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ABSTRACT Solving combinatorial optimization problems is a crucial challenge in many real-world
applications. These problems require the optimal choice of combinations from a large set of possibilities,
subject to the specific constraints of the problem under consideration, in order to maximize or minimize
an objective function. In recent years, Reinforcement Learning (RL) has attracted considerable attention
as a potential innovative tool for tackling these complex tasks. The main challenge, to solve combinatorial
optimization problems using RL, is related to the need of overcoming the sequential nature of the Markov
Decision Processes (MDP) model, on which the solution algorithms are based. In this work, we present
an extension of the MDP, that enables software agents to learn from a model, that better reflects the
non-sequential nature of these problems. The results demonstrate that, for the first time, a software agent
can provide optimal results or, at the very least, solutions with minimal deviation from the optimal values,
in the majority of the benchmark instances used in the computational study.

KEYWORDS markov decision process; combinatorial optimization; reinforcement learning; bin packing
problem;

I. INTRODUCTION

SOLVING combinatorial optimization (CO) problems
represents a fundamental challenge in a wide range of

real-world applications, where the main goal is to find an
optimal combination of elements, from a discrete set of
possibilities, subject to solution feasibility constraints, in
order to maximize or minimize a desired objective function.

In recent years, Reinforcement Learning (RL), a branch
of machine learning, has gained considerable attention as
a possible innovative approach to address CO problems
( [1], [2], [3]). This approach is based on the ability of
an agent to learn through interaction with an environment,
that models the problem under consideration, in order to
maximize a cumulative reward appropriately linked to the
desired objective function.

In the theoretical framework of RL, Markov Decision
Processes (MDPs) model play a central role, serving as
the formal representation of several decision problems.

However, transposing this model to CO problems presents
significant challenges. The main difficulty arises from the
sequential nature of MDPs, which results in the generation
of large search spaces.

Building upon the aforementioned considerations, this
paper aimed at developing an extension of MDPs, that is
more suitable for modeling and solving CO problems. The
key idea is to train the agent to build the MDPs, deciding
which states to accept or not and their value.

The proposed strategy is used to solve the Bin Packing
Problem (BPP). The defined approach enables to limit the
size of the search space, facilitating the determination of
optimal results for the majority of tested instances, and near-
optimal results for the remaining ones.

The rest of the paper is organized as follows. Section
II provides an overview of the RL framework, describes
the underlined MDPs model, and introduces the BPP, to
which the proposed approach is applied. Section III offers
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a review of the use of MDPs in solving RL approaches,
with a specific focus on the BPP. Section IV includes a
general description of the proposed approach, along with
a version tailored for solving the BPP. Section V discusses
the computational results obtained by applying the proposed
approach to benchmark instances of the BPP. Finally Sec-
tion VI reports the main conclusions of our work and a
description of possible future developments.

II. PROBLEM DESCRIPTION
In the RL framework, a software agent (i.e., the algorithm)
learns through a mechanism of rewards and punishments, by
interacting with the environment ( [4], [3]). The main goal
of this agent is to maximize the total reward, expressed as:

Gt =

H∑
k=0

γkrt+k+1, (1)

where t is a generic step, γ is the discount factor and H is
the horizon, that can be infinite.

This environment is typically modeled mathematically
as a MDP ( [4], [3]) In these scenarios, probabilities and
rewards are typically unknown or only partially known,
and the agent learns them through interactions with the
environment.

The main components of the MDP are represented by the
tuple (S,A, P,R, γ) where:

• S is a finite set of states, represented by s ∈ S.
• A is a finite set of actions, represented by a ∈ A.
• P (s′|s, a) denotes the state transition probabilities,

which represent the probability of transitioning from
state s to state s′ when taking action a. It is defined as
P (s′|s, a) = Pr(St+1 = s′|St = s,At = a).

• r(s′, s, a) represents the expected reward for transi-
tioning from state s to state s′ by taking action a. It
is defined as r(s′, s, a) = E[Rt+1|St+1 = s′, St =
s,At = a], where Rt+1 is the reward obtained after
the transition.

The agent learns to make decisions through direct interac-
tion with its environment. It takes actions, receives feedback
in the form of rewards or punishments, and gradually refines
its decision-making process. This training process involves
learning a strategy, often referred to as a policy denoted as
π, which enables the agent to maximize its return G ( [4],
[5], [6], [3], [7]).

Several contributions addressing CO problems using RL
techniques, have been published in the scientific literature
tackles various problems, including but not limited to the
traveling salesman problem, set covering, and BPP ( [3], [6],
[8], [1]). In this work, we focus on the BBP, an NP-Hard
problem ( [9]), whose maim aim is to insert a predetermined
number of elements of different weights into the smallest
possible number of containers ( [10], [11], [12], [13]).

Formally, the BPP involves the task of packing n items,
each with size Ii (0 ≤ i < n), into the minimum number

of bins. This must be done while ensuring that the capacity
c of each bin is not exceeded.

The BPP arises in several real-life applications. For this
reason, both exact approaches and ad-hoc heuristics have
been developed. The first exact method, that is a branch
& bound approach, has been proposed by Martello et al. in
[10]. This method has been improved by the same authors in
[14]. A different approach has been developed in [15], where
the Bin Completion procedure is proposed. In this approach,
rather considering the different containers into which each
item can be placed, the authors consider the different ways
each container can be filled. This work was subsequently
improved by the same authors in [16].

DeLorme et al, in [17], review the most important exact
algorithms developed for solving the BPP.

Due to its NP-hard nature, numerous heuristic approaches
have been devised to address the BPP ( [18], [19], [20]).
The first and most well-known heuristics are Next-Fit (NF),
First-Fit (FF) and Best-Fit (BF) methods, and their deriva-
tives ( [21], [22]).

We refer the readers to the survey [23] for approximation
approaches for the classical BPP and its generalizations. For
metaheuristic approaches, we recommend the review paper
[24].

III. STATE OF ART
MDPs find application in a wide spectrum of CO problems.
However, they suffer from what is known as the “curse of
dimensionality”, i.e. the size of the model grows exponen-
tially compared to the size of the problem to be treated, and
therefore the use of the MDPs becomes intractable both in
terms of time and storage complexity ( [25], [26]).

In the literature there are several approaches to overcome
the “curse of dimensionality”, which can be divided into
two classes: those based on “Approximation”, which try to
approximate the search space, for example by aggregating
states or building heuristic versions of exact algorithms
( [27], [28], [29], [30]), and those based on “Simulation”,
where the model is built using simulations and neural
networks ( [31], [32], [4], [33], [34], [35]).

Effective methods for solving MDPs include the Value
Iteration method, the Policy Iteration method, regular LP
interior-point algorithms, and the Vavasis-Ye algorithm, to
cite a few ( [36], [37], [38]).

The Value Iteration method is an iterative approach used
to find the optimal value function which describes how good
is to be in a specific state s when following a certain policy
π:

Vπ(s) = E[Gt|St = s].

In particular, Vπ(s) represents the expected return (i.e.,
the expected cumulative discounted reward) when starting
from state s and following policy π. The process begins
with an initial estimate or a random value for the value
function and iteratively updates it until convergence. During
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each iteration, it computes the new value for each state
by considering the expected immediate rewards (r) and
the estimated values of the successor states (Vπ(s

′)). It is
guaranteed to converge to the optimal value function and
policy ( [4]).

The Policy Iteration is another iterative method for solv-
ing MDPs, that finds the optimal policy by iteratively
evaluating and improving the policy itself ( [4], [7]).

Interior-point algorithms are a class of linear program-
ming approaches used to solve MDPs. In this framework,
MDPs are formulated as linear programs, and interior-point
algorithms, such as the primal-dual interior-point method,
are applied to find the optimal solution. These approaches
represent MDPs as sets of linear equations and inequalities.
One notable advantage of these methods is their ability to
efficiently handle large-scale MDPs while offering strong
theoretical properties ( [37], [38]).

The Vavasis-Ye algorithm ( [38], [39]) is a specialized
algorithm designed for solving linear complementarity prob-
lems. It is also applied to handle MDPs, leveraging the
structural characteristics of MDPs to efficiently find the
optimal policy, by solving linear complementarity problems.

The choice of these methods often depends on the MDPs
characteristics and the specific features of the optimization
problem to be solved, including its size and structure. Each
method has its advantages and may be preferred in different
situations.

Recently the development of neural networks has ex-
tended the use of RL for solving MDPs, simultaneously
improving efficiency. In particular, innovative ways of repre-
senting the input, through ad-hoc state encoders, have made
it possible to manage very complex CO problems ( [6], [40],
[3], [1]).

These encoders adapt instances of CO problems to make
them suitable for neural network processing. For example,
the Pointer Network ( [40]), encode the input in such a way
to capture relevant features and reduce dimensionality.

Numerous RL-based approaches have been designed for
addressing the BPP, with a majority of them focusing on
solving the 2D and 3D versions of the problem

In particular, for the 3D BPP, one of the earliest RL-
based approaches can be found in [41], where the authors
apply a trained model on three categories of instances
containing 8, 10 and 12 elements, demonstrating that the
proposed method, which uses pointer networks as encoders
of the positions of the elements, manages to overcome the
reference heuristics obtaining results better than 5%.

In [42], the authors attempt to solve both 2D and 3D
packing problems, using a recurrent neural network (RNN)
to embed the states and then adopting an attention mecha-
nism ( [43]) to handle packing problems of different sizes.
Results show that their model achieves a lower gap ratio
in both 2D and 3D packing compared to existing heuristic
methods and learning approaches.

In the context of the one-dimensional problem setting,
only a limited number of papers have been published that

explore the application of RL to the BPP. In [44], the authors
consider a Proximal Policy Optimization approach [5] to
train an agent and compare its performance with the BF and
Sum of Squares (SS) heuristics [45] for the online version of
the BPP. Their approach was tested not only on BPP, but also
on Newsvendor and Vehicle Routing problems, showing that
their RL policy outperforms or is competitive with baseline
algorithms.

In [7], an RL agent is trained to mimic the BF heuristic.
The authors demonstrate its ability to outperform the refer-
ence algorithm in all the considered instances. Unlike this
last contribution, the approach proposed in this work aims
to train an agent that receives a reward proportional to the
feasibility and the quality of the solution it builds.

IV. THE PROPOSED APPROACH
One of the main challenges in solving CO problems with
RL is the need of appropriately defining the correspond-
ing MDPs. In the previous section, we have underlined
that the main difficulty in constructing an MDP linked
to a CO problem stems from the exponential growth of
the model’s dimension as the problem’s size increases.
Therefore, several approaches have been proposed in the
scientific literature to address these challenges, aimed at
approximating the search space.

In this work, we propose an alternative approach for
building MDP models, well tailored for addressing CO
problems. The related models, referred in the sequel as
Markov Combinatorial Processes (MCPs), mantain the same
structure and all the mathematical results as the MPDs; the
difference lies in the construction method. Unlike MDPs,
MCPs are not defined a-priori, based on the characteristics
of the problem to be solved; instead, the agent itself learns
how to construct them.

The proposed procedure can be viewed as a hybrid
approach, integrating key aspects from the methods aimed
at approximating MDPs and those that try to simulate
them in order to handle the “curse of dimensionality”.
In this context, approximation involves the utilization of
RNNs, through which the agent observes the state and
determines the progression to subsequent states. Meanwhile,
the simulation of the optimization problem is used to assign
a value to the final states at each step.

Figure 1. Graphical Representation of the Unrolling of the
Markov Combinatorial Processes

The key idea draws inspiration from the existing works on
RNNs ( [40], [43]). More specifically, a single cell generates
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an output ht at time t, but, in addition to this output, the
cell also maintains a state, Hs, which is recursively reused
at time t+ 1 to compute the new output (see Fig. 1).

In other words, the outputs ht depend on the state
inherited from the previous step, and the current input et.

In our model, the H state of the RNNs becomes the
set of the h states of the MDPs in a given iteration, the
output is one of these h states, the one with the best QValue
(see below), and the input is a vector containing aggregate
information on the next element to be inserted (item in the
case of BPP, customer and/or vehicle in the TSP, etc.).

Fig. 2 gives a graphical representation of the construction
process in details. The MDPs states are identified with the
h vectors inside the box wich represent the state H of
the RNN at each step, while the input with the e vectors.
Both are embedding vectors, meaning they contain pooled
information that is then used by the agent to learn and
construct the MCP appropriately.

In particular, the e-th vector is defined as follows:

et = [It Et Vt Qt],

where It are the values associated with the next item to
be inserted (in the case of BBP it will be the weight of
the item); Et contains embedding information on the items
(minimum, average and maximum values of the items and
maximum capacity of the bin, for the BPP): empirically it
has been seen that the information can accelerate the agent’s
training times, whereas it has no effect on the final value;
Vt is a mask that contains information on the items already
inserted: they are values that indicate how many times the
i-th item is used (for example, in the case of BPP it is
obviously 0 or 1); Qt indicates the QValue of each i-th
item, as we will see later, this value is used to define the
overall value of the solutions found in each state.

At each step t, the MCP contains a certain number X
of state-vectors hx, where the x-th h vector contains the
following information:

hx = [et ht−1 ht−1⊕et r],

where et and ht contains values from input and previous
state, ht−1 ⊕ et are values calculated by aggregating the
values of et with the values of the previous ht − 1 state
using the operator ⊕, a permutation invariant aggregation
operator that can accept an arbitrary number of inputs (e.g.,
element-wise sum, mean, or max). In addition, r is the
reward obtained at time t.

Thus, at each step, for each state-vector hx, the agent
decides whether to extend the state H with a new MDP state
h, using the state-vector hx and the vector e as observations.
In this sense, the input e at each step t can be interpreted
as the action eth, which either extends or does not extend
the single MDP state hx.

In the positive case, the values are combined and new
state-vectors are generated from hx and the action-vector
eth. Each new state-vector h represents a new state of the
MDPs.

For example in Fig. 3, at time 1 the state vector h10 is
combined with the action-vector e1, to generate the state-
vector h20 (step 1), which, in this step, represents also the
optimal solution, since it has the biggest QValue.

In step 2, starting from h10 and h20, the state-vectors h30

and h34 are generated by the combination with e2. The state
vector h34 is crossed out in the figure, because the agent has
decided to exclude it from the process. At the final step (n−
1), all possible state-vectors are generated, among which
certain ones are considered optimal (highlighted in green in
the figure), representing those with the highest QValue.

In general, it is clear that in each step, there can exist
multiple optimal states.

A. MARKOV COMBINATORIAL PROCESSES FOR THE
BPP
The proposed approach has been tailored to address the BPP
in the following way. First of all, the problem is divided into
subproblems, each of which deals with filling a single bin
in the best possible way, i.e. minimizing the remaining free
space after the items are inserted.

Fig.3 gives a graphical representation of the results ob-
tained by using MCPs on a single subproblem Sx, with a
single bin. The final solution of this step Sx contains the
optimal solutions only for the current bin. In the considered
example, we have only hnx2, which is the state of MDPs
with the best QValue in Sx.

The process continues in a similar way, building solutions
for the other bins, until all the items have been considered
(see Fig.4). Since, solving the single subproblems separately
and combining the related solutions does not ensure opti-
mality for the original problem, the vector of embeddings
[C I V Q] has been used, where C represents the capacity
of the bins, I contains the weights of the items, V is the
mask indicating whether items have been inserted (1 if
already inserted, 0 otherwise), and Q represents the QValue
of the items. These values are updated after each Sx step
is completed and its best solution is selected.

For agent learning, we employ the Proximal Policy
Optimization (PPO) learning algorithm ( [5], [46]), with
an actor-critic network architecture ( [5], [47]). At each
step, the agent receives observations from the environment
derived from the embedding vectors et and hx. In particular,
during each training iteration, the agent observes each state
hx belonging to Ht using an attention mechanism ( [40],
[43]) and then it learns whether to expand the MDPs with
the new state h, aiming to achieve the highest cumulative
reward.

The pseudocode reported in Algorithm 1 shows how the
agent is used to generate the MCPs for a single subproblem,
i.e. for a single bin.

A bin is opened and it is set as the current bin. Then
Algorithm 1 is executed and until an optimal solution is
found for the current bin, i.e. the bin is fullfileed, or all
items are processed, the vector et is created for each item,
and then if it has not been used, the agent decides whether
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Figure 2. Details of the Unrolling Process

Figure 3. Markov Combinatorial Processes

Figure 4. MCPs for BPP

Algorithm 1: Agent Heuristic

Input: Embedding Vector [C, I, V,Q]
Output: Best hx states of H

1 while optimal ̸= True or all items are processed do
2 for each item do
3 et ←− [It Et Vt Qt];
4 if V [i] ̸= 0 then

/* the item is already placed in a bin */
5 continue with next item;

6 for each hx in Ht do
7 if AgentCreateNewMDPState(hx, et) ==

True then
8 hnew ←− [et ht−1 ht−1

⊕
et r];

9 H ←− H + ⟨hnew⟩;

10 optimal←− waste == 0;

11 return Best hx states of H

or not to create a new state hnew starting from the state hx.
In positive case, hnew is added to the set H of states of
current MDPs. The best hx state is used to insert the items
in the current bin and this process is repeated with a new

opened bin until all the items are placed, i.e. all V [i] are
equal to 1.

V. COMPUTATIONAL RESULTS
The results in this work were obtained using the Colab
shared platform, a web-based tool provided by Google
(https : //colab.research.google.com/). This platform
offers access to essential libraries and hardware resources
for training neural networks, but it doesn’t provide detailed
execution time data due to shared hardware usage. Never-
theless, this is not a concern, as our goal is to demonstrate
the agent’s ability to effectively solve BPPs.

Table 1. Instances Characteristics

Instance Opt Instances Bin Elements
Range Number capacity Number

Falkenauer U [46, 52] 20 150 120
Falkenauer U [99, 106] 20 150 250
Falkenauer U [196, 207] 20 150 500
Falkenauer U [393, 411] 20 150 1000

Falkenauer T 20 20 1000 60
Falkenauer T 40 20 1000 120
Falkenauer T 83 20 1000 249
Falkenauer T 167 20 1000 501

The computational experiments have been carried on a
set of istances considered in [18] and [48]. In particular,
there are 160 instances divided into two classes. The first
one ‘Falkenauer U’contains four groups with 120, 250, 500
and 1000 elements respectively, whose size is uniformly
distributed between 20 and 100, while the capacity of the
bins is 150. The second class ‘Falkenauer T’ consists of four
groups containing 60, 120, 249 and 501 elements, whose
sizes distributed between 25 and 50 and the bin capacity
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equal to 100. These latter instances are considered the most
challenging.

The main characteristics of the problem instances are
given in Table 1, where the first column indicates the type of
instance considered, the second the number of bins (min and
max) in the optimal solutions, the third column the number
of instances for each type, and the last column specifies the
capacity and the number of elements to be placed.

Table 2. FU Results

Type U120 U250 U500 U1000

Instance Bin GAP Bin GAP Bin GAP Bin Gap
Number

0 49 1 99 0 198 0 399 0
1 49 0 100 0 201 0 406 0
2 46 0 102 0 202 0 411 0
3 50 1 100 0 204 0 412 1
4 50 0 101 0 206 0 397 0
5 48 0 102 1 206 0 400 1
6 48 0 102 0 208 1 395 0
7 51 2 104 0 205 1 404 0
8 51 0 107 2 196 0 399 0
9 46 0 101 0 202 0 397 0
10 52 0 105 0 200 0 400 0
11 50 1 101 0 200 0 401 0
12 48 0 106 0 199 0 393 0
13 49 0 103 0 196 0 396 0
14 50 0 100 0 204 0 395 1
15 48 0 106 1 201 0 402 0
16 52 0 97 0 202 0 404 0
17 53 1 100 0 198 0 404 0
18 49 0 100 0 202 3 399 3
19 50 1 102 0 2 0 400 0

Table 3. FT Results

Type T60 T120 T249 T501

Instance Bin GAP Bin GAP Bin GAP Bin Gap
Number

0 21 1 41 1 84 1 168 1
1 21 1 41 1 84 1 168 1
2 20 0 41 1 84 1 169 2
3 21 1 41 1 84 1 168 1
4 21 1 41 1 84 1 169 2
5 21 1 41 1 84 1 168 1
6 21 1 41 1 84 1 168 1
7 21 1 41 1 84 1 168 1
8 21 1 41 1 84 1 168 1
9 21 1 41 1 84 1 168 1
10 21 1 41 1 84 1 168 1
11 21 1 41 1 84 1 168 1
12 21 1 41 1 84 1 168 1
13 21 1 41 1 84 1 169 2
14 21 1 41 1 84 1 168 1
15 21 1 41 1 84 1 169 2
16 21 1 41 1 84 1 169 2
17 21 1 41 1 84 1 168 1
18 21 1 41 1 84 1 168 1
19 21 1 41 1 84 1 169 2

A first phase of the testing phase has been devoted to the
evaluation of the effectiveness of the learning algorithm, in
terms of training speed and expected reward. To this aim,
we compare the rewards attained by an untrained agent (i.e.,
a random agent) with those obtained by the agent trained
using the PPO approach. In Fig. 5, the reward obtained on
the first instance of the Falkenauer U problem class, with

120 items is depicted. Similar results have been collected
on the other instances.

As expected, Fig. 5 underlines that when a random agent
is used, it is not possible to have a high average reward nor
to improve it over time.

Figure 5. Rewards obtained by using a random agent on the
first instance of tje set Falkenauer U.

Using the training algorithm instead (see Fig. 6), the agent
learns until it obtains the maximum expected reward. In
particular, each time the agent performs a wrong action, it
receives a negative reward if it accepts a Markov state that
is not feasible for the problem (e.g. for BPP if it exceeds
the available space) and the episode ends. Otherwise, the
agent receives a reward proportional to the quality of the
built solution (i.e. the filling grade of the bin).

The use of this agent in the proposed algorithm allows
finding optimal or close to optimal solutions for the consid-
ered BPP instances.

Figure 6. Training Process of the agent

Tables 2 and 3 provide detailed results for each instance
type, including the number of bins required and the gap
compared to the number of bins used in the known optimal
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solution. The first table refers to instances of type U, while
the second one to those of type T.

As observed in the U-type instances, the approach
achieves near-optimal solutions for most cases. In instances
where it falls short of finding the optimal solution, the
discrepancy in the number of bins compared to the known
best solution is typically only one bin. However, in the
case of instance 18, containing 500 elements, the deviation
amounts to 3 bins.

In the case of instances of type T, the most difficult ones,
the algorithm is unable to find the optimal solution, except
in instance 2 with 60 elements. However, the GAP with
respect to the best known solution is only one bin.

Table 4. Results for each set of instances

Sets Bin C Opt BFD RLC MCPH Delta Delta
Ref Opt

U120 150 49.15 49.8 50.0 49.50 -0.5 0.3
U250 150 101.7 103.1 103.15 101.9 -1.2 0.2
U500 150 201.2 203.9 203.4 201.3 -2.1 0.1
U1000 150 400.6 405.4 403.9 400.7 -3.2 0.2
T60 100 20.0 23.2 21.0 20.95 -0.05 0.95
T120 100 40.0 45.8 41.1 41.00 -0.15 1.0
T249 100 83.0 95.0 84.8 84.0 -0.8 1.0
T501 100 167.0 190.1 169.4 168.3 -1.05 1.3

AVG 132.8 139.5 134.6 133.5 -1.1 0.6

Table 4 shows the results of the proposed approach,
referred to as MCPH, compared with the Best Fit Decreasing
(BFD) algorithm and the RLC approach ( [7]), also based on
RL, but in which the agent did not directly learn to develop
a solution, but rather it is trained to mimic a given heuristic.

The BFD, RLC and MCPH columns report the number of
bins used by the corresponding algorithm, while Delta Ref
and Delta Opt columns give the difference in the number of
bins used by the MCPH algorithm compared to the reference
heuristic (RLC) and to the optimal number of bins (Opt
column).

From the results reported in Table 4 it is evident that the
MCPH algorithm outperforms both BFD and RLC in terms
of the number of bins used on all the instances. The average
number is 133.5 bins compared to 134.6 bins for RLC and
139.5 for BFD. The delta compared to RLC is -1.1 bins,
and compared to the optimal solution, it is 0.6 bins higher.

We can conclude that the presented approach is valid
because it provides results very close to the optimal solution.
It also improves upon the baseline algorithm from the
literature and outperforms the RLC algorithm, which is
currently the only available RL-based algorithm for BPPs.

VI. CONCLUSION
This paper introduces an innovative approach, that com-
bines Reinforcement Learning (RL) with a novel method
of constructing Markov Decision Processes (MDPs) to solve
combinatorial optimization problems. The approach involves
creating new Markov Combinatorial Processes (MCPs) by
training an agent, enhancing its effectiveness in tackling
these optimization challenges

We then applied this model to an NP-hard problem (i.e.,
the Bin Packing Problem) often used as a comparison base-
line in the literature and we analyzed the results obtained
in depth.

The computational results are very encouraging. They
demostrate the effectiveness and validity of the approach. In-
deed, it was possible to ascertain the ability of the algorithm
to arrive at optimal solutions for different instances of the
BPP, surpassing the RL solutions existing in the literature.

Nevertheless, this achievement represents only the start-
ing point to explore the opportunities arising from the
integration of RL into solution approaches to handle com-
binatorial optimization problems.

A crucial aspect in future developments concerns the
improvement of the embedding vector, which represents one
of the central elements of the algorithm. Optimizing the
learning capacity of the algorithm, through the development
of efficient and informative representations, is fundamental
to obtain more accurate solutions and to improve the overall
computational efficiency.
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