorporate CRI-O in its analysis. Kata container is designed
with lightweight guest kernel and also is able to optimize kernel
start-up time and minimize memory footprint [16].

Kumar and Thangaraju in [17] conducted a comparative
study between two separate Virtual Machines, one configured
with Docker + runC and the other with Docker + Kata
Container. Their findings suggested that Docker + runC
outperforms Docker + Kata in terms of performance, but Kata
provides superior security and isolation. However, this study
did not delve into the realm of orchestration, a crucial aspect
considering the continuous evolution of container runtimes.
Furthermore, few investigations are there for container
orchestration tools. They combat each other in CPU, Memory,
I/O performance, also in container deployments start-up time.

Containers can be easily managed and deployed inside
Kubernetes without any manual intervention. Containers can
run independently inside the same server without affecting each
other. This is crucial for cloud providers to give best possible
utilization of their hardware while maintaining complete
isolation of hosted applications. Two separate organizations
can easily make use of this public cloud space without any
interference.

Kubernetes run these containers as an independent single
processing unit. It simplifies the deployment and management
of hundred thousand containers by abstracting away the
underlying complex infrastructure. Deploying a few nodes in
Kubernetes cluster is same as deploying thousands of them,
only the additional set of resources need to be added.
Kubernetes controls every complex infrastructure integration
related challenge like service discovery, scaling, load-
balancing, self-healing, and even leader election, which leave
developers to focus on implementing actual features of
applications [18]. With the help of container runtimes,
Kubernetes automatically takes care of CPU load, memory
consumption, queries per second etc.

Like Containerd, CRI-O is also an implementation of the
Container Runtime Interface (CRI) which uses runc underneath
as a low-level runtime. CRI-O basically stabilizes the
communication interface between kubelet and the host
container runtime. It is based on CRI gRPC, a cross-language
library which uses Protocol Buffer to make remote procedure
calls. It is also built around an older version of the Docker
architecture which uses graph drivers [19].

While deploying containers Kubernetes shows an increase
graph in CPU performance but becomes constant after certain
increase, OpenShift’s performance changes throughout the
process. Docker Swarm is inferior to Kubernetes in
performance and only supports docker as container runtime
[20]. Kubernetes can handle more complex deployments than
Docker Swarm and OpenShift. Comparative analysis of

Moulina Hazra Bhattacharya et al. / International Journal of Computing, 22(4) 2023, 509-514

VOLUME 22(4), 2023 511

managed Kubernetes solutions, such as Amazon Elastic
Container Service for Kubernetes (EKS), Azure Kubernetes
Service (AKS), and Google Kubernetes Engine (GKE) [21]
reveals that the EKS is better performer in CPU and memory
intensive application, and GKE wins in Network performance
[14]. Orchestration tools are mainly used to support and
manage multi container environment. No studies show how
these tools behave if multiple types of container runtime can be
used to deploy the containers.

Moreover, another group of researchers did some
experimental performance comparison of CPU speed, memory
footprint, Network and Disk I/O among native system, docker,
rkt, LXC, Podman, LXD. They ran data intensive applications
against computation intensive applications and concluded that
rkt handle high performance computing applications
seamlessly [22]. The main advantage of Podman over docker
is a rootless container. To create, run & manage Podman
containers it does not require root privilege. It definitely
increases the security layer and isolation but comes with
performance compromise [23]. We have already seen how
containers are beneficial compared to native systems in
previous sections, now docker and LXC give almost the same
CPU and memory performance as bare metal systems but
incurred slight overhead for I/O operations [24]. LXC gives
better Network throughput than Docker [25] but, Podman
outperforms all the other containers [26]. Reg, an ultra-
lightweight container, designed by some researchers, shows
better performance than docker in container start-up time and
image deployments [27]. All these works encourage us
conducting research on multitenancy cloud platform. To study
multitenancy, we need container cloud cluster management and
deployment tools. It is evidently indicating the performance
evaluation of container under orchestration platform. Also, it is
proposed to simultaneously evaluate heterogeneous runtimes
using orchestration tool.

A noticeable gap in the existing literature is the lack of
comprehensive studies comparing the performance of
Containerd and CRI-O within a Kubernetes environment. We
have formed a pictorial representation of current research gaps
in identified research areas in Figure 2.

Figure 2. Identified research areas

Furthermore, the impact of using both runc and kata
containers concurrently within a cluster has not been
thoroughly explored. This study aims to fill these gaps by
analyzing the performance of Containerd and CRI-O in a
Kubernetes cluster and assessing the effect of using both runc
and kata containers together.

III. METHODOLOGY
Previous sections have already revealed that to accommodate
microservice deployment, cloud is the most acceptable

environment. Deployment of huge numbers of micro
applications can only be possible through containers. We also
experienced that the increased complexity of application
architecture also entangles container deployment, security, and
management. Hence, proper fabrication of container
configurations is most important nowadays according to its
complexity.

Figure 3. Performance Test Flow

Building upon these foundational insights, our study
employs a comprehensive methodology, distinct in its
integrative approach to analyzing different container runtimes
within a Kubernetes cluster. The container runtimes under
scrutiny include Docker, CRI-O, Containerd with RunC, and
Containerd with Kata Containers. Our methodology diverges
from traditional methods by not just evaluating these runtimes
in isolation but also examining their interactions and collective
performance within a unified Kubernetes environment.

The experimental setup involves configuring a Kubernetes
cluster separately with Containerd and CRI-O. The cluster will
comprise one master and three worker machines. On this setup,
we will deploy several microservices to simulate a real-world
application environment.

To test the performance of the container runtimes, we will
use JMeter to create a performance script. This script will be
executed under different Kubernetes environments, each
utilizing a different container runtime. The performance

 Moulina Hazra Bhattacharya et al. / International Journal of Computing, 22(4) 2023, 509-514

512 VOLUME 22(4), 2023

parameters that will be analyzed include Throughput, Response
Time, CPU, Memory, and Network utilization. Fig. 2 shows
performance test flow diagram.

In addition to the individual performance analysis of the
container runtimes, the study will also explore the impact of
using both runc and kata container concurrently within the
cluster. This will involve configuring RunC and Kata
containers (low-level containers) to work together within the
Kubernetes environment. This part of the study aims to
understand how the combined use of RunC and Kata
Containers can enhance the system's performance compared to
using only one type of container.

The data collection process will involve monitoring the
performance parameters during the execution of the JMeter
script. The gathered data will be meticulously analyzed to
derive insights regarding the performance variances among
various container runtimes within a Kubernetes environment.

IV. ANALYSIS AND IMPLEMENTATION
Kubernetes, a robust open-source platform, is extensively
employed in the IT sector due to its wide-ranging features that
enable efficient management of containerized workloads and
services. This study primarily concentrates on the performance
of Containerd, CRIO, RunC, and Kata Container runtime. This
chapter outlines the implementation of our experiment, starting
with the prerequisites for setting up a Kubernetes cluster and
deploying applications within it.

It further elaborates on the configurations and procedures
involved in executing the experiment, the creation of the
performance script, the cost of implementation, and finally, an
in-depth discussion on performance processing.

Fig. 4 shows that we have provisioned one master node and
three worker nodes using AWS EC2 machines which have the
above configurations.

Figure 4. Schematic Representation of the Experimental Setup and Process for Performance Testing of Different Container
Runtimes in a Kubernetes Cluster

Prerequisites. We utilized the manual installation method

using Kubeadm to install the Kubernetes Cluster. The cluster
was established twice, once using containerd as the container
runtime and another time using CRI-O. We leveraged the AWS
setup provided by the Upgrad Organization for provisioning the
cluster, which consisted of one master node and three worker
nodes with specific configurations. The cluster was prepared
three times to cover scenarios with Docker Container Runtime,
CRI-O Container Runtime, and Containerd Container Runtime.

Experiment Configuration & Data set discussion. The
experiment employed an existing application developed by us.
The application, a straightforward movie booking system, was
deployed using the helm manager. The application comprises
six distinct microservices, each responsible for specific tasks.
We utilized the helm package manager to automate the
deployment of the application inside Kubernetes.

Performance Script Preparation We employed JMeter, an
open-source Java application designed for performance testing,
to prepare the performance script. The script was generated as
a .jmx file and executed to create a report.csv file for generating
a detailed report.

Performance Processing Details. The experiment was
divided into four parts, each involving the setup of the
Kubernetes cluster using the same EC2 configuration but
different container runtimes. For each setup, the application,
Prometheus, and Grafana were deployed in the same manner.
The entire process was run three times in each part of the
experiment to obtain more accurate results. The experiment
primarily utilized open-source software and tools, with some
AWS services.

Fig. 5 shows Experimental Setup and Process for
Performance Testing of Different Container Runtimes in a
Kubernetes Cluster.

Figure 5. AWS EC2 Instances

This Section offers a comprehensive overview of the

experiment's implementation, focusing on the deployment of
applications inside a Kubernetes cluster configured with four
different container runtimes. The next section will concentrate
on the performance metrics and provide a detailed discussion
on how the performance of these container runtimes differs
from each other.

V. RESULTS AND DISCUSSION
This section presents the results obtained from the performance
analysis of Docker, CRI-O, Containerd with RunC, and
Containerd with Kata Containers.

The results are discussed in terms of throughput, response
time, CPU, memory, and network utilization. Docker, as the
most commonly used container runtime, served as the baseline
for our experiment. CRI-O, another container runtime, was
tested next.

Moulina Hazra Bhattacharya et al. / International Journal of Computing, 22(4) 2023, 509-514

VOLUME 22(4), 2023 513

Fig. 6 represents comparison of throughputs for different
implementations. The third part of the experiment involved the
use of Containerd with RunC as the container runtime. The
final part of the experiment involved the use of Containerd with
Kata Containers as the container runtime. Upon comparing the
performance metrics of the four container runtimes, several
observations can be made.

Figure 6. Memory Comparison of runtimes

The results obtained from the experiment provide valuable
insights into the performance of different container runtimes in
a Kubernetes environment. This section presents the results
obtained from the performance analysis of Docker, CRI-O,
Containerd with RunC, and Containerd with Kata Containers.

Due to Fig. 7, it is evident that, there is a sudden drop in
Memory usage for Docker towards the end of the JMeter load
test run. Apart from that there is not much difference in the
Memory access performance of the different container
runtimes. It is in line with our expectations.

Figure 6. Throughput Comparison of runtimes

The discussion now turns to the performance metrics in
terms of CPU usage, as illustrated in Fig. 8 (CPU Usage
Comparison of Runtimes). Here, a deeper statistical analysis
was undertaken. Employing an Analysis of Variance
(ANOVA) test on the CPU usage data, we found that the
differences, while subtle, are statistically significant (p-value <
0.05). This indicates that, despite the minimal variance in CPU
usage, the choice of container runtime can impact resource
allocation and efficiency, especially in CPU-intensive
environments.

In practical scenarios, such as high-traffic web applications
or data-intensive computational tasks, these findings suggest
that the selection of the container runtime could be
consequential. In high-load scenarios, even minor differences
in CPU utilization can be accumulated, leading to more

pronounced effects on system performance and resource
management.

Figure 7. CPU Comparison of runtimes

Moreover, these results are in alignment with similar
studies in the field, which indicate that container runtimes,
though generally offering comparable performance, can exhibit
slight variations in specific use cases. This finding underscores
the importance of a nuanced approach to selecting container
runtimes, factoring in the particular demands and performance
expectations of the application and underlying infrastructure.

The analysis phase revealed that both Containerd and CRI-
O outperform Docker in terms of efficiency, and their
performance metrics are remarkably similar to each other. It is
also proved from other studies that runc performs better than
Kata container. We configured both inside the cluster by
assigning some application in kata and others are in runc and
noticed it is performing almost close to only runc environment.

The next section will conclude the study and provide
recommendations for future work.

VI. CONCLUSION AND FUTURE WORK
Containerization is currently a growing technology. The study
aims to analyze the performance of different container runtimes
in a Kubernetes environment. The container runtimes evaluated
were Docker, CRI-O, Containerd with RunC, and Containerd
with Kata Containers. The performance metrics considered
were Throughput, Response Time, CPU, Memory, and
Network utilization. Docker's performance served as the
baseline for the experiment.

The results obtained from the experiment provided valuable
insights into the performance of these container runtimes. It is
observed that runC performs better than Kata Container. Light
virtual machine technology presented inside the kata boosts the
security but hits the performance. Kubernetes supports to
configure both runc and kata together, and the combined
environment performs almost similar with runc. Hence, it is
also a great option to use both together to reduce the security
problem as well as increase the performance. In this experiment
we tried to show the practical usage of Kubernetes with
multiple containers running inside it. It became extensive
configurations to set up Kubernetes separately for each
container environments. The findings of this research can be
used as a guide for future research in this area. Further studies
could focus on the security aspects of Kubernetes and the
performance evaluation of container runtimes in cross machine
environment.

In conclusion, the choice of container runtime in a
Kubernetes environment can significantly impact the

281,8

281,9

282

282,1

Docker + runc CRI-O + runc Containerd +
runc

Containerd +
runc + kata
container

Transactions per second

 Moulina Hazra Bhattacharya et al. / International Journal of Computing, 22(4) 2023, 509-514

514 VOLUME 22(4), 2023

performance of the deployed applications. Therefore, it is
crucial to make an informed decision based on the specific
requirements of the use case.

For future research, two critical areas are suggested:
 first, a deeper exploration into the security aspects of

container runtimes within Kubernetes environments,
particularly focusing on the trade-offs between security
features and performance metrics;

 second, an investigation of the performance of container
runtimes in a cross-machine or cross-cloud environment,
which could provide valuable insights for applications
requiring high scalability and availability.

References

[1] P. Mell and T. Grance, The NIST Definition of Cloud Computing,
National Institute of Standards and Technology, Special Publication 800-
145, 2011. https://doi.org/10.6028/NIST.SP.800-145.

[2] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
Omega, and Kubernetes,” ACM Queue, vol. 14, no. 1, pp. 70–93, 2016,
https://doi.org/10.1145/2898442.2898444.

[3] S. J. Songi Gwak Thien-Phuc Doan, “Container instrumentation and
enforcement system for runtime security of kubernetes platform with
eBPF,” Intelligent Automation & Soft Computing, vol. 37, no. 2, pp.
1773–1786, 2023. https://doi.org/10.32604/iasc.2023.039565.

[4] Kubernetes, “Dockershim deprecation FAQ,” Kubernetes, 2020.
[Online]. Available at:
https://kubernetes.io/blog/2020/12/02/dockershim-faq/

[5] M. Šimon, L. Huraj, and N. Búčik, “A comparative analysis of high
availability for linux container infrastructures,” Future Internet, vol. 15,
no. 8, pp. 253, 2023. https://doi.org/10.3390/fi15080253.

[6] S. A. Bello et al., “Cloud computing in construction industry: Use cases,
benefits and challenges,” Autom Constr, vol. 122, p. 103441, 2021.
https://doi.org/10.1016/j.autcon.2020.103441.

[7] N. Kratzke, “A brief history of cloud application architectures,” Applied
Sciences, vol. 8, no. 8, p. 1368, 2018.
https://doi.org/10.3390/app8081368.

[8] N. G. Bachiega, P. S. L. Souza, S. M. Bruschi, and S. do R. S. de Souza,
“Container-based performance evaluation: A survey and challenges,”
Proceedings of the 2018 IEEE International Conference on Cloud
Engineering (IC2E), April 2018, pp. 398–403.
https://doi.org/10.1109/IC2E.2018.00075.

[9] A. Bhardwaj and C. R. Krishna, “Virtualization in cloud computing:
Moving from hypervisor to containerization – A survey,” Arab J Sci Eng,
vol. 46, no. 9, pp. 8585–8601, 2021, https://doi.org/10.1007/s13369-021-
05553-3.

[10] A. M. Potdar, S. Poojary, S. Nair, and S. Pai, “Performance evaluation of
docker container and virtual machine,” Procedia Comput Sci, vol. 171,
pp. 1419–1428, 2020, https://doi.org/10.1016/j.procs.2020.04.152.

[11] A. M. Joy, “Performance comparison between Linux containers and
virtual machines,” Proceedings of the 2015 IEEE International
Conference on Advances in Computer Engineering and Applications,
March 2015, pp. 342-346.
https://doi.org/10.1109/ICACEA.2015.7164727.

[12] I. M. A. Jawarneh, A. Al-Shishtawy, V. V. Vinay, and R. Ghosh,
“Container orchestration engines: A thorough functional and
performance comparison,” Proceedings of the 2019 IEEE International
Conference on Communications (ICC), May 2019, pp. 1-6.
https://doi.org/10.1109/ICC.2019.8762053.

[13] L. Wang, Z. Du, and Y. Liu, “Performance Analysis of Container
Runtimes,” Journal of Cloud Computing, vol. 1, no. 1, pp. 1–15, 2022.

[14] A. P. Ferreira and R. Sinnott, “A performance evaluation of containers
running on managed Kubernetes services,” Proceedings of the 2019 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom), December 2019, pp. 199-208.
https://doi.org/10.1109/CloudCom.2019.00038.

[15] A. Viktorsson, C. Klein, and J. Tordsson, “Performance and security
analysis of container runtimes in Kubernetes,” International Journal of
Cloud Computing, vol. 9, no. 2, pp. 120–135, 2020.

[16] H. Z. Cochak, G. P. Koslovski, M. A. Pillon, and C. C. Miers, “RunC and
Kata runtime using Docker: a network perspective comparison,”
Proceedings of the 2021 IEEE Latin-American Conference on

Communications (LATINCOM), November 2021, pp. 1–6.
https://doi.org/10.1109/LATINCOM53176.2021.9647757.

[17] R. Kumar and B. Thangaraju, “Performance analysis between RunC and
Kata container runtime,” Proceedings of the 2020 IEEE International
Conference on Electronics, Computing and Communication
Technologies (CONECCT), July 2020, pp. 1-4.
https://doi.org/10.1109/CONECCT50063.2020.9198653.

[18] M. Luksa, Kubernetes in Action, Second ed., Simon and Schuster, 2017,
775 p. https://doi.org/10.3139/9783446456020.fm.

[19] L. Espe, A. Jindal, V. Podolskiy, and M. Gerndt, “Performance
evaluation of container runtimes,” CLOSER, 2020, pp. 273–281.
https://doi.org/10.5220/0009340402730281.

[20] N. Marathe, A. Gandhi, and J. M. Shah, “Docker swarm and Kubernetes
in cloud computing environment,” Proceedings of the 2019 3rd
International Conference on Trends in Electronics and Informatics
(ICOEI), 2019, pp. 179–184.
https://doi.org/10.1109/ICOEI.2019.8862654.

[21] E. Bisong and E. Bisong, “Containers and Google Kubernetes engine,”
Building Machine Learning and Deep Learning Models on Google Cloud
Platform: A Comprehensive Guide for Beginners, pp. 655–670, 2019.
https://doi.org/10.1007/978-1-4842-4470-8_45.

[22] J. P. Martin, A. Kandasamy, and K. Chandrasekaran, “Exploring the
support for high performance applications in the container runtime
environment,” Human-centric Computing and Information Sciences, vol.
8, no. 1, 2018, https://doi.org/10.1186/s13673-017-0124-3.

[23] G. E. de Velp, E. Rivière, and R. Sadre, “Understanding the performance
of container execution environments,” Proceedings of the 2020 6th
International Workshop on Container Technologies and Container
Clouds, 2020, pp. 37–42. https://doi.org/10.1145/3429885.3429967.

[24] Z. Kozhirbayev and R. O. Sinnott, “A performance comparison of
container-based technologies for the cloud,” Future Generation
Computer Systems, vol. 68, pp. 175–182, 2017.
https://doi.org/10.1016/j.future.2016.08.025.

[25] M. Moravcik, P. Segec, M. Kontsek, J. Uramova, and J. Papan,
“Comparison of lxc and docker technologies,” Proceedings of the 2020
18th International Conference on Emerging eLearning Technologies and
Applications (ICETA), 2020, pp. 481–486.
https://doi.org/10.1109/ICETA51985.2020.9379212.

[26] R. Debab and others, “Containers runtimes war: a comparative study,”
Proceedings of the Future Technologies Conference, Springer, 2021, pp.
135–161. https://doi.org/10.1007/978-3-030-63089-8_9.

[27] W. Wang, L. Zhang, D. Guo, S. Wu, H. Cui, and F. Bi, “Reg: An ultra-
lightweight container that maximizes memory sharing and minimizes the
runtime environment,” Proceedings of the 2019 IEEE International
Conference on Web Services (ICWS), 2019, pp. 76–82.
https://doi.org/10.1109/ICWS.2019.00024.

MOULINA HAZRA BHATTACHARYA
pursues her Master's degree in
Computer Science at Liverpool John
Moores University (LJMU). With a
strong emphasis on research and
practical application, her areas of
scientific interest span across Cloud

Computing, Full Stack Development, and Software
Development. Bhattacharya's passion for these domains has
positioned her to contribute meaningfully to the evolving
landscape of computer science and technology.

DR. HARISH KUMAR MITTAL is the
Principal and Head of Computer
Science at BM Institute of Engineering
and Technology, Sonepat, with over
21 years of experience in teaching,
entrepreneurship, and R&D. He holds
a Ph.D. from Guru Jambheshwar Uni-

versity, has authored numerous research papers and
engineering textbooks, and holds four patents. Dr. Mittal has
served in various roles in academic conferences and journals,
and his research interests span Software Engineering, Soft
Computing, Cloud Computing, and Machine Learning.

