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 ABSTRACT The article is devoted to a comparative analysis of the effectiveness of convolutional neural 

networks for semantic segmentation of road surface damage marking. Currently, photo and video surveillance 

methods are used to control the condition of the road surface. Assessing and analyzing new manual data can take 

too long. Thus, a completely different procedure is required to inspect and assess the state of controlled objects 

using technical vision. The authors compared 3 neural networks (Unet, Linknet, PSPNet) used in semantic 

segmentation using the example of the Crack500 dataset. The proposed architectures have been implemented in 

the Keras and TensorFlow frameworks. The compared models of neural convolutional networks effectively 

solve the assigned tasks even with a limited amount of training data. High accuracy is observed. The considered 

models can be used in various segmentation tasks. The results obtained can be used in the process of modeling, 

monitoring, and predicting the wear of the road surface. 
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I. INTRODUCTION 
ontinuous video monitoring of the road surface can be 

an extremely tedious task for humans, but a 

straightforward task for automated computer vision 

(CV) systems. As noted in [1], transport infrastructure is the 

basis of the national economy, which needs to be 

systematically improved. 

Many researches are devoted to improving algorithms 

for detecting road defects. Depending on the method of 

road surface monitoring, defects can be detected both on 

two-dimensional images (2D) and on three-dimensional 

(3D) images [2] obtained by laser scanning in the form of a 

point cloud. Compared to two-dimensional (2D) pavement 

images, three-dimensional pavement data is less vulnerable 

to lighting conditions and provides more useful 

information. In addition, 2D methods cannot detect some 

defects due to the lack of depth information.  

The existing algorithms for visual detection of defects 

on the road can be conditionally divided into two branches: 

traditional methods [3] for detecting defects and methods of 

artificial intelligence [4].  

Until recently, mainly manual monitoring techniques 

were used to solve these problems, such as [5, 6]: 

- image thresholding [5], 

- morphological operations [6], 

- analysis of geometric features [7], 

- application of Gabor filters [8], 

- wavelet transforms [9], 

- building histograms-oriented gradients (HOG) [10], 

- texture analysis. 

These methods are usually based on photometric and 

geometric hypotheses about the properties of fracture 

images. The most distinctive photometric property is that 

the pixels belonging to the crack are the darker pixels in the 

image. Based on this, a global or local threshold for pixel 

C 
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brightness for fracture segmentation can be determined. 

However, these approaches are very sensitive to noise as 

they are executed on individual pixels. To solve this 

problem, the geometric characteristics of the damage are 

considered. For example, the property of fracture continuity 

is considered to reduce the likelihood of false detection. 

And based on the local orientation of a pixel, a local binary 

operator can be constructed to determine whether a 

specified pixel belongs to a crack [11]. Another method, 

using wavelet transform, is used to separate regions. In this 

case, for crack detection, frequency bands are used to 

separate the cracked and non-cracked regions, and high and 

low amplitudes are identified as cracks and noise, 

respectively. 

The latest methods that have been proposed to achieve 

accuracy in detecting cracks are methods based on the 

minimum path problem [12]: the minimum path problem is 

to find the shortest path between the nodes of the graph. 

Several methods have been proposed based on the 

minimum path principle. In particular, an algorithm has 

been developed that can find a curve without knowing the 

endpoints or topology of the curve. All of these methods 

use the degree of image brightness gradation and the notion 

of graph connectivity to detect cracks. 

All of these considered methods are effective for 

detecting cracks, but they are not effective enough for 

detecting all existing cracks in the image. More 

importantly, these traditional algorithms tend to only detect 

one type of defect on the road surface (usually a cracks). 

In high resolution 3D road surface data (depth 

resolution ≤ 0.5 mm, lateral resolution ≤ 1 mm), cracks 

include microscopic local defects, while other deformations 

include rut, potholes, subsidence, pavement bulging are 

macroscopic defects in profiles. The search for these 

defects is associated with the geometric features of these 

road anomalies. For example, a crack often appears as some 

kind of linear structure, it usually has a width greater than 1 

mm, shows a greater depth than a coating without cracks. 

The track mainly arises as a result of frequent traffic loads 

on the road surface, has a certain width, depth and 

continuous length. Potholes and subsidence in the pavement 

are often characterized by a larger area with greater depth 

and deformation, and the ridge has a certain height that 

exceeds the normal surface. 

These defects can be more efficiently detected using the 

information contained in the 3D data [13]. The 3D 

pavement data acquisition system is used to measure the 

elevation of the road surface, preprocess and store the 

profile data. After transforming the coordinates of the 

image into the coordinates of the object, that is, calibration, 

data of the elevation difference of the road surface, that is, 

the profile of the road surface, can be obtained. Further, for 

each profile, the developed algorithm was used to build the 

control and standard profiles. In this case, macroscopic 

deformations are analyzed by comparing the standard 

contour and the control one, and microscopic defects 

(cracks) are analyzed according to the so-called residual 

profile obtained as the difference between the control 

profile and the profile of the scanned road surface. 

The above methods for detecting road defects have a 

number of significant disadvantages: the extremely narrow 

focus of the developed algorithms, which are able to detect 

only individual defects in the road surface, as well as low 

accuracy in detecting defects. This also results in a low 

level of automation in detecting deformations of the road 

surface. 

However, these tools are now used less and less. It is 

being supplanted by the neural network technologies. Since 

CNN [14] can generalize features from raw data well. So 

CNN can examine the structure of a defect in an image to 

find the entire defect at the pixel level without 

preprocessing. For solution the problem of classification by 

several labels with unbalanced samples, a strategy is 

proposed with a change in the ratio of positive and negative 

training samples. After training on a pre-labeled database of 

various defects, CNN will be able to detect and classify 

road surface defects with a high degree of accuracy. One of 

the approaches for preliminary marking of road surface 

defects can be preliminary clustering of all present defects. 

Cracks in the road surface can be thought of as a temporal 

sequence of pixels that forms a graph on the surface of the 

road surface. There are many studies on the detection and 

localization of cracks in 2D images, including using 

recurrent neural networks [15] (RNN, LSTM). 

Asphalt and concrete have a diversity of surface 

structures, so random debris, drawings (lines or figures 

drawn on the roads) make it difficult to detect anomalies, 

namely cracks. While severely damaged surfaces are fairly 

easy to spot, defects that begin to form are almost invisible. 

Various approaches can be found to detect pavement 

defects using different techniques. One of the modern and 

promising methods is the use of an autoencoder, since the 

architecture of such a network makes it possible to more 

accurately segment the damage to the asphalt. In the image 

segmentation process, [16] proposes U-net to perform 

semantic image segmentation based on the encoder-decoder 

architecture to improve accuracy. Various variants of 

encoder-decoders were also proposed in [17]. 

Baur et al. [18] propose a framework for defect 

segmentation using autoencoding architectures and a 

perpixel error metric based on the `distance.Other 

approaches take into account the structure of the latent 

space of variational autoencoders (VAEs) [19] in order to 

define measures for outlier detection. 

All the a works that use autoencoders for unsupervised 

defect segmentation have shown that autoencoders reliably 

reconstruct non-defective images while visually altering 

defective regions to keep the reconstruction close to the 

learned manifold of the training data. 

The authors of this paper compare various technological 

solutions in the field of machine learning. In paper was 

presented on the three most famous architectures of neural 

networks with 6 backbones for each, i.e. a total of 18 

different neural network architectures to identify the most 



Andrey Akimov et al. / International Journal of Computing, 19(3) 2021, 415-423  

VOLUME 19(3), 2021 417 

optimal option for using crack detection in wild. Their 

implementation allows to automate the process of assessing 

the quality of the road surface. For this purpose, 

convolutional neural networks of various architectures and 

conceptual concepts are trained on manually labeled data. 

II. MATERIAL AND METHOD 

In this work, we studied the segmentation of road surface 

cracks based on semantic neural networks and studied the 

effectiveness of the use of machine learning methods and 

neural network technologies for detecting and classifying 

damage to asphalt concrete pavements in comparison with 

traditional methods. Semantic image segmentation is the 

division of an image into groups of pixels corresponding to 

one class of an object while simultaneously determining the 

type of an object in each area. The semantic segmentation 

task is a high-level image processing related to the group of 

tasks of the so-called weak artificial intelligence. It is more 

complicated than the problem of image classification and 

object detection, since it is necessary not only to define the 

objects, but also to correctly identify their boundaries in the 

image. At the same time, the task of semantic segmentation 

differs markedly from ordinary economic activity, when the 

regions operate according to the principle of color or 

texture similarity. Objects can have elements that differ in 

photometric characteristics and have a significant scatter in 

the indicators of objects within one class. 

Based on the results of the analysis of known 

architectures, the following architectures were selected for 

detecting defects: the classic U-Net autoencoder 

architecture [20], LinkNet autoencoder architecture [21] 

and convolution network PSPNet [22]. 

All these neural networks are an autoencoder type 

neural network. The autoencoder is a neural network that 

copies input data to output. Autoencoders attempt to 

reconstruct an input image through a bottleneck, effectively 

projecting the input image into a lower-dimensional space, 

called latent space. The goal is to get the response that is 

closest to the input on the output layer. 

A distinctive feature of autoencoders is that the number 

of neurons at the input and output is the same. An 

autoencoder consists of two parts: 

Encoder: Responsible for compressing the input to 

latent-space. Introduced by the encoding function  ℎ =
 𝑓 (𝑥). 

Decoder: designed to recover input from latent-space. 

Introduced by decoding function 𝑔 = 𝑓−1  (𝑥). 

Thus, an autoencoder is described by the function 

𝑔(𝑓(𝑥)) = 𝑟, where 𝑟 coincides with the original 𝑥 at the 

input. 

Semantic neural networks papers describe their network 

architectures with excellent graphs and simple descriptions, 

following are the figures copy from the papers.  

In this paper, we will compare the advantages and 

disadvantages of various classical basic classification 

networks as backbones through experiments [23]. 

One of the most famous networks used in segmentation 

is the U-Net neural network. On Fig. 1 is shown the 

common framework of this network. 

 
Figure 1. Common architectural framework 

The U-net was originally invented and pioneered for 

biomedical image segmentation. Its architecture can be 

broadly thought of as an encoder network followed by a 

decoder network. The goal is to semantically project the 

distinctive features (lower resolution) learned by the 

encoder onto pixel space (higher resolution) in order to 

obtain a dense classification. The encoder is the first half, 

which is a typical convolutional neural network 

architecture. On Fig. 2 is shown the structure of each 

encoder and decoder block. 

 

Figure 2. U-Net blocks 
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It consists of reapplying two 3 × 3 convolutions, 

followed by a ReLU and a maximum combining (2 × 2 

power of 2) operation to downsample. Property channels 

are doubled at each downsampling step. The decoder is the 

second half of the architecture. The decoder consists of 

upsampling and concatenation followed by regular 

convolution operations. Each step in the decoder consists of 

a feature map upsampling operation, followed by: 

-convolution 2 × 2, which reduces the number of 

features channels; 

-combining with an appropriately cropped feature map 

from the collapsing path; 

-two 3 × 3 convolutions followed by ReLU. 

 

Figure 3. LinkNet blocks 

The LinkNet architecture is a complete convolutional 

network based on an encoder-decoder structure designed 

for semantic segmentation as shown on Fig. 1. The encoder 

block consists of four convolutional layers with residual 

connections, as shown in Fig. 3. LinkNet performance or 

come from adding the output of encoder to the decoder, this 

help the decoder easier to recover the information. The 

current implementation used pre-trained encoder weights 

from various backbones, with training limited by decoder 

parameters. Using pretrained weights when simulating a 

nonlinear segmentation function provides more flexibility 

and access to a richer set of imaging functions. LinkNet 

was implemented in the Keras framework. This network is 

10 times faster than SegNet. 

 

Figure 4. PSPNet architecture 

PSPNet is another semantic segmentation model, along 

with U-Net, which is an autoencoder that takes into account 

the global image context to predict predictions locally, 

therefore providing better performance on test datasets. 

Pyramid Scene Parsing Network (PSPNet) performs a 

merge operation (via the max or average function) using 

kernels of different sizes and with different steps applied to 

the mappings of the output functions from the 

convolutional neural network, see Fig. 4. The pyramid 

merging module is a core part of this model as it helps the 

model capture the global context of the image, which helps 

it classify pixels based on the global information presented 

in the image. Then, using bilinear interpolation, the size of 

all outputs from the merge layer is recalculated and the 

output characteristics are mapped from the CNN; the model 

then merges all new outputs along the channel axis. To 

generate the forecast, the final convolution is performed for 

the combined output. 

In order to experiment with different architectures, build 

processes for loading images, augmentation of data, 

calculating metrics, visualizing results and solving other 

related tasks, researchers create their own frameworks that 

include all the functionality. The implementation of the 

above models is present inside the Segmentation models 

framework. 

The Crack500 dataset is used to train the constructed 

model [24]. The size of each image in the dataset is large 

enough, so there is a problem with the size of the input data 

of the neural network due to the limited amount of 

computer resources. Thus, the existing images were cut into 

fragments of 320x320 pixels. 

The Crack500 dataset was presented in [24], and it 

contains images captured with mobile phones around the 

main campus of Temple University. It consists of images 

with pixel annotations of about 2000 × 1500 pixels 

(different sizes). It has 250 training, 200 test and 50 
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verification samples. According to the authors of [24], this 

is the largest dataset of road surface defects with pixel 

annotations. A sample scan data is shown in Figure 5. 

 

Figure 5. Crack500 datasample. a) Image; b) groundtruth 

The data in our problem is presented as a classic CV – 

in the form of color RGB images. Each photo contains at 

least one defect. This takes into account defects that occupy 

at least 6% of the image area. All data is divided into three 

parts: training (contains 2270 images), validation (164 

images) and test (759 images). 

Augmentation of data (artificial increase in the data set) 

is carried out by changing the brightness, scaling, 

displaying, adding Gaussian noise. The models were trained 

on a mixed dataset for 5 epochs at a learning rate of 0.001. 

Only values from the neural network output with a higher 

or equal to 50% confidence rate were taken into 

consideration. The best performing solution (according to 

IoU score) from every training were evaluated [25] with 

recall, precision, F1, and intersection over union (IoU) 

measures [26]: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 ,                                             (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 ,                                       (2) 

𝐹1 =
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 ,                            (3) 

𝐼𝑜𝑈 =
𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ ∩ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ ∪ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 ,             (4) 

 

where 𝑇𝑃 is the true positive (correct detection of pixels 

belonging to labeled defect area); 𝑇𝑁 isthe true negative 

(nondefective background pixels correctly recognized by 

detector); 𝐹𝑃 is the false positive (wrongly detected defect 

pixels); 𝐹𝑁 is the false negative (defect pixels undetected 

by detector);𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ is the labeled image pixels. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛is the proportion of false alarms; 𝑅𝑒𝑐𝑎𝑙l is 

theproportion of undetected defect pixels; and 𝐹1is 

harmonic mean of the precision and recall. 

The 𝐹1 score has been improved with additional 

transformations such as applying a Gaussian filter, 

adjusting brightness, shifting. These transformations were 

applied using the Python albumentations library.  

At the final stage, 5 best backbones   were selected and 

training was carried out on 15 epochs with a optimizer 

Adadelta, loss function – Focal Loss, batch size – 8. The 

obtained results were entered into a summary table. 

When training as an optimizer, Adadelta, loss function – 

Focal Loss, batch size – 8. To initialize the parameters, we 

used pretrained on the ImageNet data collection [27] 

encoder weights. Training time ranged from 4 to 6 hours on 

the Tesla K80 video card. The training graphs show that for 

all models, the value 0.93 for F1-score is the limit value. 

Since among the models there are different kinds of 

architecture as lighter (MobileNetV2, EfficientNetB0) and 

heavier (InceptionV3, VGG16), and they all remember the 

training set in the same way, then we can assume that this 

border is due to the quality of the markup training sample. 

III. RESULTS AND DISCUSSION 

After training the neural network, it is validated on test 

data. Each fragment of the image is fed to the input of the 

network, and the output is a generated map of the 

probability of the presence of a defect. The results of 

predictions of semantic fracture extraction are shown for 

various Backbones in the case of the U-Net neural network 

in Table  

 
A. U-Net neural network 

The results of predictions of semantic fracture isolation are 

shown for various Backbones in the case of the U-Net 

neural network in Table I. (the best values are highlighted 

in the table): 

Table 1. U-Net 

U-Net 

Backbones IoU F1 Precision Recall Loss 

vgg16 0.92849 0.96849 0.95445 0.97204 0.057567 

resnet18 0.93047 0.96342 0.95826 0.96993 0.070784 

seresnet18 0.92528 0.9607 0.96971 0.9533 0.06774 

resnext50 0,89011 0,94127 0,89276 0,99675 0,090145 

seresnext50 0,88684 0,93924 0,88961 0,99662 0,092067 

senet154 0,89633 0,94473 0,89995 0,99572 0,11845 

densenet121 0,89936 0,94624 0,90418 0,99431 0,087808 

inceptionv3 0,9012 0,94742 0,90432 0,99568 0,1121 

inceptionresnetv2 0,90855 0,95155 0,91619 0,99122 0,09905 

mobilenet2 0,86527 0,92709 0,86614 0,99886 0,093656 

efficientnetb0 0,90485 0,94949 0,90955 0,99446 0,10463 

In Figures 6-7 show the results of the trained U-Net 

network and their comparison with the true values from the 

test sample. 

 

Figure 6. The results of the work of the trained neural 

network U-Net with various backbones a) VGG16; 

b) Resnet18; c) Seresnet18; d) Resnet50; e) Seresnext50; 

f) Senet154. 
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Figure 7. The results of the work of the trained neural 

network U-Net with various backbones a) Densenet121; 

b) Inceptionv3; c) Inceptionresnetv2; d) Mobilnet; 

e) Seresnext50; f) Efficientnetb0. 

B.  LinkNet neural network 

The results of predictions of semantic fracture isolation are 

shown for various Backbones in the case of the LinkNet 

neural network in Table II. (the best values are highlighted 

in the table): 

 

Table 2. LinkNet 

LinkNet 

Backbones IOU F1 Precision Recall Loss 

vgg16 0,85607 0,92094 0,86063 0,99342 0,19355 

resnet18 0,8524 0,91883 0,85683 0,99382 0,1979 

seresnet18 0,8925 0,9423 0,89967 0,99151 0,094954 

resnext50 0.88724 0.93935 0.89209 0.99406 0.095869 

seresnext50 0.85353 0.92014 0.85622 0.99638 0.29034 

senet154 0.85579 0.92076 0.8643 0.98841 0.31713 

densenet121 0,85394 0,92044 0,85603 0,99723 0,31401 

inceptionv3 0,85548 0,92144 0,85576 0,99962 0,41015 

inceptionresnetv2 0,85548 0,92144 0,85576 0,99962 0,41015 

mobilenet2 0,85548 0,92144 0,85576 0,99962 0,41015 

efficientnetb0 0,85063 0,91801 0,85553 0,99325 0,36172 

In Figures 8-9 show the results of the trained LinkNet 

network and their comparison with the true values from the 

test sample. 

 

Figure 8. The results of the work of the trained neural 

network LinkNet with various backbones a) VGG16; 

b) Resnet18; c) Seresnet18; d) Resnet50; e) Seresnext50; 

f) Senet154. 

 

Figure 9. The results of the work of the trained neural 

network LinkNet with various backbones a) Densenet121; 

b) Inceptionv3; c) Inceptionresnetv2; d) Mobilnet; 

e) Efficientnetb0. 

C.  PSPNet neural network 

The results of predictions of semantic fracture isolation are 

shown for various Backbones in the case of the PSPNet 

neural network in Table III. (the best values are highlighted 

in the table): 

Table 3. PSPNet 

. 

Backbones IOU F1 Precision Recall Loss 

vgg16 0.89694 0.94525 0.89706 0.99986 0.098065 

resnet18 0.89361 0.94341 0.89363 0.99998 0.110510 

seresnet18 0.89871 0.94586 0.84651 0.99850 0.105894 

resnext50 0.89589 0.94468 0.89596 0.99992 0.081242 

seresnext50 0.89282 0.94296 0.89282 1.00000 0.279520 

senet154 0.89282 0.94296 0.89282 1.00000 0.279520 

densenet121 0.91830 0.95699 0.92089 0.99710 0.062210 

inceptionv3 0.89494 0.94413 0.89507 0.99985 0.134600 

inceptionresnetv2 0.90363 0.94891 0.90417 0.99938 0.090984 

mobilenetv2 0.87964 0.93379 0.89539 0.98000 0.187550 

efficientnetb0 0.90055 0.94725 0.9016 0.99866 0.130300 

In Figures 10-11 show the results of the trained PSPNet 

network and their comparison with the true values from the 

test sample. 

 

 

Figure 10. The results of the work of the trained neural 

network PSPNet with various backbones a) VGG16; 

b) Resnet18; c) Seresnet18; d) Resnet50; e) Seresnext50; 

f) Senet154. 
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Figure 11. The results of the work of the trained neural 

network PSPNet with various backbones a) Densenet121; 

b) Inceptionv3; c) Inceptionresnetv2; d) Mobilnet2; 

e) Efficientnetb0. 

Training results after 15 epochs on 5 backbones for U-

Net (the best values are highlighted in the table): 

Table 4. U-Net 

UNet 

Backbones IOU F1 Precision Recall Loss 

vgg16 0.91037 0.95258 0.91719 0.99209 0.060295 

Resnet18 0.91678 0.95617 0.92072 0.99545 0.045474 

inceptionv3 0.92418 0.96024 0.92778 0.99593 0.051915 

mobilenetv2 0.92622 0.96131 0.93097 0.9946 0.05407 

Efficientnetb0 0.9136 0.95427 0.91738 0.99558 0.063473 

 

 

Figure 12. The results of the work of the trained neural 

network PSPNet with various backbones (15 epochs) 

a) VGG16; b) Resnet18; c) Inceptionv3; d) Mobilnet2; 

e) Efficientnetb0. 

 

Figure 13. Sample U-Net (Mobilenet2) a) Metric IoU on 

test and train; b) Train and Test Loss Function. 

Training results after 15 epochs on 5 backbones for U-

Net (the best values are highlighted in the table): 

Table 5. LinkNet 

LinkNet 

Backbones IOU F1 Precision Recall Loss 

vgg16 0.84022 0.90842 0.95 0.99209 0.25843 

Resnet18 0.91248 0.94716 0.91072 0.99545 0.087314 

inceptionv3 0.92248 0.95933 0.92539 0.99672 0.067774 

mobilenetv2 0.91552 0.95516 0.92701 0.9868 0.070107 

Efficientnetb0 0.92322 0.95964 0.92729 0.9954 0.050769 

 

 

Figure 14. The results of the work of the trained neural 

network LinkNet with various backbones (15 epochs) 

a) VGG16; b) Resnet18; c) Inceptionv3; d) Mobilnet2; 

e) Efficientnetb0. 

 

Figure 15. Sample LinkNet (Efficientnetb0) a) Metric IoU 

on test and train; b) Train and Test Loss Function. 

Training results after 15 epochs on 5 backbones for U-

Net (the best values are highlighted in the table): 

Table 6. PSPNet 

PSPNet 

Backbones IOU F1 Precision Recall Loss 

vgg16 0.87207 0.92834 0.89758 0.96798 0.15995 

Resnet34 0.91255 0.95385 0.95385 0.99796 0.091124 

inceptionv3 0.92217 0.95909 0.92668 0.995 0.16507 

mobilenetv2 0.89913 0.94643 0.90114 0.99759 0.1788 

Efficientnetb0 0.9134 0.95433 0.91499 0.99818 0.10465 

 



 Andrey Akimov et al. / International Journal of Computing, 19(3) 2021, 415-423 

422 VOLUME 19(3), 2021 

 

Figure 16. The results of the work of the trained neural 

network PSPNet with various backbones (15 epochs) 

a) VGG16; b) Resnet18; c) Inceptionv3; d) Mobilnet2; 

e) Efficientnetb0. 
 

 

Figure 17. Sample PSPNet(Inceptionv3 a) Metric IoU on 

test and train; b) Train and Test Loss Function. 

IV. CONCLUSIONS 

As it can be seen from the data obtained, none of the three 

convolutional networks showed fundamentally better 

results on any backbone. Also, there are no significant 

improvements in results when moving from 5 epochs to 15 

training epochs. Almost all metric values were round 0.9. 

We can assume that this border is due to the quality of the 

markup training sample. On the other hand, based on the 

results obtained, it can be concluded that of the three 

presented architectures of convolutional neural networks, 

the U -Net convolutional network based on VGG16, 

Resnet18 demonstrated the highest accuracy, F1 score – 

0.96849, IoU score – 0.93047 on 5 epochs. In future work, 

we plan to revise the annotations and introduce even more 

different data for the problem of detecting damage to the 

road surface. Since collecting and labeling data samples 

takes time and precision, synthetic data can also be 

introduced into the model training process. While 

traditional image processing techniques such as rotation, 

brightness correction, and noise addition may be limited in 

complex cases, techniques such as generative adversarial 

networks (GANs) or variational autoencoders (VAEs) can 

be employed to address specific problems. This has shown 

promising results in recent studies and could be a possible 

solution to the problem under analysis. 
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