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Abstract: The small-world phenomena exhibits highly localized clustering and short-cut paths between vertices in a 
graph that reflect observed properties in social networks, epidemiological models and other real-world networks. The 
small-world models rely on the application of constraint-based randomness or the derivation of constraints on 
randomness to simulate the desired network complexities and their associated network connection properties. In this 
paper, rather than exploring the random properties of small-world networks, we employ deterministic strategies in the 
design of a computationally efficient distributed neuronal-axon network simulator that results in a small world network. 
These strategies are derived by addressing the parallel complexities of the proposed neuronal-axon network simulator, 
and also from physical constraints imposed by resource limitations of the distributed simulation architecture. The 
outcome of this study is the realization of a neuronal-axon network simulator that exhibits small-world characteristics of 
clustering with a logarithmic degree of separation between nodes without the need for long-range communication 
edges. The importance of this result is the deterministic application of reasoned optimization rules from which the 
small-world network emerges. Copyright © Research Institute for Intelligent Computer Systems, 2016. All rights 
reserved. 
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1. INTRODUCTION 

A small-world network is the notion that a short 
chain of intermediate acquaintances, which is 
characterized by a separation length of about six 
steps, can connect almost any pair of people in the 
world to one another. Small-world models for social 
networks display a large clustering coefficient; a 
high local clustering with disjoint regions that on 
average are connected to any node by only a few 
steps. A short summary of some background and 
models attempting to explain small-world 
phenomena are presented in [2, 24, 27, 30]. 

This paper presents an overview of small-world 
models, based on rules applied with small random 
probabilities. This approach makes sense if Nature is 
truly a stochastic process [7]. As a modeling tool, a 
random approach provides a high-level 
characterization of a complex behavior with minimal 
details of physical or systemic rules. However, it can 
also be argued that without specific details; random 
approaches may illustrate gross effects but, yet, 
obscure the causal details of resource and 
technology limitations and their economics of scale. 
This paper presents a different perspective in the 
understanding of small-world models by examining 

the design of a neuronal network simulator that is 
found to exhibits small-world features. In the 
remainder of this paper, we present the notion of six 
degrees of separation, current small-world models, 
and in particular the design of a neuronal-axon 
network simulator, its small-world organization, and 
the emergence of the small world from the 
application of optimization considerations. 

 
2. SIX DEGREES OF SEPARATION 

Six degrees of separation is the notion that 
everyone is a six or fewer step away from one 
another in the world by way of acquaintances. As a 
consequence, a chain of “a friend of a friend” 
inquiries can be made to connect any two people 
within a maximum of six steps. The original idea is 
by Frigyes Karinthy (a Hungarian author, 
playwright, poet, journalist, and translator). He was 
the first proponent of the six degrees of separation 
concept, where in his 1929 short story, Chain-Links, 
the author writes: “ . . . to find a chain of contacts 
linking myself with an anonymous riveter at the 
Ford Motor Company – and I accomplished it in 
four steps. The worker knows his foreman, who 
knows Mr. Ford himself, who, in turn, is on good 
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terms with the director general of the Hearst 
publishing empire [22].” The idea was further 
popularized in the 1990 play “Six Degrees of 
Separation” written by John Guare [12], which 
premiered on Off-Broadway. In this play, the 
character Ouisa asks “Six degrees of separation 
between me and everyone else on this planet. But to 
find the right six people.” Building on this theme, 
Brian Turtle, Craig Fass and Mike Ginelli in 1994 
created the game “Six Degrees of Kevin Bacon” 
where players try to connect any movie star, living 
or dead, to the veteran Hollywood actor Kevin 
Bacon. The game has become so successful that 
Google has incorporated the game into their search 
engine. 

Surprisingly 25 years earlier, Casper Goffman 
described the idea of the Erdös number in his 1969 
article entitled “And what is your Erdös number?” 
[11]. Paul Erdös was an influential mathematician 
who published more papers during his lifetime than 
any other mathematician in history. The idea of the 
Erdös number was originally created to describe the 
“collaborative distance” between the mathematician 
Paul Erdös and others who collaborated with him in 
authorship of mathematical papers. However, in 
later years the Erdös number has been generalized as 
an analogous notion of collaboration distance: two 
persons are linked if they are coauthors of an article. 

 

2.1 SMALL WORLD 

Milgram [23] provided one of the first studies in 
quantifying the small-world property of networks. 
His work explored the average number of steps that 
separated two individual from each other through a 
social network of friends-of-friends. The average 
separation is the number of steps that a message is 
passed between individuals, chosen from a random 
source, to arrive at a particular destination. 

The results of the experiments show that the 
average number of steps needed is surprisingly 
small.  

The small-world, social network relies on two 
properties: 1) on average a person's friend-of-a-
friend are far more likely to be acquainted with one 
another than two people chosen at random 
(clustering); and, 2) it is possible to connect two 
people chosen at random via a chain of only a few 
intermediate acquaintances (six degrees of 
separation). 

A slightly different approach is to construct short 
paths based on local information. When network 
models are able to do this efficiently, the network is 
called navigable. Local information is defined as 
messages passed only between friends without 
knowing the exact path on subsequent passes. One 
strategy is to pass the message to the friend that 
appears closest to the destination (as measured in a 

social relational sense). Algorithmically, this 
approach implies a variant of a greedy routing 
strategy to find short paths in a network. This 
strategy forms the basis for a decentralized view that 
is used for navigation and searching in small-world 
models. 

Small-world networks provide an important 
mathematical framework for modeling real-world 
social interactions. The spread of diseases [21, 26], a 
basis for epidemiological theory (random-mixing 
models) [17], social networking theory, and the 
design and analysis of the Internet infrastructure [1] 
are examples where the application of small-world 
networks has importance. 

 

2.2 RANDOM GRAPHS 

The theory of random graphs [3, 8] provides a 
framework where short paths can exist in large 
networks. Such a graph is denoted as  G(N, p), 

where N  is the number of nodes (vertices) and p  is 

a fixed probability of connecting an edge between a 
pair of vertices. Assume that z  is the number of 
edges per node (on average). Then the number of 

edges between nodes in the graph is 
1

2
Nz . Now 

select N  nodes and draw 
1

2
Nz

 
edges between 

randomly selected pairs, where each pair of nodes is 
connect by an edge with probability p . A graph 

with no edges has 0p  , whereas, a fully connected 

graph has 1p  .  

To understand the small-world effects of random 

graphs, consider a node Ni  with z  neighbors. 

Assume that each of Ni 's neighbors also has z  

neighbors, which implies that Ni  
has 2z  second 

neighbors. By extending this argument, the number 
D degrees of separation needed to reach all N  
nodes in the network is given by 
 

log

log
D N

z N D
z

                         (1) 

 

It is possible that the second neighbors of Ni  are 

also neighbors of Ni . In that case, these nodes form 

a clustering of the network. Unfortunately, the 
clustering of networks in a random graph is 
diminished by the likelihood that the selected pairs 
of nodes are connected with a probability p  in a 

uniformly random way. 
The clustering coefficient C  is the average 

fraction of pairs of neighbors of a node that are also 
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neighbors of each other. A fully connected network 
has a clustering coefficient 1C  . The clustering 

coefficient for a random graph is 
z

C
N

 . 

A measure for typical separation between 

vertices in a graph is denoted by ( )L p  where p  

measures the range of randomness for a graph, 
0 ordered 1 disordered( ) ( )p  . 

Table 1 illustrates an analysis of three different 
networks by Watts and Strogatz [31]. In the table, 
the corresponding z  values (not shown) are 

2.67z   for the power grid (western USA), 14z   
for the C. elegans and 61z   for the movie actors. 
 

Table 1. Watts and Strogatz (1998) 
Network N Lactual Lrand Cactual Crand 

C. elegans 282 2.65 2.25 0.28 0.05 
Power Grid 4941 18.7 12.4 0.08 0.005 
Film actor 225,226 3.65 2.99 0.79 0.00027 

 

3. BUILDING GRAPHS WITH BOTH 
SMALL-WORLD AND CLUSTERING 

PROPERTIES 

Random graphs show small-world properties but 
restrict the formation of clusters of vertices. Since 
clustering is an important property of real-world 
situations, a graphical network model has 
significance in the analysis and modeling of both 
physical and social networks [19]. In this section we 
will consider the models of Watts and Strogatz, and 
Kleinberg. 

 

3.1 WATTS-STROGATZ MODEL 

The model of Watts and Strogatz [31] is based on 
the assumption that people are more likely to have 
friends nearby, but still have some friends that live 
at a far distance. With these assumptions, the Watts-
Strogatz's small-world model exhibits the high 
clustering found in social networks. 

The Watts-Strogatz graph is a one-dimensional, 
regular circular lattice (discrete, and with periodic 
boundary conditions) that allows a small degree of 
randomness to produce the small-world effect (see 
Fig. 1). Initially each node is assigned a position in 
the lattice and an edge is added between each node 
and its nearest neighbors to form the one-
dimensional lattice. Next a fixed (but small) number 
of edges are randomly rewired between nodes and 
may stretch long distances within the lattice. 

The parameter, p , denotes the fraction of edges 

that are subject to random rewiring. The variation of 
p  makes possible the transition from a very locally 

ordered/clustered graph ( 0p  ) to one where all 

edges are randomly rewired ( 1p  ). The rewired 

edges create shortcuts that cover large distances in 

the underlying lattice. These shortcuts make possible 
the access, within a small number of steps, to 
vertices that are far away in the graph. Watts and 
Strogatz showed that the average path length 
between two nodes in a random network is equal to 
ln / lnN K , where N  = total nodes and K = 

acquaintances per node. Thus if N = 300,000,000 
(90% of the US population) and K  = 30 then 
Degrees of Separation = 19.5 / 3.4 = 5.7 and if  
N  = 6,000,000,000 (90% of the World  
population) and K  = 30 then Degrees of  
Separation = 22.5 / 3.4 = 6.6.  

 

 

Fig. 1 – Lattices: Ordered, Small World, Random 

 
The Watts-Strogatz model exhibits a rapid drop 

in the shortest path length and network diameter 
with only a small fraction of random rewiring. 
Albert and Barabási [2] provide additional details 
and simulations. 

 
3.2 KLEINBERG MODEL 

Kleinberg (2000) [18] generalizes the Watts-
Strogatz model and argues that models with 
shortcuts that are arbitrarily far apart are poor 
representations for some real-world situations. 
Kleinberg observations that people using local 
information are able to find short paths between 
individuals. He shows that the Watts-Strogatz model 
does not allow an efficient greedy routing algorithm 
to find short paths given only local information.  

Kleinberg's model is a k -dimensional lattice 
with local connections to the nearest-neighbors. The 
probability for a shortcut edge to be added between 
two nodes is proportional to a distance measure 
( , )d x y  between each pair of nodes x  and y  that 

falls off as a power law proportional to ( , ) pd x y - . 

Kleinberg shows that when p k  an efficient 

greedy routing algorithm can be constructed to find 
short paths with only the use of local information. 
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The corresponding probability for adding a shortcut 
edge from x  to y  is given by 

 

( , )
( )

( )

k

k

d x y
p x y

H n

-

                       (2) 

 

where ( )
k

H n  is a normalization constant. 

The Kleinberg model adds shortcuts between 
nodes; whereas, the Watts-Strogatz model rewires 
existing edges in the lattice. For p  = 0, the 

Kleinberg model corresponds roughly to the Watts-
Strogatz model. As p  increases, the length of a 

shortcut edge becomes shorter with respect to the 
distance between nodes in the lattice. k  is the 
critical value for p  that couples the dimensionality 

of the lattice with the probability distribution needed 
to balance the shortcut distances in this greedy 
routing algorithm. An algorithm where shortcuts 
have been generated under this distribution takes an 

average complexity of 2(log )O n  steps. Newman 

and Watts [25] also considered the idea of adding 
shortcut edges in place of rewiring existing edges. 

 
4. A SMALL-WORLD BIOPHYSICAL 

NEURONAL-AXON NETWORK 
TOPOLOGY 

In this section, a small-world network topology 
of a distributed processing system is described. The 
architecture is designed as a parallel processing 
platform to simulate the synaptic response to the 
Hodgkin-Huxley (H-H) equations [14]. These 
equations model the activation and propagation of 
electric currents along the membrane of the squid 
giant axon. The axons are modeled as a long 
cylindrical tube, where electrical signals propagate 
along their outer membrane. The membrane is 
permeable to preferential chemical elements; namely 
potassium (K+) and sodium (Na+). The H-H 
equations describe the sum of ion channels (K+ and 
Na+) and the capacitance of the axon membrane. 

 

4.1 COMPUTATIONAL PARALLELISM 

An efficient parallel implementation of the H-H 
model does not require a parallel decomposition of 
the equations. Instead, each neuron can be 
processedindependently from one another; therefore, 
a high degree of computational parallelism O( N ) 
can be achieved, where N  is the number of neurons 
in atypical neuronal cluster. Consequently, the 
intrinsic parallelism would appear to be scalable and 
suitable for implementation on many low-end 
clustersystems, where an equal number of neurons 

are assigned to each of P  processors ( P << N ) to 
maintain computational work-load balance. 

In designing an efficient parallel simulation 
platform, the computational parallelism, aggregate-
data communications, and memory resources and 
organizationare fundamental criteria that need 
careful consideration. Too often the computational 
parallelism takes on the central focus of the 
implementation and relegates the importance of the 
ensuing data flow, and optimal data organization as 
secondary. As a consequence, concentrating 
exclusively on the extraction of the highest degree of 
computational parallelism can result in severely 
limiting the overall performance of the system 
platform. 

 

4.2 DATA-FLOW COMMUNICATIONS 

As for the data flow of the H-H model, when a 
neuron cell is stimulated above a given threshold, it 
transfers (communicates) that stimulus (an action 
potential) to all neuron cells connected to it. In a 
typical simulation, neurons are modeled as a 
completely connected cluster of approximately 
10,000 neurons. As action potentials are transferred 
between each neuron, the aggregate of these neurons 
will also transfer their computed action potentials 
back to the first neuron. On a parallel system, the 
one-to-all and all-to-one communications patterns 
results in an all-to-all communications data transfer. 
In addition, the exchange of electric stimuli between 
connected neurons must involve all processors 
within a distributed architecture. Unfortunately, an 
all-to-all communications between processors lead 
to high communication latencies and a degradation 
in parallel performance. 

A Beowulf computing system is one popular 
network topology that is deployed as a local area 
network. In such a network, Ethernet cables provide 
the connectivity that allow for “peer-to-peer” 
connections. For a Beowulf system, the Ethernet 
cabling imposes a bandwidth constraint on the 
multiple parallel transfers of action potentials among 
all attached processors. In addition, this limitation 
does not scale well as the number of processors, P , 
increase.  

In a modern Ethernet, the processors do not all 
share a single channel through a shared cable; 
instead, each processor communicates through 
switches that in-turn forward data packets to the 
destination processor (see Fig. 2). In this topology, 
collisions are possible if processor and switch 
attempt to communicate with each other at the same 
time; however, this situation can be avoided in a full 
duplex mode of operation where switch and 
processor can communicate with each other 
simultaneously. In full duplex mode, when one 



Robert E. Hiromoto / International Journal of Computing, 15(2) 2016, 72-83 

 

 76

processor sends data packets to all other processors 
(broadcast or one-to-all communication), the 
Ethernet-switch topology is very efficient; assuming 
that there are enough switch nodes available to 
service all the data traffic demands. However, when 
all processors attempt to send packets 
simultaneously in a one-to-all communications 
pattern, packet collisions cannot be avoided. As a 
consequence, choosing an appropriate network 
topology for the desired simulator is an important 
design consideration and one that requires an 
understanding of network latencies and resource 
limitations. 

 

 

Fig. 2 – Beowulf Ethernet-Switch Topology 

 
As a side note, the notion of scaling refers to the 

process of increasing the problem size in proportion 
to an increase in the number of additional processors 
added to the system. The H-H model follows a 
simple memory-scaling rule that grows linearly in 
the number of action potential tokens generated and 
their subsequent transfer across processors. 
Therefore, for Q  additional processors added to a 

P  parallel processor system, the memory required 
per processor is given by /N P  where N  is the 

total number of simulated neurons.  
If N  grows proportionally with P , then  
 

/ /N P N P                          (3) 

 
or 

 
( / ) ( )N N P P Q   +                   (4) 

 

where ( )P P Q  + . 

 
Eqn. 1 represents not only the maximum system 

memory but also the maximum number of action 
data-flow tokens that need to be transferred 
throughout the network (minus the tokens that are 
communicated to neurons within each processor). 

An alternative choice is a simple star network as 
illustrated in Fig. 3. This configuration provides a 
convenient clustered topology where the central 
node is one hop away from every other node. In 

order to support an all-to-all communications 
capability, a logical extension might be a completely 
connected star network as illustrated in Fig. 4. The 
completely connected star network retains the one 
hop property that links any two processing nodes. 
This property guarantees a highly cluster network 
topology where data transfers would appear to be 
optimal. Unfortunately, this network topology is not 
scalable, because as the number of processors 
increase the number of communication links grows 

as O( 2P ). 
 

 

Fig. 3 – Star Network 

 

 

Fig. 4 – Completely Connected Star Network 

 
A rearrangement of the star network readily 

reveals a more familiar Master/Slave topology 
(Fig. 5), where the number of network connections 
grows linearly in the number of Slave processors 

( )P . This topology is simple, scalable in processor 

utilization and requires minimal communication 
channels. 

However, three potential drawbacks limit the 
efficiency of this particular processor-network 
topology. First, most commodity processors do not 
support parallel I/O when distributed data packets 
are sent to or from a single processing node. Instead 
the CPU or most likely a coprocessor provides the 
communications capability. This arrangement results 
in serializing communications with a time-

complexity that grows as ( )O P . 
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Fig. 5 – Master/Slave Topology 

 

Second, when multiple nodes simultaneously 
send packets to a single destination node, an all-to-
one synchronized communications scheme is 
required to avoid packet collisions on the network. 
Third, the memory capacity of the Master node is 
sensitive to problem-size scaling according to Eqn. 
1. This is in contrast to the Slave (Neuron) nodes 
that maintain a constant memory size of /N P  . In 

this sense, the neuron-axon problem is very scalable 
with regards to the neuron processor parallelism. 
However, the Master node, which plays the key role 
in managing the receiving and sending of all action-
potential tokens between processors, becomes a 
memory bottleneck as the total problem size 

increases. If 
ap

T  is the number of action-potential 

tokens generated per processor, then the Master 

node memory capacity, 
c

M , must grow as a 

function of the number of processors and action-
potential data tokens transferred: 

 

1

( )
P

c ap i
i

M T


      (5) 

 
which also defines the limiting scalable problem size 
and the degree of parallelism that can be simulated 
with a fixed Master node memory capacity. 

A simpler network topology is a ring network, 
where all action potentials are transferred along a 
single direction (see Fig. 6). For this topology, 
action potentials are removed as they arrive at their 
destination processor; whereas, the remaining action 
potentials are transferred further along the ring. In 
this situation, the degree of communications 

parallelism is ( )O P ; however, the number of 

communication hops required to complete a 
communications cycle also grows as ( )O P . On the 

other hand, the advantage of the ring network is that 
for a fixed channel bandwidth the number of action 
potentials transferred depends only on the number of 
neurons per processor, /N P . In addition, the 

scaling of the problem size with number of 
processors does not require an increase in the 
memory size for all ring node processors. This is in 
contrast to the Master/Slave scaling characteristic. 

 

Fig. 6 – Ring Network 

 
An application of small-world transformations, 

by either reconnecting a few edges (links) (Fig. 7(a)) 
or adding a few additional edges (Fig. 7(b)), does 
not enhance the optimal ring communications 
routing algorithm. In Fig. 7(a), the reconnection of 
links creates a broken ring topology that disrupts and 
degrades the simple and efficient ring data routing 
protocol. 

 

 

Fig. 7 – Small-World Ring Network 

 
On the other hand, the addition of several edges 

(Fig. 7(b)) increases (enriches) the ring connectivity 
per node but does not provide any useful advantages 
to improve the intrinsic optimal ring routing 
algorithm.  

A final architectural consideration is a tree 
topology where the interior nodes are replaced with 
simple router switches to manage the data-flow 
traffic. Fig. 8 illustrates the proposed architecture as 
a balanced binary tree, although this is not 
necessary. The architecture increases in the number 

of processors by 2iP   where i  is the height of the 
tree, and the ratio of switches to processors remains 
constant. The tree-structured topology is organized 
into three distinct regions: 1) the root node that 
bridges the left- and right-subtrees, 2) the leaf-nodes, 

i
P , that make up the neuron processors, and 3) the 

interior nodes of the tree that manages the data-
token traffic through the various router switches. 
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Fig. 8 – Binary Tree Topology 

 

The routers sort the received action-potential 
tokens into two data token groups: those tokens that 
are sent up the tree towards the root node, and those 
tokens that are sent down to their respective left- and 
right-subtrees, depending upon the tokens' 
designated destinations. This routing enhancement 
avoids the transfer of all tokens through the root 
node. As a consequence, a significant reduction in 
the required memory capacity of the root node is 
achieved as well. When compared to the 
Master/Slave topology described above, the tree 
topology exhibits a more optimal simulation 
platform where: 1) data-flow routes can be 
performed in parallel, and 2) the farthest neuron 
processors can be reached in (log )O P  steps, and 

3) the minimal working root node memory capacity 
is reduced by a factor of  

 

1

2 1 2( )

P

P


-
                         (6) 

 

Replacing each router switch with a processor 
that acts as both a neuron processor and a router can 
also modify the proposed tree topology. In effect, 
this modification would not change the network's 
communications complexity; while doubling the 
computational parallelism by a factor of 2. In such a 
configuration, a larger simulation problem can be 
implemented. In either case, the maximum distance 
(hops) between nodes in the network is given by a 

distance complexity of (log )O P . 

It is interesting to note that the (log )O P

complexity is a property of many optimal algorithms 
designed for both sequential and parallel problems. 
This distance complexity is also a characteristic 
encountered in the Watts-Strogatz small-world 
model, and introduced to optimize the clustering 
between long-distant neighborhoods. In a similar 
fashion, the proposed tree-structured neuronal-axon 
simulation platform is designed to achieve the same 

(log )O P  neighborhood accessibility as described by 

the Watts-Strogatz model. 
 

4.3 MEMORY LIMITATIONS 

Although novice computer practitioners 
frequently quote the mantra “memory is cheap,” 

memory is a key enabling resource that requires 
serious consideration and analysis. The memory 
reduction (Eqn. 2) of the root node of the tree 
topology in comparison to the Master node of the 
Master/Slave configuration, points to the importance 
of analyzing the memory complexity of various 
architectures. This is illustrated when a 
computational task exhausts the available memory 
capacity; the execution halts and no further progress 
can be made. This termination occurs even if the 
software is error free. 

The tree topology offers routing opportunities 
that result from paired links between a parent and its 
corresponding children nodes. As a consequence, 
these links provide additional routes that avoid the 
need to communicate through the root node; such 
that, the root node memory size is reduced by a 
factor of two as compared to the Master node in the 
Master/Slave network topology. Using these ideas, 
the notion of a bisected-binary-tree (BBT) 
architecture is introduced that provides a convenient 
mechanism to further reduce the memory utilization. 
The BBT is illustrated in Fig. 9.  

 

 

Fig. 9 – Bisected-Binary Tree Topology 

 
The BBT is a modification of a binary tree, 

where the root node (C) is removed (i.e., bisect the 
binary tree) and shortcut links (indicated by the 
dashed arrows) are added to the two routing nodes 
labeled A and B. In this construction, the left-subtree 
root node (A) connects directly to the right-subtree 
of B, and the right-subtree root node (B) connects 
directly to the left-subtree of A. This bisection 
process incorporates a rewiring of existing edges 
that are connected to node C, and the addition of 
new shortcut edges from nodes A and B to their 
corresponding right- and left-subtrees, respectively. 
Although the BBT increases the connection 
complexity, it also increases the clustering for 
specific nodes in a non-random way. In this 
example, the BBT is referred to as a level-1 BBT. 
The application of the BBT method is not restricted 
to the level-1 BBT. In fact the BBT method can be 
applied recursively to create multiple levels of 
bisection as seen in Fig. 10. 
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Fig. 10 – Level-2 Bisection 

 

In general, the level-i BBT has 
i

R  sub-router 

root nodes with 
i

L  additional links that connect to 

routers or neuron processing nodes at the (i+1) level. 
The number of sub-router root nodes and the 
additional links is given by 

 

2
Level–i 

2 2 1
~

( )

i
i

i
i

R

L

 


  -

                 (7) 

 
where i = 0, 1, . . . , n. 

The BBT construction results in small-world 
clustering properties and a characteristic path length
(log )O P . The approach increases efficient memory 

utilization and induces a welcomed clustering of 
nodes within the network, but at the expense of 
introducing long-distance shortcuts and the addition 

of 2i+1 -2  links to each sub-router root node. The 
Watts-Strogatz model also suffers from the 
introduction of long-distance shortcuts. Kleinberg's 
model avoids long-distance shortcuts using of a 
power law distribution model. However, the long-
distance shortcuts can be avoided by introducing a 
higher-dimensional hierarchical organization that 
accomplishes the same goal. Tanay et al., [28] give 
evidence of such a hierarchical organization in the 
yeast molecular network. Fig. 11 illustrates how the 
added dimensionality can re-scale long-distance 
shortcuts by re-arranging their orientation. 

 

 

Fig. 11 – 3-Dimensional Space 

 

The bisected tree graph with shortcuts can be 
reconfigured in a three-dimensional space by first 
applying a two-dimensional rotation on one of the 
sub-trees (see Fig. 12) followed by an overlay using 

the third dimension. Fig. 13 illustrates the final 
network topology that is free of long-distance 
shortcuts. 

 

 

Fig. 12 – Two-Dimensional Rotation 

 

 

Fig. 13 – Overlay in Third Dimension with Added 
Shortcuts 

 

One troubling aspect of the BBT construction is 

the addition of 2i+1 -2  shortcut links to each sub-
router root node. As i increase, the network 
performance incurs a noticeable communications 
delay as the sequential I/O capacity of each sub-
router root node becomes apparent. Therefore, the 
BBT is limited in the number of recursive 
applications for performance and practical reasons. 
This is also a physical limitation shared by all 
network configurations. Fig. 14 illustrates a fan-out 
of shortcuts. In integrated circuits, the fan-out of 
N logic gates connected to the output of a driving 
gate can experience propagation and timing delays, 
and false logic (1 or 0) signals [33]. In the later case, 
for any driving gate there exists a maximum value of 
the current, Imax, which can be divided among N 
receiving gates. If each receiving fan-out gate 
operates at a current level greater than Iin = Imax / N, 
then distorted (incorrect) logic signal are received. 
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Fig. 14 – Shortcuts 

 
Large networks are all subject to distributed 

networking substructures to maintain efficient and 
reliable performance. A cellular phone system is an 
example of a large network that is maintained 
through a large number of access points and base 
stations that coordinate the use and movement of 
users within the wireless network.  

An analogous example is the structure of the 
neuron itself. Consider a simple model of an 
accumulated action potential strength applied to a 
typical neuron. Fig. 15 illustrates a typical 
multipolar neuron that has three components: cell 
body, dendrites and an axon. The cell body contains 
the nucleus and bears-short branched filaments 
called dendrites that transmit impulses from 
synapses to the cell body of other neurons. The axon 
is an elongated tapered strand, which carries an 
action potential impulse away from the cell body 
across synapses to other neurons. 

 

 

Fig. 15 – Biological Multipole Neuron 

 
If we assume that one neuron can stimulate a 

large number of neighboring neuron cells (e.g., 
10,000), then it is also possible that one neuron can 

be stimulated by all neighboring neurons. Suppose 

that the aggregate of action potentials 
N

A  from all 

N  contributing neurons arrive at a single neuron at 
one instant in time, and its influence is given by a 
Big-  complexity of  

 

1

( )
N

N i
i

A


  D                        (8) 

 

where D i  is the individual action potential sent by 

the thi  neuron. 

Now suppose that 
max

A  is the maximum 

stimulus strength that a single neuron can receive 
without being damaged. If  

 

max ,
i

A

M
D                            (9) 

 

and if M<N, then it is possible that the receiving 
neuron cell body could experience a combined 
stimulus for which 

 

.
maxN

A A                          (10) 

 

The resulting activation can cause cell damage or 
at least an overly saturated (stressed) neuronal state. 
This situation can be avoided by organizing neurons 
into a clustered network with small-world degrees of 
separation, rather than a prohibitively large, 
completely connected network as illustrated in 
Fig. 4.  

Of course, the network organization, argued for 
here, is one of several mechanisms that can limit or 
avoid neuronal saturation. The number of dendritic 
inputs to a given neuron as illustrated in Fig. 15 is 
one such mechanism. Another mechanism is the 
synaptic signals from other neurons that may trigger 
excitatory or inhibitory modes of potentiation. The 
combination of these triggered modes can provide a 
throttling mechanism to manage activation pulse 
levels. 

 

5. A SMALL-WORLD FOR A 
NEUROANATOMY MODEL 

A. Damasio [5] proposed a neuroanatomy model 
based on experimental evidence to address the 
binding problem: the integration of both the sensory 
and motor components in both recognition 
(perception) and recall. The properties of objects and 
events that are perceived through the various sensory 
interactions rely on geographically separate sensory 
regions of the brain. 

He found no structural evidence to support the 
intuition that temporal and spatial integration occur 
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at a single site. He maintains that the integration of 
multiple aspects of reality, external and internal, 
links together distributed repository of fragmented 
encoded sensory information; stored in remote and 
geographically separate locations within sensory and 
motor regions, and reconstructed by co-activation 
zones. He proposed a neuroanatomical network that 
allows for both forward propagation and 
convergence of parallel streams of sensory data with 
backward propagation of signals back to the points 
of origin. 

The representations of objects with spatial and 
temporal associations are stored in separate neural 
regions called convergence zones. The reactivation 
of recall requires the firing of convergence zones 
with feedback streams propagating from them. 
Convergence zones bind neural activity patterns 
corresponding to topographically organized 
fragments. The geographic location of convergence 
zones varies among individuals but is not random. 

Fig. 16 is an illustration of a diagram appearing 
in [6]. The described neuroanatomy network can be 
viewed as a multi-layered tree topology, where 
internal sensor and motor components are 
represented at one level and a combinatorial layer is 
depicted at a higher level. Small-world shortcuts can 
be viewed as paths for forward and backward data 
propagation, where re-enforcement learning or 
sensitivity calibration can be performed. These 
shortcuts involve both local routing operations 
internal to each sensor and motor components, and 
global routing operations among all components. 

 

 

Fig. 16 – Neuroanatomical network 

 
The neural architecture depicts the integration of 

visual (V), somatosensory (SS), and the auditory (A) 
sensor regions of the cortex. The filled and unfilled 
dots represent separate functional regions in each of 
the sensory areas. The arrows pointing from the 
sensory regions to the convergence zones (CZ1, 
CZ2, CZn) represent feed-forward paths. Arrows 
pointing back to the sensory regions represent 
feedback paths from each CZ. H depicts the 
hippocampal system. The outputs of H are returned 

to CZn and to the non-cortical neural locations of the 
basal forebrain, brain stem, and the neurotransmitter 
nuclei. The feed-forward and feedback pathways 
terminate within the sensory regions over the 
aggregate of neurons in a distributed fashion, rather 
than on a specific neuron. 
 

6. CONCLUSION 

The small-world model is an organizational 
abstraction to provide insight into real-world 
phenomena exhibited by social, biological and man-
made systems. The small-world models reviewed in 
this paper rely upon random graph techniques but 
applied within a constraint framework. These 
constraints represent rules that allow a small range 
of random flexibility to evolve into surprisingly rich 
organizational structures. 

Unfortunately, the small-world abstraction is not 
intended to capture the physically criteria for these 
rules. Instead, small-world models seek rules that 
create clustering of vertices where the average 
distance between clusters are minimized by the 
introduction of shortcut edges. This high-level 
network modeling approach has been applied in 
behavioral modeling of epidemiological and social 
systems. However, deriving the rules for small-
world network clustering and connectivity rely on 
insights from observational experience. 

In this paper, we explore the possibility of a 
small-world analogy that arises in the design of a 
neuronal-axon network simulator. The approach 
does not rely on random graph connections or 
reconnections. Instead the design considerations rely 
on exploring the minimal (optimal) operational 
complexity to achieve a reasonably robust 
simulation platform. Three key factors are used to 
guide the architectural organization of the final 
design. These factors are 1) the growth in the 
number of communication links per processor as the 
simulation size and number of processors is scaled 
up, 2) an efficient utilization of available memory, 
and 3) a characteristic path length L  between 

clusters that grows as 
2

(log )O P . 

Based on the three considerations listed above, 
the final network design is organized as a tree-
structured network. As with other described small-
world constructions, shortcut links are introduced 
into the resulting network topology design. 
However, the shortcuts presented here are 
introduced to reduce the demands on memory 
utilization as imposed on the root or sub-tree root 
nodes. These nodes in particular are involved in the 
action-potential-token traffic management among all 
neuron processors within the tree. So surprisingly, 
these shortcuts are not only distance minimizing but 
also memory minimizing. 
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The network is reminiscent of both the Watts-
Strogatz and Kleinberg models, where the 
introduction of long-distance shortcuts are 
accomplished by a rewiring of existing edges and 
the addition of new edges. This combination of 
shortcuts occurs during the bisection process. On the 
other hand, the Kleinberg power-law distribution 
model for clustering is avoided since introducing 
shortcut connections in this manner would create 
data-flow traffic collision within the network 
topology (see Fig. 14). Instead, rotation and 
translation (overlay) operations are applied within a 
three-dimensional framework to reduce the lengths 
of long-distance shortcuts. 

The binary-tree topology provides a convenient 

characteristic path length of 
2

(log )O P . A 2-ary n-

cube (hypercube) topology also exhibits the same 
characteristic path length; however, the number of 
edges per hypercube node grows linearly with the 
dimensionality of the hypercube. For that reason, the 
hypercube was not considered. 

Finally, it is shown how small-world phenomena 
arise from optimization constraints that place a 
balance on minimizing system complexities. In 
addition, the described approach avoids the 
introduction of random uncertainties to achieve 
certain modeling goals. 
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