Sentiment Analysis on E-Commerce Apparels using Convolutional Neural Network


  • Kusum Mehta
  • Supriya P. Panda



Deep Learning, Convolutional Neural Networks, Sentiment Analysis, Long Short Term Memory (LSTM), Word2Vec, Term Frequency – Inverse Document Frequency (TF-IDF)


The Fourth Industrial Revolution (4.0) is a fusion of advances in Artificial Intelligence (AI), Robotics, the Internet of Things (IoT), Genetic Engineering, Quantum Computing, and other technologies. A large number of people are using internet-based services as a result of enhanced internet infrastructure and decreased costs. As a result, such businesses' attempts to penetrate internet media are disrupted. The e-commerce company, like Amazon, offers both customer-to-customer and business-to-business services in the apparel sector. Companies must understand the needs of buyers to maximize their profits. As a result, consumer sentiment analysis is carried out. However, because this procedure is time-consuming, it is made automatically utilizing artificial intelligence approaches. According to the findings of a study on sentiment analysis on an E-Commerce-based web store for women, the apparels review dataset using the CNN method with the word vector generator and TF-IDF can produce a higher accuracy of 94%.


Digital 2021: India. [Online]. Available at:

K. K. Kapoor, K. Tamilmani, N. P. Rana, P. Patil, Y. K. Dwivedi, S. Nerur, “Advances in social media research: Past, present and future,” Information Systems Frontiers, vol. 20, issue 3, pp.531-558, 2018.

How Social Media has Changed how we Consume News. [Online]. Available at:

Y. K. Dwivedi, E. Ismagilova, D. L. Hughes, J. Carlson, R. Filieri, J. Jacobson, V. Kumar, “Setting the future of digital and social media marketing research: Perspectives and research propositions,” International Journal of Information Management, 102168, 2020.

P. Devadas, Sentiment Analysis using Contextual Approach for E-Commerce Reviews, 2021.

M. H. Munna, M. R. I. Rifat, A. S. M. Badrudduza, “Sentiment analysis and product review classification in e-commerce platform,” Proceedings of the 2020 23rd IEEE International Conference on Computer and Information Technology ICCIT, 2020, pp. 1-6.

J. Kalyani, P. Bharathi, P. Jyothi, “Stock trend prediction using news sentiment analysis,” arXiv preprint arXiv:1607.01958, 2016.

E. Kochkina, M. Liakata, I. Augenstein, “Turing at semeval-2017 task 8: Sequential approach to rumour stance classification with branch-lstm,” arXiv preprint arXiv:1704.07221, 2017.

I. Augenstein, T. Rocktäschel, A. Vlachos, K. Bontcheva, “Stance detection with bidirectional conditional encoding,” arXiv preprint arXiv:1606.05464, 2016.

H. Jelodar, Y. Wang, R. Orji, S. Huang, “Deep sentiment classification and topic discovery on novel coronavirus or covid-19 online discussions: Nlp using lstm recurrent neural network approach,” IEEE Journal of Biomedical and Health Informatics, vol. 24, issue 10, pp. 2733-2742, 2020.

D. Murthy, S. Allu, B. Andhavarapu, M. Bagadi, “Text based sentiment analysis using LSTM,” Int. J. Eng. Res. Tech. Res, vol. 9, issue 5, pp. 299-303, 2020.

M. A. Nurrohmat, S. N. Azhari, “Sentiment analysis of novel review using long short-term memory method,” Indonesian Journal of Computing and Cybernetics Systems (IJCCS), vol. 13, issue 3, pp.209-218, 2019.

L. Kurniasari, A. Setyanto, “Sentiment analysis using recurrent neural network,” Journal of Physics: Conference Series, vol. 1471, 012018, 2020.

W. Uther, D. Mladenić, M. Ciaramita, B. Berendt, A. Kołcz, M. Grobelnik, M. Witbrock, J. Risch, S. Bohn, S. Poteet, A. Kao, L. Quach, J. Wu, E. Keogh, R. Miikkulainen, P. Flener, U. Schmid, F. Zheng, G. Webb, S. Nijssen, “TF–IDF,” In: Sammut, C., Webb, G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA, 2011, pp. pp 986–987.

I. Abu El-Khair, “TF*IDF, In: LIU, L., ÖZSU, M.T. (eds) Encyclopedia of Database Systems. Springer, Boston, MA, 2009, pp 3085–3086.

V. Sundaram, S. Ahmed, S. A. Muqtadeer, R. R. Reddy, “Emotion analysis in text using TF-IDF,” Proceedings of the 2021 11th IEEE International Conference on Cloud Computing, Data Science & Engineering (Confluence), January 2021, pp. 292-297.

R. Indra, A. Girsang, “Classification of user comment using word2vec and deep learning,” International Journal of Emerging Technology and Advanced Engineering, vol. 11, pp. 1-8, 2021. ttps://

V. K. Ayyadevara, “Word2vec,” Pro Machine Learning Algorithms, Apress, Berkeley, CA, 2018, pp. 167-178.

A. K. Jha, A. Ruwali, K. B. Prakash, G. R. Kanagachidambaresan, “Tensorflow basics,” In: Prakash, K.B., Kanagachidambaresan, G.R. (eds) Programming with TensorFlow. EAI/Springer Innovations in Communication and Computing, Springer, Cham, 2021, pp. 5-13.

I. Hull, I. “TensorFlow 2,” In: Machine Learning for Economics and Finance in TensorFlow 2, Apress, Berkeley, CA, 2021, pp. 1-59.

N. Silaparasetty, “Programming with Tensorflow,” In: Machine Learning Concepts with Python and the Jupyter Notebook Environment, Apress, Berkeley, CA, 2020, pp. 173-189.

D. Basler, Convolutional Neural Networks, 2021.

N. Ketkar, J. Moolayil, N. Ketkar, J. Moolayil, “Convolutional neural networks,” Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch, 2021, pp.197-242.

Y. V. R. Nagapawan, K. B. Prakash, G. R. Kanagachidambaresan, “Convolutional Neural Network,” In: Programming with TensorFlow, Springer, Cham, 2021, pp. 45-51.

D. Paper, “Convolutional neural networks,” In: TensorFlow 2.x in the Colaboratory Cloud, Apress, Berkeley, CA. 2021, pp. 153-181.

Women's E-Commerce Clothing Reviews. Dataset. [Online]. Available at:

Slovin’s Formula: What is it and When do I use it? [Online]. Available at:

A. M. Adam, “Sample size determination in survey research,” Journal of Scientific Research and Reports, pp. 90-97, 2020.

R. Cowie, C. Cox, J. C. Martin, A. Batliner, D. Heylen, K. Karpouzis, “Issues in data labelling,” In: Emotion-oriented Systems, Springer, Berlin, Heidelberg, 2011, pp. 213-241.

M. Desmond, M. Muller, Z. Ashktorab, C. Dugan, E. Duesterwald, K. Brimijoin, C. Finegan-Dollak, M. Brachman, A. Sharma, N. N. Joshi, Q. Pan, “Increasing the speed and accuracy of data labeling through an AI assisted interface,” Proceedings of the 26th International Conference on Intelligent User Interfaces, 2021, pp. 392-401.

R. Lischner, “Case-folding,” In: Exploring C++ 11, Apress, Berkeley, CA, 2013, pp. 111-113.

A. Kulkarni, A. Shivananda, “Advanced natural language processing,” In: Natural Language Processing Recipes, Apress, Berkeley, CA, 2019, pp. 97-128.

C. Ng, J. Alarcon, Artificial Intelligence in Accounting: Practical Applications, Routledge, 2020.

U. Qamar, M. S. Raza, “Text mining,” In: Data Science Concepts and Techniques with Applications, Springer, Singapore, 2020, pp. 133-151.

H. Hassani, C. Beneki, S. Unger, M. T. Mazinani, and M. R. Yeganegi, “Text Mining in Big Data Analytics,” Big Data and Cognitive Computing, vol. 4, no. 1, p. 1, 2020,

G. Di Gennaro, A. Buonanno, F. A. Palmieri, “Considerations about learning Word2Vec,” The Journal of Supercomputing, vol. 77, issue 11, pp. 1-16, 2021.

V. Q. Nguyen, T. N. Anh, and H.-J. Yang, “Real-time event detection using recurrent neural network in social sensors,” International Journal of Distributed Sensor Networks, vol. 15, no. 6, p. 155014771985649, 2019,




How to Cite

Mehta, K., & Panda, S. P. (2022). Sentiment Analysis on E-Commerce Apparels using Convolutional Neural Network. International Journal of Computing, 21(2), 234-241.