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Abstract: The article is dedicated to systematization of scientific positions about 

the static testing of sequences, widely used in cryptographic systems of 

information protection for the production of key and additional information 

(random numbers, vectors of initialization, etc.). Existing approaches to testing 

pseudorandom sequences, their advantages and disadvantages are considered. It 

is revealed that for sequences of length up to 100 bits there are not enough 

existing statistical packets. Perspective direction of research – static testing of 

sequences using n- dimensional statistics is considered. The joint distributions of 

2-chains and 3-chains of a fixed type of random (0, 1) -sequences allow for 

statistical analysis of local sections of this sequence. Examples, tables, diagrams 

that can be used to test for randomness of the location of zeros and ones in the bit 

section are 16 lengths. The paper proposes a methodology for testing 

pseudorandom sequences, an explicit form of the joint distribution of 2- and 3-

chains numbers of various options of random bit sequence of a given small 

length is obtained. As a result of the implementation of this technique, an 

information system will be created that will allow analyzing the pseudorandom 

sequence of a small length and choosing a quality pseudorandom sequence for 

use in a particular subject area. 

Copyright © Research Institute for Intelligent Computer Systems, 2019.  

All rights reserved. 

 

 

1. INTRODUCTION 

Random sequences have found the widest 

application from the gaming computer industry to 

mathematical modeling and cryptology. 

We list some areas of their usage: 

1. Modeling. In computer simulation of physical 

phenomena. In addition, mathematical modeling 

uses random numbers as one of the tools of 

numerical analysis. 

2. Cryptography and information security. 

Random numbers can be used to test the correctness 

or effectiveness of algorithms and programs. Many 

algorithms use the generation of pseudo-random 

numbers to solve applied problems (for example, 

cryptographic encryption algorithms, the generation 

of unique identifiers, etc.). 

3. Decision making in automated expert systems. 

The use of random numbers is part of decision-

making strategies. For example, for the impartiality 

of the choice of examination paper by a student in an 

exam. Randomness is also used in the theory of 

matrix games. 

4. Optimization of functional dependencies. 

Some mathematical optimization methods use 

stochastic methods to search for extremums of 

functions. 

5. Fun and games. Accident in games has a 

significant role. In computer or board games, chance 

helps to diversify the gameplay. 

There are various approaches to the formal 

definition of the term “randomness” based on the 

concepts of computability and algorithmic 

complexity [1].  

By implementing some algorithm, software 

generators produce numbers (although not obvious) 

depending on the set of previous values, so the 

received numerical sequences are not truly random 

and are called pseudo-random sequences (PRS). At 

the moment, more than a thousand software PRS 

generators are known, which differ in algorithms 

and values of parameters. Statistical properties are 
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significantly different from the number sequences 

that are generated by them. 

The presented and not presented results allow us 

to characterize the state of modern technologies of 

designing the PRS (focusing on the most progressive 

of them by the following basic provisions [2-13]. 

 

2. REVIEW OF EXISTING SETS OF PRS 
TESTS AND THEIR APPLICATION 

A selection of 14 tests “Diehard” J. Marsaly was 

the first in the complex testing of generators PRS. 

The selection is considered as one of the most 

rigorous test suites; implemented software and 

available on the Internet. However, the selection of 

tests "Diehard" has several disadvantages. 

– There is no detailed description of the tests and 

methods for interpreting the results. 

– Test parameters are hard coded. At the same 

time, regardless of the length of the PRS being 

tested, only a certain number of bytes is 

analyzed. Shorter PRS cannot be tested. 

– Most of the tests are heuristic and based on test 

results, rather than on theoretical models. 

– The decision to pass the test can take only one of 

two values (yes / no). 

Compilation of tests PRS. D. Knut uses seven 

original statistics and algorithms for their 

calculation. However, this collection has several 

disadvantages. 

– All algorithms are reduced to the calculation of 

statistical criteria that are approximated only by 

the distribution of χ2. 

– There are no recommendations for test 

parameters. Incorrect selection of some values 

can lead to a significant dependence on the length 

of the tested sequence, as well as adversely affect 

the power of the statistical criterion. 

– A controversial approach [2] is the method of 

evaluating results, when sequences are 

recognized as random, for which the P- value 

belongs to the interval (0,1; 0,9). That is, when P- 

value > 0,9, the test results are considered too 

ideal to consider a numerical sequence to be 

random. 

– There is no original software implementation of 

the proposed tests. 

A set of tests is proposed for preliminary testing 

of the quality of random numbers and sequences 

based on seven different statistical tests. 

Kendal M. and Smith B. suggested performing 4 

tests using χ2 test: 

– checking the frequency of different digits x1, x2, 

..., xN in the table (frequency test); 

– checking the frequency of different two-digit 

numbers among pairs of digits x1x2, x2x3, x3x4, ..., 

xN-1xN (test pairs); 

– checking the frequency of different intervals 

between two consecutive zeros (test intervals); 

– checking the frequency of different types of 

quadruples (aaaa, aaab, aabc, aabb, abcd) 

among quadruples x1x2x3x4, x2x3x4x5, x3x4x5x6, ..., 

xN–3xN–2xN–1xN; and also checking the frequency 

of various types of the fives (pokertest). 

The NIST STS 800-22 standard of the National 

Institute of Standardization and Technologies NIST 

[14] includes 15 tests and is focused on testing bit 

sequences used in the tasks of cryptographic 

protection of information. 

A typical application of tests (in particular, 

Diehard) is given, for example, in the report. 

With an increase in the length of the tested 

memory bandwidth (more than 100 thousand), many 

statistical tests begin to detect statistically significant 

patterns that were not found on samples of smaller 

size. For example, the sign rank criterion (signed 

rank test, Wilcoxon), which is quite powerful, 

rejects such well-known and high-quality generators, 

as Bluma-Blum-Shuba (BBS), Shamir (RSA), 

“Marsaglia Multicarry” and “Xorshift” George 

Marsala Mersenne vortex (MT19937), as well as 

“truly random sequence” having 1.5-2 thousands of 

elements of a numerical sequence. 

The stream encryption of a long sequence has the 

most significant potential advantage over block 

cryptographic transformations [15-22], which is 

essential for many applications [23-27]. 

Dimensionality reduction without losing essential 

information is the goal of any approach designed to 

cope with high-dimensional time sequences. In this 

relation, [28-29] should be mentioned first of all. It 

enables evaluation of distance between any two-

sample series from a sequence of observations. 

The results obtained in the paper [30] are applied 

to estimate the probability that a nonhomogeneous 

system of Boolean random linear equations is 

consistent. 

An overview of popular methods for testing bit 

sequences for randomness showed that, despite the 

large number of statistical tests, they all give a more 

correct result with a sufficiently large sample size. 

However, we will not be able to get a correct answer 

about the randomness of the sequence if the 

sequence length is less than 100 elements. In this 

situation, we propose to test the sequence for 

randomness using two and / or three-dimensional 

statistics. 

 

3. PROBLEM STATEMENT 

Before responsible using in mathematical 

modeling and cryptology, PRS should be tested. 

Unfortunately, for many PRS tests, there are some 

limitations: 
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– check out only one of the probable ones 

properties that characterize PRS; 

– do not fix family alternatives; 

– do not have theoretical one’s ratings power. 

– do not give a correct estimate of chance 

sequences providing a little sample. 

Problems of small and large samples refer to the 

main problems that arise in practical application 

methods of data analysis. Let us use the next 

classification samples by number [31], based on 

requirements presented in the program criteria: 

– very small sampling – from 5 to 12, 

– small sampling – from 13 to 40, 

– average sampling number – from 41 to 100, 

– large sampling – from 101 and more. 

The minimum size of the sample limits not so 

much the algorithm of calculating the criterion, but 

the distribution of its statistics. So, for row 

algorithms with too much small ones numbers 

sample normal approximation distribution of 

statistics criterion will be under question. 

During the research, the localization of the local 

sections of the bit sequence was conducted to detect 

the dependencies in the location of its elements by 

using the exact distributions of the corresponding 

statistics. In the work an explicit form of the joint 

distribution of the numbers of 2-chains and numbers 

of 3-chains of various variants in a random sequence 

was obtained. This joint distribution allows more 

accurate comparison of the use of one-dimensional 

statistics, to analyze the bit sequence small length by 

chance [32-34]. 

 

4. MATERIALS AND METHODS 

4.1. SCHEME FOR VERIFICATION OF 
STATISTICAL TESTS OF RANDOMNESS 
SEQUENCES  

If users of mathematical and statistical algorithms 

and their software products are interested in quality 

research, the following steps should be performed 

before conducting any research (Fig. 1): 

 
Figure 1 – Life cycle research 

 

1. Examine philosophical bases of the 

methodology of scientific study. 

2. Develop a clear understanding about scales 

measurement. It is through the scale measurement of 

the original data, methods that can be used for their 

processing are determined, in order to determine 

which method to use to help names modules 

software provision and their descriptions. Before 

applying of each method one should get acquainted 

with it prerequisites and constraints and plan 

necessary amount sampling based on power criteria. 

3. Start collecting data. Already selected 

processing method asks in which form should be 

presented experimental results. Data can be 

adequately used by the predicted method. 

4. Mathematical and statistical processing is 

penultimate, technical, stage, whose content should 

be completely understandable after implementation 

of the 2nd stage, while there was still no significant 

cost for the experimental study. This stage does not 

have any relation to the subject matter of the area. 

5. The last one stage is objective scientifically 

justified conclusion based on the results of the study, 

taking into account subject matter industry, 

recommendations and forecast. Using the methods 

of chart notation, we construct a context diagram 

(IDEF 0) for the random sequence testing system 

(Fig. 2).  
 

 
Figure 2 – Context diagram 

Testing sequences on 

randomness 

Choosing a test 

testВибір тесту 

Input parameters 

Packages of statistical 

tests User 

Conclusion on 

the randomness 

of the sequence 

Data sequence 
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Mathematical and statistical analysis of 

sequences, as a rule, takes place in two stages. 

Schematically the process of sequences analysis is 

depicted in Fig. 3. 

 

 
Figure 3 – Scheme of statistical analysis of sequences 

 

Description of the main steps: 

1. The first stage is named as preparatory, it is the 

most labor-intensive step, and here basic mass 

calculations are executed. 

1.1. With the help of experimental generator 

casual sequences are formed (or given sequences are 

introduced). 

1.2. For each sequence test statistics is calculated. 

If a battery of tests runs (conducted immediately 

several tests), then the statistics on the results is 

issued for each test. 

1.3. Probability significance is calculated for 

each sequence. 

1.4. Obtained statistics and probabilities 

significance are stored. 

2. The second stage processes the received 

results. 

2.1. Audit of statistical hypothesis. 

2.1.1. Formulation of zero and alternative 

hypothesis. 

2.1.2. With the help of criteria coordination, the 

hypothesis compliance of distributed statistical data 

and probabilities of meaningful hypothetical 

distributions is checked out. 

2.1.3. Number sequences that passed the test are 

determined. It is being built trustworthy interval for 

the last of magnitude. 

2.1.4. Comparison of fate sequences which are in 

the trust interval with level significance and 

acceptance decision on passing tests. 

Trust probability is necessary to calculate a 

number of sample statistical indicators as well 
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differences from a number of others parameters that 

are not calculated by sampling, but are asked by user 

program size. It is selected from the following 

standard rulers: 

– Zero threshold of 0,90 applies to work with 

lowered responsibility at the first familiarity with the 

phenomenon; 

– The first threshold of 0,95 is applied in most 

studies (e.g., biological research); 

– Second threshold of 0,99 is used to work with 

higher liability (e.g., medical research); 

– Third threshold of 0,999 is used to work with 

highest liability (e.g., research efficiency medicine). 

2.2. Decision is made whether you can consider 

the test to be passed. 

2.3. If the results are satisfactory the decision will 

be made to complete the test, otherwise, go to step 

1.2. 

2.4. Final conclusions. 
 

4.2. JOINT DISTRIBUTIONS OF THE 
NUMBER OF 2-CHAINS AND 3-CHAINS 

Consider a sequence of random variables 
 

𝛾1, 𝛾2, . . . , 𝛾𝑛, (1) 
 

where 𝛾𝑖 = {0, 1}, i =  1, 2, . . . , 𝑛, 𝑛 > 0. 

Subsequences 𝛾𝑗 , 𝛾𝑗+1, . . . , 𝛾𝑗+𝑠−1,  sequences (1) 

are called s-chains, 𝑗 = 1, 2, . . . , 𝑛 − 𝑠 + 1, 𝑠 =
1, 2, . . . , 𝑛. 

Denote 𝜂(𝑡1 , 𝑡2, . . . , 𝑡𝑠 ) the number of s-chains 

in the sequence (1) that coincide with  𝑡1 , 𝑡2, . . . , 𝑡𝑠, 

where 𝑡𝑖 = {0, 1}, 𝑖 = 1, 2, . . . , 𝑠. 
Theorem. Let sequence (1) consist of n, n>0, 

independent identically distributed random 

variables; Ρ{𝛾𝑖 = 1} = 𝑝,  Ρ{𝛾𝑖 = 0} = 𝑞, p + q = 1, 

i = 1, 2, . . . , n and 𝑘1, 𝑘2, 𝑘3, 𝑡,  – integer numbers 

such that 𝑘1 ≥ 0, 𝑘2 ≥ 0, 𝑛 ≥ 𝑘1, 𝑘3 ≥
0, 𝑡, 𝑡1𝜖{0, 1}. Then 
 

Ρ{𝜂(𝑡1 𝑡1
∗) = 𝑘1, 𝜂( 𝑡1𝑡) + 𝜂( 𝑡0𝑡) = 𝑘2 } =

∑ 𝑝𝑚1𝑞𝑚0
𝑚−𝑘1
𝑚1=𝑘1

×

∑ ∑ 𝐶𝑖−1

𝛿𝑡∗
𝐶𝑖

𝛿𝑡−𝑚𝑡+2𝑖
𝑖∈{𝑘1, 𝑘1+1} 𝐶𝑚𝑡∗−𝑖+1

𝑘1−𝛿𝑡∗
×

Ζ(𝑚𝑡 − 𝑖; 𝑚𝑡 − 𝑖 − 𝛿𝑡), 

(2) 

 

where is the symbol ∑ denotes addition over all non-

negative integers 𝛿𝑡 and 𝛿𝑡∗ such that 𝛿𝑡 + 𝛿𝑡∗ = 𝑘2, 

Ζ(𝑎, 𝑏) ≝ {
𝐶𝑎−1

𝑏−1, if 𝑎 ≥ 𝑏 ≥ 1;    
1, if 𝑎 = 𝑏 = 0;             
0, elsewhere;              

 

 

Ρ{𝜂(𝑡1 𝑡1
∗) = 𝑘1, 𝜂( 𝑡𝑡𝑡) = 𝑘2 } =

∑ 𝑝𝑚1𝑞𝑚0
𝑚−𝑘1
𝑚1=𝑘1

𝐶𝑚𝑡∗

𝑘1 ×

∑ 𝐶𝑖
𝑚𝑡−𝑘2−𝑖

𝑖∈{𝑘1, 𝑘1+1} Ζ(𝑚𝑡 − 𝑖, 𝑚𝑡 − 𝑖 −

𝑘2);  

(3) 

Ρ{𝜂(𝑡1 𝑡1
∗) = 𝑘1, 𝜂( 𝑡𝑡∗𝑡) = 𝑘2 } =

 ∑ 𝑝𝑚1𝑞𝑚0
𝑚−𝑘1
𝑚1=𝑘1

∑ 𝐶𝑖
𝑘2

𝑖∈{𝑘1, 𝑘1−1} 𝐶𝑚𝑡∗−𝑖
𝑘1−𝑘2 ×

Ζ(𝑚𝑡;  𝑖 + 1); 

(4) 

 

Ρ{𝜂(𝑡1 𝑡1
∗) = 𝑘1, 𝜂( 𝑡𝑡𝑡) = 𝑘2, 𝜂( 𝑡𝑡∗𝑡) =

𝑘3 } = ∑ 𝑝𝑚1𝑞𝑚0
𝑚−𝑘1
𝑚1=𝑘1

×

∑ 𝐶𝑖
𝑘2−𝑚𝑡+2𝑖

𝑖∈{𝑘1, 𝑘1+1} 𝐶𝑖−1
𝑘3 𝐶𝑚𝑡∗−𝑖+1

𝑘1−𝑘3 ×

Ζ(𝑚𝑡 − 𝑖; 𝑚𝑡 − 𝑖 − 𝑘2). 

(5) 

 

Proof:  

Check (3). For this purpose, we denote by 𝜈 the 

number of units in a random sequence (1). The 

random variable 𝜈 has a binomial distribution with 

parameters (n, p). This makes it possible to write for 

m = 0,1,2, ..., n the probability of the event {𝜈 = 𝑚}, 

namely: 
 

Ρ{𝜈 = 𝑚} = 𝐶𝑛
𝑚𝑝𝑚𝑞𝑛−𝑚. (6) 

 

Using the formula for the total probability we 

find 
 

Ρ{𝐵1, 𝐵2} = ∑ Ρ{𝜈 = 𝑚} ∙𝑛
𝑚1=0

Ρ{𝐴1, 𝐴2 𝜐 = 𝑚1⁄ }, 
(7) 

 

where 𝐵1 ≝ {𝜂(𝑡1 𝑡1
∗) = 𝑘1}, 𝐵2 ≝ {𝜂(𝑡𝑡𝑡) = 𝑘2}. 

Let Q denotes the number of all vectors �⃗�, �⃗� ∈
Ω(𝑛, 𝑚1), of which has 𝑘1 /𝑘2/ 2-chain type 𝑡1𝑡1

∗ / 

3-chains 𝑡𝑡𝑡 / type. Then, taking into account 

Ω(𝑛, 𝑚1) = 𝐶𝑛
𝑚1 we have 

 

Ρ{𝐵1, 𝐵2 𝜈 = 𝑚1⁄ } = (𝐶𝑛
𝑚1)

−1
𝑄. (8) 

 

Next, set the formula for finding the 𝑄 number. 

For this purpose, we consider a subset 

D(𝑚0, 𝑚1, 𝑘1, 𝑘2;  𝑡) ⊆ Ω(𝑛, 𝑚1) all vectors that 

start and end with element 𝑡, contain 𝑘1 /𝑘2/  2-

chain type 𝑡1𝑡1
∗ / 3-chain 𝑡𝑡𝑡 / type. Note that a 

random �⃗� ∈ D(𝑚0, 𝑚1, 𝑘1, 𝑘2;  𝑡) vector has the 

following property: vector 𝑣 ⃗⃗⃗ ⃗permutation between 

themselves ∝  – series, ∝∈ {0, 1}, does not change 

the number 𝑘1 and 𝑘2. This allows you to write 

equality 
 

𝑄 = ∑ |D(𝑚𝑡∗ − 𝜈𝑡∗ , 𝑚𝑡 , 𝑘1, 𝑘2;  𝑡)|
𝑚𝑡∗

𝜈𝑡∗=0 +

∑ ∑ |D(𝑚𝑡∗ − 𝜈𝑡∗ − 𝜈𝑡∗
′ , 𝑚𝑡, 𝑘1 −

𝑚𝑡∗

𝜈𝑡∗
′ =1

𝑚𝑡∗

𝜈𝑡∗=0

1, 𝑘2;  𝑡)|  

(9) 

 

Show that 

 

D(𝑚0, 𝑚1, 𝑘1, 𝑘2;  𝑡)=

 𝐶𝑘1+1
𝑚𝑡−𝑘2−𝑘1−1

𝐶𝑚𝑡∗−1
𝑘1−1

𝐶𝑚𝑡−𝑘1−2
𝑘2 . 

(10) 

 

Indeed, for an arbitrary vector �⃗� ∈
D(𝑚0, 𝑚1, 𝑘1, 𝑘2;  𝑡) we have 
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𝑘2 = 𝑚𝑡 − 𝛿1
(𝑡)

− 2 (𝑘1 − 𝛿1
(𝑡)

+ 1) =

𝛿1
(𝑡)

+𝑚𝑡 − 2𝑘1 − 2,  
(11) 

 

where 𝛿1
(𝑡)

+𝑚𝑡 − 2𝑘1 − 2 ≥ 0, 𝛿1
(𝑡)

 – number 𝑡 -

series unit length in vector �⃗�. Element from set 

D(𝑚0, 𝑚1, 𝑘1, 𝑘2;  𝑡)  is uniquely determined if fixed 

as one of 𝐶𝑘1+1

𝛿1
(𝑡)

  possible locations 𝑡-series of unit 

length each, as well as one of possible splits 𝑚𝑡∗ =

𝑥1
(𝑡∗)

+ 𝑥2
(𝑡∗)

+ ⋯ + 𝑥𝑘1

(𝑡∗)
 on 𝑘1  𝑡-series, the length 

of each of which is not less than two. From here we 

have 

 
|D(𝑚0, 𝑚1, 𝑘1, 𝑘2;  𝑡1)| =

𝐶𝑘1+1

𝛿1
(𝑡)

𝐶𝑚𝑡∗−1
𝑘1−1

𝐶𝑚𝑡−𝑘1−2

𝑘1−𝛿1
(𝑡)

=

𝐶𝑘1+1
𝑚𝑡−𝑘2−𝑘1−1

𝐶𝑚𝑡∗−1
𝑘1−1

𝐶𝑚𝑡−𝑘1−2
𝑘2 . 

 

With the help of (10) and (11) we find 

 

∑ |D(𝑚𝑡∗ − 𝜈𝑡∗ , 𝑚𝑡 , 𝑘1, 𝑘2;  𝑡)|
𝑚𝑡∗

𝜈𝑡∗=0 =

𝐶𝑘1+1
𝑚𝑡−𝑘2−𝑘1−1

𝐶𝑚𝑡∗

𝑘1 𝐶𝑚𝑡−𝑘1−2
𝑘2 ∑ ∑ |D(𝑚𝑡∗ −

𝑚𝑡∗

𝜈𝑡∗
′ =1

𝑚𝑡∗

𝜈𝑡∗=0

𝜈𝑡∗ − 𝜈𝑡∗
′ , 𝑚𝑡 , 𝑘1 − 1, 𝑘2;  𝑡)| =

𝐶𝑘1

𝑚𝑡−𝑘2−𝑘1𝐶𝑚𝑡−𝑘1−1
𝑘2 ∑ 𝐶

𝑚𝑡∗−𝜈𝑡∗
′

𝑘1−1𝑚𝑡∗

𝜈𝑡∗
′ =1

. 

 

In this way, 

 

𝑄 = 𝐶𝑚𝑡∗

𝑘1 (𝐶𝑘1+1
𝑚𝑡−𝑘2−𝑘1−1

𝐶𝑚𝑡−𝑘1−2
𝑘2 +

𝐶𝑘1

𝑚𝑡−𝑘2−𝑘1𝐶𝑚𝑡−𝑘1−1
𝑘2 ), 

 

that together with (6) – (9) prove (3). 

 

5. EXPERIMENT  

As a result of the application of this technique for 

testing pseudo-random sequences, tables were 

constructed, with the help of which one can obtain 

the probability of the distribution of zeros and ones 

in a given sequence. As practice shows, the use of 

ready-made tables for analyzing the sequence of 

randomness allows you to get the answer as quickly 

as possible, in contrast to the classical testing 

method. 

Consider an example of tables for a bit-sequence 

of small length. For example, let the length of the bit 

sequence n, n=16. 

 

5.1. ILLUSTRATION OF THE USE OF 
EQUALITY (2) 

Table 1 and Fig. 4 show the use of the relation 

(2) for a small sample 𝑛, 𝑛 = 16, and some values 

𝑘1 and 𝑘2. 

Table 1. Using (2) for a small sample of length 16 

𝒌𝟏 𝒌𝟐 𝑷 𝑷𝒄 

2 5 0,010910034 0,114364624 

2 1 0,011276245 0,125640869 

5 1 0,011291504 0,136932373 

6 4 0,011672974 0,148605347 

2 4 0,012207031 0,160812378 

2 2 0,012252808 0,173065186 

2 3 0,012695313 0,185760498 

4 0 0,012985229 0,198745728 

4 7 0,013580322 0,21232605 

5 6 0,014358521 0,22668457 

3 7 0,01550293 0,2421875 

3 0 0,021987915 0,264175415 

3 6 0,024459839 0,288635254 

4 6 0,027160645 0,315795898 

5 5 0,027511597 0,343307495 

3 5 0,03427124 0,377578735 

5 2 0,035858154 0,41343689 

5 4 0,041030884 0,454467773 

3 4 0,04347229 0,497940063 

4 5 0,043945313 0,541885376 

3 1 0,044143677 0,586029053 

3 3 0,04927063 0,635299683 

5 3 0,049407959 0,684707642 

3 2 0,050094604 0,734802246 

4 1 0,051467896 0,786270142 

4 4 0,061676025 0,847946167 

4 3 0,075286865 0,923233032 

4 2 0,076766968 1 

 

In Table 1 the first column contains all possible 

values 𝑘1 and 𝑘2, for which probability is  

Ρ{𝜂(𝑡1 𝑡1
∗) = 𝑘1, 𝜂( 𝑡1𝑡) + 𝜂( 𝑡0𝑡) = 𝑘2} ≥ 0,01. 

The second column of Table 1 gives the 

probabilities (in non-decreasing order)  𝑃{𝜂(𝑡1 𝑡1
∗) =

𝑘1, 𝜂( 𝑡1𝑡) + 𝜂( 𝑡0𝑡) = 𝑘2 } for pairs of numbers 

(𝑘1, 𝑘2) listed in the first column. 

Each row of the fourth column contains the sum 

of the accumulated probabilities before the event is 

implemented {𝜂(𝑡1 𝑡1
∗) = 𝑘1, 𝜂( 𝑡1𝑡) + 𝜂( 𝑡0𝑡) =

𝑘2 } inclusive where 𝑘1 and 𝑘2 indicated in the same 

line in the first column. 

 

5.2. ILLUSTRATION OF THE USE OF 
EQUALITY (3) 

Table 2 and Fig. 5 show the use of the relation 

(3) for a small sample of n, n = 16, and some values 

of 𝑘1 and 𝑘2. 

Table 2. Using (3) for a small sample of length 16  

𝒌𝟏 𝒌𝟐 𝑷 𝑷𝒄 

3 6 0,01071167 0,073730469 

2 5 0,011062622 0,084793091 

2 1 0,011978149 0,09677124 

2 0 0,012191772 0,108963013 

2 4 0,012756348 0,12171936 
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𝒌𝟏 𝒌𝟐 𝑷 𝑷𝒄 

2 2 0,013305664 0,135025024 

2 3 0,013549805 0,148574829 

4 4 0,021362305 0,169937134 

3 5 0,022994995 0,192932129 

6 0 0,02671814 0,219650269 

5 2 0,028015137 0,247665405 

3 4 0,037734985 0,285400391 

4 3 0,048751831 0,334152222 

3 3 0,050933838 0,38508606 

3 0 0,054214478 0,439300537 

3 1 0,057479858 0,496780396 

3 2 0,058532715 0,55531311 

5 1 0,059371948 0,614685059 

4 2 0,081161499 0,695846558 

5 0 0,091812134 0,787658691 

4 1 0,102798462 0,890457153 

4 0 0,109542847 1 

 

Table 2 is formed of columns whose contents are 

similar to the contents of the Table 1 columns. 

 

5.3. ILLUSTRATION OF THE USE OF 
EQUALITY (4) 

Table 3 and Fig. 6 show the use of the relation 

(4) for a small sample 𝑛, 𝑛 = 16, and some values 

 𝑘1 and 𝑘2. 

Table 3. Using (4) for a small sample of length 16  

𝒌𝟏 𝒌𝟐 𝑷 𝑷𝒄 

5 0 0,001022339 0,003448486 

1 1 0,001602173 0,005050659 

6 2 0,001678467 0,006729126 

6 6 0,001831055 0,008560181 

2 2 0,005554199 0,01411438 

5 5 0,007049561 0,02116394 

6 3 0,00869751 0,02986145 

1 0 0,008773804 0,038635254 

6 5 0,009155273 0,047790527 

3 3 0,010910034 0,058700562 

4 4 0,012084961 0,070785522 

5 1 0,014266968 0,08505249 

6 4 0,014877319 0,09992981 

4 0 0,022994995 0,122924805 

2 1 0,037490845 0,160415649 

5 4 0,039276123 0,199691772 

2 0 0,051376343 0,251068115 

5 2 0,053710938 0,304779053 

3 0 0,072006226 0,376785278 

5 3 0,073516846 0,450302124 

3 2 0,074188232 0,524490356 

4 3 0,076034546 0,600524902 

4 1 0,108764648 0,709289551 

3 1 0,139648438 0,848937988 

4 2 0,151062012 1 

 

Table 3 is formed of columns whose contents are 

similar to the contents of columns from Table 1. 

5.4. ILLUSTRATION OF THE USE OF 
EQUALITY (5) 

Table 4 shows the use of the relation (5) for a 

small sample 𝑛, 𝑛 = 16, and some values  𝑘1, 𝑘2 

and 𝑘3.  

In Table 4 in the first, second and third columns 

are all possible values 𝑘1, 𝑘2 and 𝑘3, for which 

probability Ρ{(𝑡1 𝑡1
∗) = 𝑘1, 𝜂( 𝑡𝑡𝑡) = 𝑘2, 𝜂( 𝑡𝑡∗𝑡) =

𝑘3 } ≥ 0,01 . 

Table 4. Using (5) for a small sample of length 16 

𝒌𝟏 𝒌𝟐 𝒌𝟑 𝑷 𝑷𝒄 

4 0 3 0,010498047 0,303817749 

6 0 4 0,010757446 0,314575195 

5 0 1 0,01121521 0,325790405 

5 2 3 0,011901855 0,337692261 

5 0 4 0,012039185 0,349731445 

3 2 2 0,012863159 0,362594604 

4 0 0 0,012985229 0,375579834 

5 1 4 0,014190674 0,389770508 

3 4 2 0,014282227 0,404052734 

3 2 0 0,014785767 0,418838501 

3 3 2 0,014816284 0,433654785 

5 1 2 0,015563965 0,44921875 

4 3 3 0,016113281 0,465332031 

3 4 1 0,016662598 0,481994629 

4 1 3 0,017333984 0,499328613 

3 1 0 0,018447876 0,517776489 

4 2 1 0,019805908 0,537582397 

4 3 2 0,019866943 0,557449341 

4 2 3 0,020751953 0,578201294 

3 0 0 0,021987915 0,600189209 

5 1 3 0,024414063 0,624603271 

3 3 1 0,025299072 0,649902344 

3 0 1 0,025695801 0,675598145 

3 1 1 0,029022217 0,704620361 

3 2 1 0,030029297 0,734649658 

5 0 2 0,033111572 0,76776123 

4 1 1 0,03338623 0,801147461 

5 0 3 0,033538818 0,834686279 

4 2 2 0,035430908 0,870117188 

4 0 2 0,040649414 0,910766602 

4 1 2 0,044311523 0,955078125 

4 0 1 0,044921875 1 
 

The contents of the fourth and fifth columns are 

similar to the contents of the third and fourth 

columns of the Table 1. 
 

5.5. RESULTS AND DISCUSSION 

As a result of applying this technique for testing 

pseudo-random sequences for two-dimensional 

statistics (relations (2) – (4)), you can build a bubble 

diagram with which you can get the probability of 

the distribution of zeros and ones in a given 

sequence. 

Consider examples of bubble diagrams for a bit 

sequence of small length n, n = 16. 
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5.6. GRAPHIC ILLUSTRATION OF THE 
USE OF EQUALITY (2) 

Fig. 4 gives a bubble chart in which the first 

parameter (horizontal axis) is the value 𝑘1, the 

second parameter (vertical axis) is the value 𝑘2, and 

the third parameter (the bubble size) is the 

probability of the event occurring {𝜂(𝑡1 𝑡1
∗) =

𝑘1, 𝜂( 𝑡1𝑡) + 𝜂( 𝑡0𝑡) = 𝑘2 }, presented in percent. 

After analyzing Fig. 4 it can be concluded that 

for the analysis of the sequence of chains of small 

and medium length (from 13 to 100 elements), one-

dimensional statistics does not always give the 

correct result. 

 
Figure 4 – Bubble chart of sequence with the length 13 for (2) 

 

For example, if we consider the sequence where 

the parameter k1 = 4, then we can draw a conclusion 

with a high degree of probability of randomness of 

the sequence with these characteristics, however, if 

we pay attention when  k1 = 4 and k2 = 0 it can be 

argued that this sequence is non-random, therefore 

as shown in Fig. 4 we have Ρ{𝜂(𝑡1 𝑡1
∗) =

𝑘1, 𝜂( 𝑡1𝑡) + 𝜂( 𝑡0𝑡) = 𝑘2} = 1,30% that also 

shows the lack of use of one-dimensional statistics 

for the analysis of short and medium bit sequences. 

An approach to testing using n-dimensional 

statistics allows us to rely on a deeper justification of 

the randomness of generated sequences. 

5.7. GRAPHIC ILLUSTRATION OF THE 
USE OF EQUALITY (3) 

 Fig. 5 shows the use of the relation (3) for a 

small sample. 𝑛, 𝑛 = 16 , and some values  𝑘1 and 

𝑘2. 

 

 
Figure 5 – Bubble chart of sequence with the length 16 for formula (3) 
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Fig. 5 gives a bubble chart in which the first 

parameter (horizontal axis) is the value 𝑘1, the 

second parameter (vertical axis) is the value 𝑘2, and 

the third parameter (bubble size) is the probability of 

the event occurring {𝜂(𝑡1 𝑡1
∗) = 𝑘1, 𝜂( 𝑡𝑡𝑡) = 𝑘2}, 

which is represented as a percentage. 

 

5.8. GRAPHIC ILLUSTRATION OF THE 

USE OF EQUALITY (4) 

Fig. 6 shows the use of relation (4) for a small 

sample 𝑛, 𝑛 = 16,  and some values  𝑘1 and 𝑘2.  

Fig. 6 gives a bubble chart in which the first 

parameter (horizontal axis) is the value 𝑘1, the 

second parameter (vertical axis) is the value 𝑘2, and 

the third parameter (bubble size) is the probability of 

the event occurring {𝜂(𝑡1 𝑡1
∗) = 𝑘1, 𝜂( 𝑡𝑡∗𝑡) = 𝑘2}, 

which is represented as a percentage. 

In this paper, the exact compatible distributions 

of some statistics (0, 1) -sequences of length 1 <
𝑛 < ∞ are given. For a bit sequence of small length 

n, n = 16, the tables containing the numerical values 

of the corresponding distribution are given. These 

tables, as well as the proposed graphic 

representations, can be used to test the hypothesis of 

the randomness of the arrangement of zeros and 

units. 

 
Figure 6 – Bubble chart of sequence with the length 16 for formula (4) 

 

6. THE RESULTS OF THE COMPARISON 

THE NIST STATISTICAL TEST SUITE 

AND TEST OF PRS OF SMALL LENGTH 

USING MULTIDIMENSIONAL 

STATISTICS 

Consider the well-known examples that are given 

in [14]. Let us analyze the submitted sequences for 

the corresponding tests, where:  

• P is the probability of sequence randomness 

according to the selected criterion from the first 

column,  

• P1 is the probability obtained using relation (2),  

• P2 is the probability obtained using relation (3),  

• P3 is the probability obtained using relation (4). 

Table 5. The results of the comparison 

Test 

Input 

Size 

Recomm

endation 

length Sequences Р P1 P2 P3 

Frequency 

(Monobit) 

Test 

n>=100 10 1011010101 0,527 0,021 0,049 0,021 

Test 

Input 

Size 

Recomm

endation 

length Sequences Р P1 P2 P3 

Frequency 

Test within 

a Block 

n>=100 10 0110011010 0,801 0,097 0,212 0,129 

Runs test n>=100 10 1001101011 0,147 0,097 0,212 0,129 

Binary 

Matrix 

Rank Test 

n>= 

38000 

N=20 

M = Q 

= 3 

0101100100

1010101101 
0,741 0,112 0,289 0,245 

Discrete 

Fourier 

Transform 

(Spectral) 

Test 

n>=1000 N=10 0001010011 0,109 0,106 0,212 0,129 

Non-

overlapping 

Template 

Matching 

Test 

N >= 

200 

N=20, 

2 

blocks 

of 

length 

10 

1010010010

1110010110 
0,344 0,098 0,176 0,105 

Maurer’s 

“Universal 

Statistical” 

Test 

n>= 

380000 
N=20 

0101101001

1101010111 
0.767 0,112 0,289 0,245 

Serial test n>=100 N=10 0011011101 0,907 0,025 0,212 0,028 
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Test 

Input 

Size 

Recomm

endation 

length Sequences Р P1 P2 P3 

Approximat

e Entropy 

test 

n>=100 N=10 0100110101 0,261 0,021 0,049 0,021 

Cumulative 

Sums 

(Cusum) 

Test 

n>=100 N=10 1011010111 0,411 0,097 0,212 0,129 

Random 

Excursions 

Test 

n>106 N=10 0110110101 0,502 0,003 0,049 0,003 

Random 

Excursions 

Variant Test 

n>106 N=10 0110110101 0,683 0,003 0,049 0,003 

 

As can be seen from the table, the use of two-

dimensional statics gives a more accurate result for 

short sequences. And also, according to [14], the 

recommended minimum sequence length n is greater 

than 100 bits. 

 

7. CONCLUSION 

An approach to testing the use of 

multidimensional statistics allows you to rely on a 

deeper rationale for randomized bit sequences that 

are being analyzed. This area is promising for 

scientific research. Thus, a new technique of PRS 

testing is proposed in the paper, and several criteria 

for testing bit sequence of small length are 

considered, which, in comparison with one-

dimensional statistics, gives a more accurate result. 

To implement the proposed approach, the author 

develops a software package for testing PRS, which 

will include multidimensional statistical tests. 

Thus, the paper proposed a methodology for 

testing a memory bandwidth, and obtained a correct 

view of the joint distribution of the numbers of 2 

chains and the numbers of 3 chains of various 

variants in a random bit sequence of a given small 

length. 

To implement the proposed approach, a PRS 

software test package is being developed, which will 

include tests using multidimensional statistics, 

which are well recommended for testing a short 

length PRS. The complex is based on software 

products developed in C ++, Python, for analyzing 

PRS, as well as, the user part on a Microsoft Excel 

spreadsheet processor. Choosing a Microsoft Excel 

spreadsheet processor due to a wide segment of 

users, a large number of built-in mathematical and 

statistical functions, the possibility of programming 

in VBA, as well as the visibility of implementation, 

testing programs, there is no need to install 

additional programs and user training. Currently, 

more than 20 PRS tests have been implemented, and 

the test database is being updated. 

An analysis of the effectiveness of pseudorandom 

sequence generators is an urgent issue of 

cybersecurity in the use of more advanced methods 

of encryption and information security. The 

available techniques show low flexibility and 

versatility in the means of finding hidden patterns in 

the data. To solve this problem, it is suggested to use 

algorithms based on multidimensional statistics. 

These algorithms combine all the advantages of 

statistical methods and are the only alternative for 

the analysis of sequences of small and medium 

length. 

As a result of the implementation of this 

technique, an information system will be created that 

allows analyzing the PRS of a small length and 

choosing a quality PRS for use in a particular subject 

area. 
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