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Abstract: The implementation of an advanced real-time, low cost video processing platform capable of supporting a 
variety of demanding robotic applications is presented. The system is designed as an open project, accessible in full 
detail and has the potential to grow. It is based on a FPGA plus MCU architecture, allowing the implementation of 
combined fixed-point and 32-bit floating-point applications with optimized resource allocation. The presented platform 
is optimally integrated with appropriate controllers, like video-input frame grabbers for multiple camera applications, 
external SDRAM, as well as USB and VGA interfaces. The processing and interfacing capabilities of the proposed 
system are illustrated by implementing basic feature extraction and preprocessing tasks, achieving the display of 
processed video frames at a rate of 30 fps with resolution 640x480. The proposed architecture is evaluated in terms of 
resource usage, power consumption and cost. Potential applications are also discussed. Copyright © Research Institute 
for Intelligent Computer Systems, 2015. All rights reserved. 
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1. INTRODUCTION 

Over the last decades great progress has been 
made in the field of image and video processing. 
Areas of development include robotic vision, 
medical imaging, security monitoring, video games, 
satellite photography and etc. Robotic vision [1] is 
widely used in industrial manufacturing, assembly 
and inspection of components as well as in 
autonomous navigation of land, underwater and 
aerial vehicles. Image and video processing 
algorithms are computationally demanding, as they 
apply transformations on a per frame basis, often 
processing all different color planes [2,3]. It is well 
known that software techniques based on sequential 
structures often fail to achieve the performance 
desired for real-time applications, even when using 
powerful microcomputer systems. Numerous 
schemes and systems have been proposed to 
overcome this problem. One approach uses vision-
specific software on conventional desktop platforms, 
often coupled with graphics accelerators [4,5]. 
Another approach uses dedicated embedded 
hardware [6-9]. The use of Field Programmable 
Gate Arrays (FPGAs) is an attractive solution to the 
implementation of vision-specific robotic 

applications. The main advantages of FPGA 
technology are parallelism of iterative algorithms, 
hardware reuse, low power consumption, design 
flexibility and lower cost in comparison with 
Application Specific Integrated Circuits (ASICs). 

In this paper, we propose a custom low cost and 
scalable circuit board that is suitable for real-time 
machine vision and control tasks. The architecture is 
based on Altera's Cyclone IV family FPGA 
(EP4CE22E22C7 device) and is minimally equipped 
with peripheral devices, allowing a large number of 
pins and chip resources to be used for image 
acquisition and processing tasks. Additional 
peripheral functionality and complementary 
processing is supported by using a Microchip 32-bit 
PIC microcontroller (PIC32MX795F512H device). 
The microcontroller undertakes peripheral control 
tasks, relieving the FPGA device from an overhead 
of fixed additional controllers, like ADCs/DACs or 
other serial interface controllers. Also, it expands the 
processing capabilities and peripheral functionality 
of the board for future tasks. 

The basic input-output and processing stages of 
the proposed system-on-a-chip are custom-designed 
in VHDL, which is standard for research and 
industry. Implemented input-output peripherals 
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include frame-grabber cores interfaced to CMOS 
image sensors, a high speed FIFO-to-USB controller 
module for host communication, a Video Graphics 
Array (VGA) controller for displaying image data on 
a computer screen, an optimized SDR SDRAM 
controller and a master Serial Peripheral Interface 
(SPI) core for serial communication with the 
microcontroller. The Altera Quartus II software 
platform is used for synthesis and configuration. We 
avoid the use of more sophisticated tools for system-
on-chip design, like Qsys, which may shorten 
design-cycle, but on the other hand are often heavily 
dependent on commercial controllers and IP cores. 
In this way, the overhead cost associated with the 
purchase of copyrighted intellectual property (IP) is 
avoided. 

Microcontroller firmware is developed in 
MPLAB X IDE. The program is written in C 
programming language and the XC32 compiler is 
used to translate the source code into machine code. 
The I2C peripheral interface is initialized to 
configure appropriately the CMOS image sensors. 
Moreover, the use of SPI peripheral in conjunction 
with Direct Memory Access module achieves 
communication between the PIC and FPGA device 
without the intervention of the microcontroller's 
CPU. 

As a consequence of the adopted design concept, 
the total system's cost is maintained very low. The 
expenditure for a special purpose commercial 
development board, dedicated to video processing, 
can rise to hundreds or even a few thousands of 
euros, which is much more than the final cost of the 
proposed custom system.  

Beside its low cost, the system is designed as an 
open robotic vision project with a potential to grow. 
The proposed architecture can be recreated and can 
be expanded in the future by adding hardware parts 
in the open HDL vision library introduced in this 
article. 

Following from the above considerations, the 
main contribution of this paper is twofold. First, the 
development of a high performance reconfigurable 
platform, capable of hosting advanced image 
processing and control tasks, is described in 
reproducible detail. Also, the system is introduced as 
a project open to further development. Researchers 
can adopt design and build their applications taking 
advantage of the presented software and hardware 
functionality. Second, the total cost of the system is 
kept at a low level, due to key engineering choices 
and the use of optimized custom controllers and 
vision cores. Introducing a low cost, open-source 
vision platform achieving high performance is 
important, because the evolution of inexpensive 
machine vision processors advances other fields, 
such as educational and domestic robotics, 

exploration robots and surveillance systems as well 
as research in all the above fields.  

The rest of the article is organized as follows. In 
Section 2, a literature survey is given. In Section 3, 
the system's hardware components and their 
connectivity are presented in detail. Section 4 refers 
to the system architecture, providing design 
diagrams for all available controllers and task 
modules in the HDL vision library. Brief 
descriptions of microcontroller firmware and host 
computer software are given in Section 5. In Section 
6, the system is evaluated in terms of performance, 
resource usage, power consumption and cost. In 
Section 7, experimental results are presented. 
Section 8 concludes the paper and discusses issues 
on reproducing the system. 

 

2. LITERATURE SURVEY 

The literature on image processing algorithms 
and systems is vast. Image processing algorithms, 
methods and their capabilities are often surveyed by 
review papers, however there is a major shortage of 
such reviews for image processing hardware 
architectures. Therefore a comparative study of 
published work is essential in order to locate 
scientific and technical aspects or even trends that 
need to evolve. 

Since the main processing unit of the proposed 
system is an FPGA device we emphasize on FPGA-
based implementations. We can classify related 
work into two categories. The first category 
describes the design of image acquisition systems 
that also perform some simple pre-processing tasks. 
The point of interest is the realization of a complete 
architecture and its capabilities. Usually some trivial 
processing operations exemplify performance. In the 
second category, researchers focus on the 
implementation details of specific image processing 
algorithms and their parallelization inside the FPGA 
data path. Special ready-made commercial boards 
are mostly used to host the architecture. Benchmark 
images are tested in order to compare results 
between papers. The point of interest is not the 
overall system but the advances in the 
implementation of the applied algorithm. According 
to the above classification our work is placed in the 
first category, but it is aimed to be used for 
applications of the second category, with special 
emphasis given to maintaining the overall system's 
cost very low.  

In Refs. [10-12], FPGA-based image acquisition 
systems interfacing with CMOS image sensors are 
presented. References [10] and [11] present design 
aspects and image results, however resource usage is 
not provided and processing rates are not discussed. 
They both use a mid-range cost development board 
to host the architecture. In [12], an image acquisition 
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system that achieves 25 fps using Camera Link 
interface is presented. Image resolution is 
1280x1024 pixels. However, the authors do not 
provide implementation details, resource usage or 
image processing results. In [13], an image 
acquisition and remote transmission system is 
described. It is based on a low cost FPGA chip 
achieving almost 15 fps for its maximum resolution 
(2048x1536 pixels). It captures data from a CMOS 
image sensor and it also implements Ethernet 
transceiver, VGA DAC, SRAM and flash memory. 
Since a small FPGA is used, it would be interesting 
to know the resource requirements, however they are 
not provided. 

The following papers go beyond image 
acquisition and perform some additional processing, 
applying certain algorithms. In [14], the presented 
System on a Programmable Chip (SoC) includes a 
Sobel Edge Detector. A description of the 
architecture is given, but image results, resource 
usage and frame rates are not provided. In [15] an 
active vision sensor is presented and a tracking 
algorithm is implemented. Authors apply a 
processing algorithm on a Window Of Interest 
(WOI) and they use an expensive Stratix FPGA to 
realize the architecture. An interesting low cost 
system is demonstrated in [16], utilizing a Digital 
Signal Controller (DSC) as the processing unit for 
an Edge Detector. The system fails to achieve real-
time performance and is not able to host more 
demanding algorithms. A Sobel Edge Detector is 
also demonstrated in [17] achieving processing 
speed of 60 fps, for image resolution 720x480. This 
architecture is hosted on a high cost DSP 
development kit. In [18], a very fast and low cost 
Sobel Edge Detector is presented, but it is not clear 
if the reported speed is derived from experimental 
measurements or from timing analysis results. The 
same task is demonstrated in [19], where color 
information is used. The processing rate is 50 fps for 
720x576 size images. The system used in this paper 
is the ML510 Virtex-5 FX130T, which is considered 
a high cost solution. Reference [20] shows an Edge 
Detector on Hexagonal Sample Image Grids. The 
proposed architecture stores frames in FPGA's 
internal memory and as a result it can be used only 
with very small images. In [21], an image pre-
processing system is presented that uses an Auto 
White Balancing (AWB) algorithm to improve 
quality, producing more realistic colors. It claims a 
frame rate of 75 fps for 1280x1024 image resolution, 
using a costly FPGA chip from Xilinx Virtex-5 
family. 

In the following references, implementations of 
more advanced processing algorithms are explored. 
In [22], a high cost video development kit is used to 
acquire infrared images and accomplish image 

fusion tasks. A disparity map computation based on 
the Sum of Absolute Differences (SAD) algorithm is 
presented in [23-25]. A costly DSP Development Kit 
is used in [23], succeeding to produce 23 disparity 
maps for image resolution 640x480, with a 
maximum disparity range of 64 pixels. In [24], an 
Edge Detector produces binary images to apply SAD 
while dense disparity maps are produced by 
interpolation. The architecture is hosted in Xilinx 
ML505 Evaluation Platform and achieves a 
processing rate of 50 fps, for image resolution 
1280x1024 pixels. A lower cost approach is 
presented in [25] with the novelty of an injective 
consistency check adopted for disparities validation. 
A Xilinx Virtex-4 XC4VLX60 FPGA chip is used 
and the supported frame rate is up to 97 fps. 
Although this implementation is less expensive in 
comparison with other systems, only the cost of the 
chip is about a few hundred euros. Another stereo 
vision system is presented in [26] applying census 
transform to solve the correspondence problem. It is 
based on a Xilinx Virtex-4 FPGA and generates 60 
fps for image resolution of 640x480 pixels. An 
optical flow FPGA design is described in [27] using 
Altera's DE2-70 development board. The system 
receives images from a computer via RS-232 link 
and performs Horn and Schunk's method achieving 
the computation of the optical flow vector field for 
images of resolution 256x256 pixels in 3.89ms. 
Reference [28] combines an FPGA chip and a DSP 
in order to implement the original SIFT algorithm. 
The system detects SIFT features and extracts 
keypoint descriptors in real time, with computations 
per feature consuming 80 us. In [29], an embedded 
FPGA architecture is proposed for the computation 
of grey-level co-occurence matrices (GLCM) and 
Haralick’s texture features, based on small 128x128 
image blocks.  

The common disadvantage of the above 
implementations is that, in general, they make use of 
expensive FPGA devices and development boards. 
As a result, the potential total system's cost can rise 
to hundreds or even a few thousands of euros. The 
system proposed in this paper is designed as a 
complete standalone vision processing system. 
Special effort has been given to develop measures 
that prove the claimed functionality and 
performance. The cost of the prototype board is less 
than 80 euros, excluding the cost of the CMOS 
image sensors. Utilizing inexpensive CMOS image 
sensors, such as the Toshiba TCM8230MD can help 
to maintain the total cost of the video processing 
system below 100 euros, while the image sensor 
supports 30 fps for image resolution 640x480 pixels. 
If higher frame rates or resolutions are required, then 
a more expensive sensor should be used. In our 
implementation a 5 Mpixel Aptina Imaging sensor 
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was selected to interface with the system, as 
described in the following section. 

One disadvantage of the proposed system is its 
limited resources in terms of available look-up tables 
and registers. The optimal design of the developed 
cores ensures minimal usage of resources by the 
dedicated interfaces, but even so several resource 
demanding computational tasks would be difficult to 
implement with the EP4CE22E22C7 FPGA device. 
However, review papers, such as [30] for stereo 
vision, aid to evaluate a system's suitability for a 
given algorithm. 

 
3. SYSTEM HARDWARE 

ARCHITECTURE 

The system is designed to be scalable. It has 
expansion slots where external hardware modules 
can be connected. Each one among the supported 
functionalities demands a hardware interfacing 
module and a proper controller core inside the 
FPGA. The block diagram of the system is depicted 
in Fig. 1. 

 

 

Fig. 1 – Block diagram of the system. 

 
The main processing unit consists of an Altera 

Cyclone IV EP4CE22E22C7 FPGA device. It has 
22K Logic Elements (LE), 80 available I/O pins, 
594 Kbits internal SRAM, 132 9-bit multiplers and 4 
PLLs. External components are placed on board to 
compose the necessary power supply voltages. A 
crystal oscillator and a JTAG header connector for 
device configuration are also incorporated on board. 
The FPGA core needs 1.2V for proper operation, 
internal PLL supply circuits demand 2.5V and for 
the communication with external devices a voltage 
level of 3.3V is required. A 50 MHz crystal 
oscillator provides the main clock for FPGA's 
synchronous operations. We could have selected a 
higher frequency for faster internal processing, but it 
would increase the power consumption and also the 
radiation emitted from the board. In the future, an 
appropriate oscillator replacement will be 
considered, depending on the target application. The 
JTAG interface is provided to configure the FPGA 

for as long as development is in progress. When the 
design is finalized the Active Serial Configuration 
Device (EPCS16N serial memory) is programmed 
through the FPGA using a JTAG Indirect 
Configuration file. Then, the EPCS16N device 
configures the FPGA every time the power supply is 
applied. 

The complementary processing unit includes a 
Microchip 32-bit PIC32MX795F512H micro-
controller unit (MCU). Communication with the 
FPGA device is attained through Serial Peripheral 
Interface. Transactions from SPI to microcontroller's 
memory and vice versa are accomplished using 
DMA transfers releasing the CPU to perform other 
processing tasks. If the supported target application 
does not need data exchange with the 
microcontroller unit, the MCU and the FPGA can be 
disconnected from each other in order to preserve 
I/O resources of both devices. The MCU’s Inter-
Integrated Circuit (I2C) is used to configure the 
CMOS image sensors. Frame resolution, capture 
speed, shutter width, blanking intervals are some of 
the settings defined by the microcontroller. 

Input images are captured from the 5 Mpixel 
MT9P031 CMOS color image sensor from Aptina 
Imaging on the MT9P031I12STCH header board. 
The header board consists of the MT9P031 device, a 
suitable lens and other external components needed 
by the image sensor. The sensor supports a capture 
speed of 14 frames per second (fps) at its full 
resolution of 2592x1944 pixels. For VGA resolution 
(640x480 pixels) it supports a maximum of 123 fps. 
It provides a parallel digital interface for 
transmitting data and a serial I2C interface for 
configuration. The Analog to Digital Converter 
(ADC) has 12-bit resolution, providing 4096 color 
scales. In our system, we use the 8 most significant 
bits from the ADC, since they are adequate for our 
current research purposes. Interconnection with the 
FPGA device includes data signals (D4 to D11) and 
control signals, frame valid (FV), line valid (LV) 
and pixel clock (PIXCLK). The interconnection 
between the image sensors, the FPGA device and the 
microcontroller is depicted in Fig. 2. 

 

 

Fig. 2 –  Interconnection between the CMOS image 
sensors, the microcontroller and the FPGA device. 
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A desirable and useful capability for every image 
acquisition, processing and control system is the 
transmission of processing results to a personal 
computer. In our target applications, the transmitted 
results can be used as a visual input for computer-
based robotic algorithms or for evaluation. In order 
to incorporate this feature to our system, we used the 
UM232H FIFO-to-USB module from FTDIChip. It 
is based on FT232H chip and provides USB2.0 high 
speed connectivity supporting various operation 
modes. Control and bulk transfers according to USB 
protocol are hardwired. All necessary descriptor 
information for the enumeration procedure is saved 
on external EEPROM by the manufacturer at 
production time. At this phase of our research, the 
USB module is configured for asynchronous 
operation which supports up to 8 Mbytes/s transfer 
rate. In this operation mode, the associated signals 

are eight data bits and four control bits TXE , 

RXF , WR  and RD . These signals are active low. 
The interconnection between FPGA and UM232H is 
depicted in Fig. 3. 

Real-time image processing requires a rate of 
many frames per second. Demonstration and testing 
purposes often demand fast image displaying on a 
screen. Even a fast connection like USB in 
conjunction with a very fast personal computer may 
fail to respond timely due to a huge load of 
concurrent processes. Equipping the board with 
VGA connectivity is a good solution to this issue. In 
order to support the aforementioned capability, a 
custom hardware module was designed and 
implemented, comprised of the ADV7123 high 
speed video DAC from Analog Devices. Although 
the chip ADV7123 supports three 10-bit inputs for 
every color component, we use one in order to 
preserve I/O FPGA pins and as a result only gray-
scale images can be displayed on the screen. Timing 
synchronization, which is also referred to as 
Horizontal and Vertical Synchronization, is obtained 
using control signals HS and VS. The VGA clock 
depends on the selected screen resolution.  

In Fig. 3 the interconnection scheme between the 
FPGA device and SDRAM, VGA DAC and FIFO-
to-USB 

 

 

Fig. 3 – Interconnection between the FPGA device  
and SDRAM, VGA DAC and FIFO-to-USB module. 

module is illustrated. At this point of system 
development, either VGA connectivity or USB 
connectivity is available, due to limited I/O FPGA 
pins. Nevertheless, in most cases, this is not a 
restriction. Supporting both features simultaneously 
is rather redundant, since it is necessary only for a 
few specific applications. 

 
4. HDL LIBRARY FOR VISION AND 
PERIPHERAL CONTROL TASKS  

The internal FPGA architecture is depicted in 
Fig. 4. It is comprised of the Image Grabber, the 
Image Processing core, ping pong SRAM buffers, a 
Data Manager unit as well as the controllers FIFO-
to-USB, VGA, SDRAM and SPI. Each sensor 
requires an Image Grabber, an Image Processing 
Core and two RAM ping pong buffers. For 
simplicity, in Fig. 4 we include only one such 
structure. In the next paragraphs, we describe all the 
architectural elements in detail. 

 

4.1 IMAGE GRABBER 

The principal prerequisite in the image 
processing system is the frame grabber. Therefore, 
the frame grabber core constitutes a main 
functionality in our HDL component library. It can 
be transported and used in other systems as well. 
Before analyzing the implementation details we first 
examine how the CMOS image sensor produces 
data. MT9P031 outputs color component 
information of image pixels in a progressive scan. 
Pixel data start from top right corner of the first row 
and end up to the bottom left corner of the last row. 
Intervals between consecutive rows are known as 
horizontal blanking and between consecutive frames 
as vertical blanking. Control signals FV (Frame 
Valid) and LV (Line Valid) declare when sensor 
outputs data. When FV and LV signals are noticed 
'1' then sensor launches pixel data on every rising 
edge of PIXCLK. Output data is considered to be 
valid and can be read from the FPGA on the next 
falling edge of PIXCLK. 

 

 
Fig. 4 – FPGA architecture. 
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Fig. 5 – Readout order of Bayer encoding. 

 
MT9P031 outputs image data using Bayer 

encoding. Bayer encoding describes every pixel by 
reducing color information to one byte instead of 
three. Even rows use the pattern Green-Red-Green-
Red and odd rows use the pattern Blue-Green-Blue-
Green. RGB color information for every pixel is 
extracted from its neighbors. The pattern usually is 
referred to as Color Filter Array (CFA) and the 
procedure of extracting full color information is 
called demosaicing. The readout order is presented 
in Fig. 5 and the timing diagram of image readout is 
depicted in Fig. 6. 

The Frame Grabber is implemented in VHDL 
using state machines. The clock used for the state 
machines is PIXCLK and is derived from the image 
sensor board. The flow of Finite State Machines 
(FSMs) is depicted in Fig. 7. In the “Synch” 
(Synchronization) state, the system just waits. This 
state has been added to enforce the FPGA device to 
wait until the next frame generation in case that 
power was applied to the FPGA device while the 
sensor was already streaming image data at an 
intermediate point of a frame. When FV signal is 
asserted '0', it declares that the sensor is in the 
vertical blanking interval, which means that the 
FPGA is now synchronized and can proceed to the 
“VB” (Vertical Blanking) state. When FV is asserted 
'1', the FPGA enters into “HB” (Horizontal 
Blanking) state and if LV is also asserted '1', it 
enters into the “VID” (Valid Image Data) state. 
 

P1 P2 P3

PIXCLK

FV

LV
Dout[11:0]

VB: Vertical Blanking
HB: Horizontal Blanking

Valid Image DataVB HB HB VB

P1, P2, P3…: pixel 1, pixel 2, pixel 3...  

Fig. 6 – Timing diagram of an image readout. 

 

Fig. 7 – Image readout FSM. 

 
Now, the device can read sensor's output, as 

sensor data is considered valid at every falling edge 
of PIXCLK. When the sensor completes 
transmission of the first row's pixel data, it asserts 
LV to '0' and the FPGA device enters into “HB” 
state. When the horizontal blanking interval is over, 
LV is asserted again to '1' and the FPGA enters back 
to the “VID” state. This sequence will continue until 
the sensor completes the transmission of the last 
image row. Afterwards, LV and FV are asserted '0' 
consecutively and the FPGA enters first into “HB” 
state and finally into “VB” state. The FPGA device 
remains there until the sensor starts sending the next 
frame. 

 

4.2 IMAGE PROCESSING CORE 

The Image Processing Core is responsible for the 
main image processing task. In the present version 
of our HDL library, a Mean filter, a Gauss filter and 
an Edge detector have been implemented. These 
functions are required in many applications as basic 
pre-processing stages.  

Below, the 3x3 kernel matrices applied on input 
image are quoted. Kernel M is for mean filter, G is 
for Gauss filter and S1, S2 are Sobel masks for edge 
detection. 
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Parallelism requires the pixel intensities of a nxn 

image area, where the convolution kernel is applied, 
to be simultaneously available. In our pre-processing 
stages, we defined n=3. As we have already 
mentioned, the sensor outputs color component  
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information using Bayer encoding. The total 
procedure requires two intermediate steps in order to 
complete processing. The first step is to extract pixel 
intensities from Bayer encoded data for every 3x3 
image window and the second step is to apply the 
filter mask. Parallelism is achieved using RAM-
based shift registers. Sensor data is pipelined into 
shift registers. They are designed in a specific way 
which outputs image data from 3x3 subwindows in a 
progressive scan. The operations “Demosaicing/ 
Intensity Extraction” and “Mean Filter/Gauss 
Filter/Prewitt Mask”, shown as blocks in Fig. 4, are 
combinational logic functions. The propagation 
delay of the signals determines maximum processing 
speed. 

The function Demosaicing can be implemented 
using several ways, as shown in the literature [31]. 
One simple algorithm is to use the mean value of 
neighboring colors. Depending on their known color 
component information, pixels are named as Gr, Gb, 
R or B, as shown in Fig. 5. Table 1 presents how full 
color information is calculated in each case. After 
the Demosaicing procedure completes calculations 
for a pixel that belongs to row i and column j, 
grayscale intensities are extracted as in (2): 

 

I(j,i) = (Red + Green + Blue) / 3, (2) 

 
Intensity calculations and filtering are carried 

out concurrently, while the FPGA is reading 
subsequent pixel data. When the FPGA reads data 
from row i, it also completes processing on previous 
rows. From now on we follow the convention of 
naming a pixel that is at the ith row and the jth 
column as pj,i. Let us consider applying the 
aforementioned filters on a 3x3 image window to 
describe how this mechanism works in detail. A 
random window of input image is illustrated in Fig. 
8. Let us focus on the 4x4 window that is 
highlighted with bold borders. Assume that the 
bottom right pixel of that window belongs to the 
random row i and column j of the input image. In 
order to apply a filter mask at pj-2,i-2, we need to 
know pixel intensities from a 3x3 window, the 
bottom right pixel of which is pj-1,i-1. This means that 
the processing elements must have already 
calculated the intensity of pj-1,i-1 and have it available 
for use. This premises that demosaicing of pj-1,i-1 has 
been completed. In order to perform demosaicing on 
pj-1,i-1 and then extract the grayscale intensity of that 
pixel, we need to know the color component from 
the 3x3 window of which the bottom right pixel is 
pj,i. This implies that only when FGPA has read pj,i, 
it will be able to perform filtering computations on 
pj-2,i-2. Hence, in order the FPGA to be able to apply 
the processing algorithm on pixel pj-2,i-2, it must have 

available the pixel information in the bold 4x4 
window of Fig. 8.  
 

Table 1. Extracting full color information – 
Demosaicing. 

Pixel Full Color Component Calculation 

 Red = (R(j-1,i) + R(j+1,i)) / 2 

Gr Green = Gr 

 Blue = (B(j,i-1) + B(j,i+1)) / 2 

 Red = (R(j,i-1) + R(j,i+1)) / 2 

Gb Green = Gb 

 Blue = (B(j-1,i) + B(j+1,i)) / 2 

 Red = R 

 G1 = Gr(j-1,i) + Gr(j+1,i) 

 G1 = Gb(j,i-1) + Gb(j,i-1) 

R Green = (G1 + G2) / 4 

 B1 = B(j-1,i-1) + B(j-1,i+1) 

 B2 = B(j+1,i+1) + B(j+1,i-1) 

 Blue = (B1 + B2) / 4 

 R1 = R(j-1,i-1) + R(j-1,i+1) 

 R2 = R(j+1,i-1) + R(j+1,i+1) 

 Red = (R1 + R2) / 4 

B G1 = Gb(j-1,i) + Gb(j+1,i) 

 G2 = Gr(j,i-1) + Gr(j,i+1) 

 Green = (G1 + G2) / 4 

 Blue = B 

 

 

Fig. 8 – Image window necessary for 3x3 convolutions. 

 

Mean filter implementation for pixel pj-2,i-2 
includes first the calculation of the following matrix: 
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Naming every element of matrix M as mx,y, where 
x=1,2,3 and y=1,2,3 the output image is produced as 
in (4): 
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Gauss filter implementation for pixel pj-2,i-2 
includes the calculation of the following matrix: 
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Naming every element of matrix G as gx,y, where 

x=1,2,3 and y=1,2,3 the output image is produced as 
in (6): 
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Edge detector implementation is slightly different 

from Mean and Gauss filters. First, two Sobel 
matrices S1 and S2 are calculated for the pixel pj-2,i-2. 
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 (7b) 

 
Considering every element of matrix S1 and S2 as 

s(1)x,y and s(2)x,y where x=1,2,3 and y=1,2,3 the output 
image is produced as in (8): 
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The magnitude of image gradient is produced as 

the sum of the absolute values of horizontal and 
vertical gradients, instead of the square root of the 
sum of the squares. This method is simpler, 
produces similar results and requires less hardware 
resources. In order to receive a binary edge image, a 
thresholding procedure is applied. The gradient 
threshold is defined as T=40. 

All the above computations are implemented in 
VHDL. Most of the divisions were implemented 

performing right shifts. Instead of division by 3 in 
(2) and by 9 in (4), we approximate the quotient by 
multiplying with the divisor's reciprocal. In (2), we 
multiply the sum of color component information 
with 341 and then we divide with 1024 performing 
right shift ten times. In (4), we multiply with 113 
and then we proceed with ten right shifts, 
accordingly.   

Using TimeQuest Timing Analyzer tool, it is 
found that the propagation delay-times limit the 
maximum processing rate of the Image Processing 
Core to approximately 270 fps. No further 
optimization was attempted, since the maximum 
supported frame rate of the overall system is actually 
lower than the above limit, due to the bottleneck 
introduced by other components. 
 

4.3 DATA MANAGER 

The processed pixel data is extracted from Image 
Processing Core and then it is stored to a dual port 
RAM, with a capacity of 1280 bytes. This memory 
is divided into two ping-pong buffers. Each buffer is 
sufficient for one row of pixel data. While data is 
being saved to buffer 1, the contents of buffer 2 are 
being transferred to the Data Manager. When ping 
pong buffer 1 is full, subsequent pixel data is saved 
to ping-pong buffer 2 and vice versa. It is important 
that data must have been transferred before the same 
memory location is accessed again. RAM ping pong 
buffers use PIXCLK for write accesses and the on-
board 50 MHz clock for read accesses. Also the rest 
of the logic uses the 50 MHz oscillator as system 
clock. 

The Data Manager consists of various VHDL 
processes that are responsible for the communication 
with all other implemented cores inside the FPGA. It 
receives data from dual port RAM ping pong buffers 
and transmits them to the SDRAM controller in 
order to have a full frame stored in the external 
SDRAM. Moreover it reads image data from the 
SDRAM controller and transmits to a second dual 
port RAM. This RAM is also divided into two ping-
pong 640 byte buffers. They are used in conjunction 
with VGA or FIFO-to-USB controllers for the 
display of video frames on a screen and for the 
transfer of images to a host computer respectively. 
The Data Manager also exchanges data with SPI 
controller for communication with the 
microcontroller. In general, it is a crossroads for data 
streaming in the overall system. 

 

4.4 SDR SDRAM CONTROLLER 

An optimized SDR SDRAM controller was 
developed in VHDL for communication between the 
FPGA chip and external RAM. It is designed as a 
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fully optimized custom module and therefore a brief 
description is required. The controller handles all 
low level operations such as bank/row activation, 
design aspects of an SDRAM controller can be 
found in [32]. Our controller provides a user friendly 

communication interface to interconnect with other 
cores inside FPGA. The designed module is 
presented in Fig. 9a. The input signals wr_req and 
rd_req are used to send write or read requests to the 
controller.

Table 2. SDRAM controller truth table. 

Input bits Clock Status bits 
Function 

rd_req wr_req clk Rd_valid sdram_busy wr_dis 

X X X X 1 X Busy – write/read requests are ignored 

0 0 ↑ X 0 X NOP 

1 0 ↑ X 0 X 
Start read sequence – addr[24:0] must have 
SDRAM access location 

X 0 ↑ 1 0 X DQ[7:0] word has valid data to be read 

0 X ↑ X 0 1 Write requests are prohibited 

0 1 ↑ 0 0 0 
Start write sequence – signal dqin[7:0] 
must have input data addr[24:0] must have 
SDRAM access location 

1 1 ↑ X 0 0 
Write request is serviced, it has higher 
priority 

  X: Do not care. 

The dqin[7:0] bus is data input and addr[24:0] 
bus is address input. The signals sdram_busy, wr_dis 
and rd_valid are outputs and indicate the status. The 
rest of the signals are used to interface with 
SDRAM. The controller's truth table is presented in 
table 2. 

In Fig. 9b, the block diagram of controller's 
functionality is shown. After power is on, an 
initialization procedure follows. It consists of the 
required auto-refresh cycles, sets the Mode Register 
and precharges SDRAM to end up in the “Idle” 
state. When a request from some external function 
arrives, the controller activates the appropriate bank 
and row and proceeds with the corresponding write 
or read action. It stays on that state to allow 
consecutive operations until the next row/bank has 
to be activated or a different execution is requested. 
This will force the controller to precharge the row 
and/or bank leading to the “Idle” state. Afterwards, 
the appropriate activation of a bank/row is 
performed to complete the target operation. 

 

4.5 SPI CONTROLLER 

A communication interface between the FPGA 
and the microcontroller is necessary for data 
exchange. 

SPI is chosen because it is simple, demands few 
I/O pins and is available on the microcontroller side. 
Thus an optimized master SPI controller has been 
developed in VHDL for the FPGA. Design aspects 
of the SPI controller can be found in [33]. The 
necessary low level operations such as clock 
extraction, data registers shift, etc. are realized by 
the controller. External functions need only to 

manage appropriately the interface signals. The SPI 
controller module is depicted in Fig. 10a. Inputs and 
outputs to the controller are the SPI signals SCLK 
(Serial Clock generated by the master), MISO 
(Master Input Slave Output) and MOSI (Master 
Output Slave Input), as well as the interfacing 
signals for communication with other functions 
inside the FPGA. 

 

 

Fig. 9 – (a) The SDRAM controller module. (b) The 
block diagram of the controller. 

The heart of the controller consists of two shift 
registers. Register spitxsr is the transmit and spirxsr 
is the receive shift register. Transmission starts when 
data is loaded in spitxsr. In every clock cycle 
(SCLK), one bit is shifted out from the transmit shift 
register and one bit is shifted into the receive shift 
register. A load to the spitxsr is performed when an 
external function writes data to the spitx input 
register. If spitxsr is empty an immediate transfer to 
that register occurs and communication starts. When 
a transaction is successfully completed, input data is 
loaded from spirxsr to the spirx output register. 
There is also an internal buffer, named spitxb, which 
can be loaded before previous transmission is 
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finished. This allows next transaction to start 
immediately. The SPI clock has been configured at 
25 MHz which supports bidirectional 
communication at 25 Mbits/s. The block diagram of 
SPI controller is illustrated in Fig. 10b. The truth 
table is presented in Table 3. Signal spirx_req is 

used when data is read from output buffer by an 
external function. Signal spitx_req is 
used to load data to the transmit buffer or shift 
register. Signals spirxf, spitxbf are status bits 
indicating that the output register has valid data to be 
read and that transmit buffer is full, respectively. 

 

Table 3. SPI controller truth table. 

Input bits Clock Status bits 
Function 

spirx_req spitx_req clk spirxf spitxf 

0 0 ↓ X X NOP or proceed with current transfer 

1 0 ↓ 1 X Read data from spirx register 

0 X ↓ X 1 Transfer in progress – transmit buffer is full 

X 1 ↓ X 0 Transmit request, data from spitx are loaded to spitxb 

X: Do not care. 

4.6 VGA CONTROLLER 

Real-time applications require processing of 
many frames per second. Displaying data on a 
screen can be a good solution for evaluation 
purposes or supervision of what the machine “sees”. 
A VGA screen has satisfactory refresh rate and 
therefore it is suitable to display plain or processed 
frames. For the current research, a VGA controller 
that supports resolution of 640x480 pixels at a 
refresh rate of 60 Hz is developed. The controller is 
responsible to produce synchronization signals and 
to send pixel data to the VGA DAC module. More 
details on the implementation of a VGA controller 
can be found in [34]. The custom designed module 
is presented in Fig. 11a. In order to preserve I/O pins 
from the FPGA, the controller uses one 8-bit bus to 
send data and consequently it supports only gray-
scale images. External functions need to interface 
the following signals: 

vga_in[7:0] – Data to be sent to VGA DAC 
which correspond to pixel intensity. 

vga_req – Output signal indicating that the 
controller needs data. 

clk – Controller clock - a frequency of 25 MHz is 
required for resolution 640x480 pixel, at 60 Hz. 

Every time vga_req signal is set, external 
functions must feed the controller with next valid 
pixel data. The controller does not include internal 
buffers in order to be as compact as possible. 

In Fig. 11b the controller's FSM diagram is 
depicted. Every new frame starts with the controller 
in state A and after 64 us enters in state B. States C, 
D, E and F are responsible for managing every row. 
The row sequence is initiated with the controller in 
C and then in D managing Horizontal 
Synchronization (HS) signal appropriately. 
Thereafter, the controller enters in E for 640 clock 
cycles receiving row pixel data. When the row ends 
the controller enters in F state for a small delay. If it 

is not the end of a frame then the sequence of states 
C, D, E and F is repeated. If it is the end of a frame 
then the controller enters in G state, where it blanks 
its output. After the G state, it goes again to A state, 
for the next frame to be displayed.  

 

 

Fig. 10 – (a) The SPI controller module. (b) SPI 
controller block diagram. 

 

4.7 FIFO-to-USB CONTROLLER 

It is often the case that processed image results 
are needed to be available to a personal computer. 
They can be input to a computer-based algorithm for 
further processing or can just be stored for further 
evaluation. By transmitting results to a personal 
computer, debugging purposes can be served as 
well. This capability is incorporated in our system 
providing USB connectivity with a computer. The 
system includes the UM232H FIFO-to-USB module, 
which is responsible for all low and high level 
operations for bidirectional communication with 
computer's USB port. It uses a First In First Out 
buffer to transmit or receive data and also has a 
specific communication interface for write and read 
purposes. At this point of our research we use the 
USB module in asynchronous operation mode. This 
mode does not need a clock to exchange data. Since 
we mostly send data to the computer, we concentrate 
on the write interface. 
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Fig. 11 – (a) The VGA controller module.  
(b) VGA controller's FSM. 

 
The timing diagram for a typical write sequence 

is shown in Fig. 12. The FPGA device must assert 
interface signals according to the write sequence in 
order to transmit. Apart from the correct order, 
signal assertion is subject to timing constraints. 
Timing constraints are defined by the manufacturer 
and for successful transactions they must be adhered 
precisely. Signal timing constraints related to the 
write procedure are quoted in Table 4. A suitable 
FIFO-to-USB VHDL controller has been 
implemented, as a Finite State Machine. The state 
machine is optimized to operate at 50MHz, derived 
from the external crystal oscillator. The write 
sequence is depicted in Fig. 13.  

 

 

Fig. 12 – FIFO-to-USB write sequence. 

 

Table 4 Timing constraints for FIFO-to-USB write 
sequence. 

Time Description Min Max Units 

t1 
WR active to TXE 
inactive 

1 14 ns 

t2 
TXE active to TXE 
after WR cycle 

49  ns 

t3 
DATA to WR active 
setup time 

5  ns 

t4 
DATA hold time after 
WR inactive 

5  ns 

t5 WR active pulse width 30  ns 

t6 WR active after TXE 0  ns 

 
At the beginning, the FPGA controller stays at 

the “Idle” state. In this state, no data is sent. CMD 
constitutes an internal control signal, which is 
asserted to '1' when the FPGA wants to transmit 
data. When the CMD signal is asserted '1' from a 

process, then the controller enters the “Send” state. 
It stays in that state for as long as the TXE signal is 
asserted '1'. The TXE is an output signal and when it 
asserts '1', it indicates that UM232H module is busy 
or the internal FIFO buffer is full, as a result of a 
previous transmission. As long as the TXE signal is 
asserted '1', every write attempt will be ignored. 
When TXE is noticed '0' the controller asserts the 
WR signal to '0', launches data on the data bus and 
enters into state “Intermediate 1”. Transition to state 
“Intermediate 2” occurs on the next clock pulse. 
States “Intermediate 1” and “Intermediate 2” provide 
two clock cycles delay, according to the timing 
requirements of the write sequence. 
 

 

Fig. 13 – FIFO-to-USB write sequence FSM. 

 
Finally the process arrives to the “Complete 

state”. It waits there until the CMD signal is asserted 
'0' by the internal process that asserted it '1' and then 
it returns to “Idle” state. The overall state machine 
sequence is designed to be fully compatible with 
UM232H write sequence. 
 

5. MICROCONTROLLER FIRMWARE 
AND COMPUTER SOFTWARE 

The microcontroller constitutes a co-processing 
unit in the system. The FPGA device exchanges data 
with the PIC MCU. The microcontroller has 
reserved two buffers in its internal RAM. Each 
buffer's capacity is about 60 Kbytes, capable to hold 
more than 90 rows of image data. In the first buffer, 
data is saved as it is received from the SPI. After 
processing, results are stored in the second buffer. 
Thereafter, the microcontroller sends the contents of 
the second buffer back to the FPGA. While the 
microcontroller receives data that belongs to a 
current row it can simultaneously transmit processed 
pixels of previous rows. SPI uses DMA to access 
RAM without CPU intervention. When a transfer is 
completed, a request is passed to the DMA 
controller and a transfer from the SPI receive 
register to a location of the first RAM buffer is 
performed. At the same time, a second request is 
passed to the DMA controller and a transfer from a 
location of the second RAM buffer to the SPI 
transmit register is accomplished. The above scheme 
is repeated every time a SPI transaction is 
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performed. Thus, the microcontroller's CPU is 
relieved from communication procedures and is 
devoted entirely to the processing task. At this stage 
of our research, only the communication interface is 
implemented exchanging test data between the 
FPGA and the microcontroller. In the future, when 
more complex tasks will be requested, the PIC MCU 
will undertake essential operations.  

The microcontroller is also used for 
interconnection with the CMOS image sensors 
through I2C bus. It configures the resolution of the 
captured image at 640x480 pixels, the horizontal and 
vertical blanking intervals as well as the shutter 
width. It also manages PIXCLK which defines 
sensor's output pixel data rate. Taking into 
consideration the bottleneck introduced by SDRAM 
accesses, PIXCLK was defined at 24 MHz. Blanking 
intervals and shutter width were configured 
appropriately and as a result the sensor produces 
images at 30 fps which is the maximum supported 
frame rate for the overall system. 

On the host computer side, a software application 
has been developed in Visual Basic. The application 
receives image data and displays them on the screen. 
It is also capable of saving image frames to disk for 
future research or for evaluation purposes. It uses 
D2XX vendor's driver for USB communication. At 
present, the supported transfer speed to the computer 
is 4 fps, however, the proposed system is capable of 
higher transfer rates. As a future project, a more 
sophisticated computer interface will be developed 
to support real-time transfer rates. 

 

6. SYSTEM EVALUATION 
The system uses two clock sources. The first 

clock source is PIXCLK which is derived from the 
CMOS sensor and is the main clock for the Image 
Processing Core. The second clock source is the on 
board oscillator with frequency 50MHz. This clock 
is used for every other synchronous operation in the 
system. The maximum frequency of PIXCLK that 
meets the timing requirements of the implemented 
image processing tasks was found to be 83 MHz. 
This value was calculated using Altera's timing 
analysis tool for the Mean Filter, Gauss Filter and 
Sobel Edge Detector. This means that the Image 
Processing Core is capable of processing 83 
Mpixel/sec or 270 fps for a resolution of 640x480 
pixels of gray-scale images. This frame rate could be 
further increased by optimizing the circuit realized 
by the synthesizer. However, this would be a 
meaningless effort, since the overall performance is 
reduced by other elements. The Data Manager, the 
FIFO buffers and the internal peripheral controllers 
are clocked by the 50 MHz oscillator. Since these 
circuits execute only data transfers without applying 
any processing, they can support higher clock 

frequencies. A higher frequency would increase 
performance but it would also increase power 
consumption and radiation emitted from the board 
leading to EMC or EMI issues. Thus a compromise 
in performance is considered. The main bottleneck is 
found in SDRAM operation. After pixels are read 
and processed, pixel data is stored in SDRAM. 
When output FIFO buffers are empty, pixel data is 
read from SDRAM and buffers are loaded until they 
are full. External SDRAM is also clocked at 50 MHz 
with a signal derived from the FPGA. This means 
that it is capable to read or write or combine 
reads/writes at a maximum rate of 50 Mpixel/sec. In 
practice, the speed is lower since internal SDRAM 
operations such as auto-refresh cycles, bank/row 
activation, precharge operation and etc. consume 
considerable number of cycles. When a fast interface 
is realized for image display, then maximum write 
speed is reduced. When a slower output interface is 
applied then write speed can be increased. When the 
VGA interface is used, a bandwidth of 25 
Mpixel/sec is required. Our experimental results 
show that the image sensor's maximum clock 
frequency, at which the system operates normally, is 
24 MHz. Considering the horizontal and vertical 
blanking intervals, our system is capable of 
displaying plain or processed video data at 30 fps 
which stands for real time performance. When our 
system is connected with a host computer then it is 
capable of processing at higher speeds but it can 
display plain or processed video data at the rate 
allowed by the USB interface. 

As we have already mentioned, we did not 
proceed to further optimizations for the maximum 
theoretical speed of the Image Processing Core. We 
have only replaced divisions with multiplications 
with divisor's reciprocals and let the development 
tools to synthesize and fit the circuit inside the 
FPGA, using only logic elements. Hardware 
multipliers have been left unused for future tasks 
and necessary multiplications are performed using 
only LEs. The total resources needed to implement 
our system are presented in Table 5. These resources 
include two frame grabbers, two Image Processing 
Cores, two RAM buffers for storing plain or 
processed data from both sensors, the Data Manager, 
two RAM buffers for use with output device and the 
SDR SDRAM/SPI/VGA controllers. When the VGA 
controller is replaced with FIFO-to-USB controller, 
in order to send frames to the computer, two more 
I/O pins are required, but fewer logic elements are 
allocated. 

In Table 6, the power dissipation of the system 
in operation is presented. Low power consumption is 
important, since our vision system is designed for 
robotic applications that often run on batteries. The 
FPGA consumes about 190 mW. The 
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Microcontroller and the SDRAM demand about 430 
mW, which is a considerable consumption. This is a 
trade off for having a co-processing unit 
incorporated in the system. VGA DAC consumption 
is 231mW. However, this is a supplementary 
function used for evaluation and demonstration 
purposes and will be excluded in a final application. 
The main drawback is the power consumption of the 
CMOS header board. It is supplied with additional 
circuitry which demands a total of 500mW. For a 
stereo vision system, the power consumption of both 
sensors is 1 W. The choice of the specific sensor 
header board aims to support high performance in 
future research. However, if power consumption and 
cost are essential elements in an application, a 
replacement would rather be considered. The 
Toshiba TCM8230MD color CMOS image sensor 
may constitute a candidate, since it is inexpensive 
and consumes only 60mW. 

A main advantage of the system is the ultra-low 
cost with only a small degradation in performance. 
Not only the processing module, but the overall 
system achieves real time speed and it provides 
comparable results with other systems that cost 
many thousands of euros. Excluding the CMOS 
image sensor the system costs less than 80 euros. By 
using two TCM8230MD devices instead of the 5 
Mpixel sensors, the total cost of the complete stereo 
vision system does not exceed 100 euros. To the best 
of our knowledge, no other FPGA-based system 
presented in the literature, that is intended to be used 
for image processing, maintains the cost at such a 
low level. Since the system is designed as a project 
open to further development, it is fully implemented 
in standard VHDL, free of dependencies on 
Intellectual Property cores, with all its parts 
optimized for minimum resource usage.  
The proposed system is intended to be used in 
advanced robotic vision projects. The HDL library, 
introduced in this article, will be expanded to 
include necessary processing tasks, such as stereo 
vision, feature extraction, optical flow calculation 
etc. On the hardware part, some enhancements are 

also considered. Since the main bottleneck of the 
system appears to be in the communication with the 
SDR SDRAM, a replacement of this memory with a 
DDR is considered. In this way, the overall speed 
can be doubled using the same main clock frequency 
and a processing rate of 60 fps can be achieved.  
Another future enhancement is the implementation 
of a high speed wireless link for transferring image 
data to a base station. VGA and USB connectivity 
will be removed from the mobile unit and will be 
incorporated into the base station. 
 

7. EXPERIMENTAL RESULTS 

In this section we present image results 
monitored while the overall system is in action. All 
images have resolution 640x480. The image in Fig. 
14 (a) is in Bayer encoding. It is transmitted to the 
host computer as captured by the image sensor, 
without any further processing. The image in Fig. 14 
(b) is derived after demosaicing the first image. Fig. 
15 shows results from the Edge Detector, as received 
by the host application. The image in Fig. 15 (a) is 
the output of the Frame Grabber in gray-scale. Fig 
15(b) is the image produced applying the Sobel 
masks and the thresholding procedure. The display 
of the transmitted image on a VGA screen is 
captured by a camera and is demonstrated in Fig. 16. 
In the first picture the plain image is shown, while in 
the second the corresponding edge detector results 
are presented. The test rig of the developed system is 
illustrated in Fig. 17. 

 

Table 5. Resource usage. 

Resources Available Used Percentage 

Total LE 22320 2423 10,86% 

Total pins 80 69 86,25% 

Total memory 
bits 

608256 51360 8,44% 

Embedded  
9-bit multipliers 

132 0 0% 

Total PLLs 4 0 0% 

 

Table 6 Power dissipation. 

Structure Current drawn Power consumption 

FPGA core 17mA at 1.2V 20,4 mW 

FPGA analog circuitry supply 28mA at 2.5V 70 mW 

FPGA I/O 30mA at 3.3V 99 mW 

Microcontroller 100mA at 3.3V 330 mW 

SDRAM 30mA at 3.3V 99 mW 

VGA DAC 70mA at 3.3V 231 mW 

CMOS sensor header boards 2x100mA at 5V 1000 mW 

Total power dissipation for a stereo vision system in 
operation 

≈1850mW 
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Fig. 14 – (a) Image in Bayer encoding. (b) Image after 
demosaicing. 

 

 

Fig. 15 – (a) Gray-scale image. (b) Edges of gray-scale 
image. 

 

 

Fig. 16 – (a) Gray-scale image on VGA screen. (b) 
Edges of gray-scale image on VGA screen. 

 

 

Fig. 17 – Test rig of the proposed system. 

 
8. CONCLUSION 

In this paper, the design and implementation of a 
high performance video-processing FPGA/ 
microcontroller board is presented. The system is 
based on a flexible modular architecture comprised 
of a Cyclone IV Altera FPGA device and a 32-bit 
PIC microcontroller. FPGA resources are allocated 
to implement video processing functions and basic 
peripheral controllers, while the MCU is able to 
support peripheral functions and/or co-processing 

tasks. The system includes a frame grabber suitable 
to interface with two CMOS image sensors. It also 
includes external SDRAM, able to store captured 
frames, a VGA DAC module for fast image display 
on a screen and a FIFO-to-USB module, providing 
connectivity to a host computer for further 
processing. The Image Processing Core processes up 
to 270 fps and the overall system in action has a 
proved performance of 30 fps. The controllers along 
with basic video processing tasks require only a 
small fraction of the available resources. The cost of 
the proposed board is low compared to existing 
commercial video kits or other implementations 
published in the literature. The system is expandable 
and is intended to host demanding machine vision 
applications. The schematic and PCB designs and 
the HDL source code of designed tasks are open to 
the vision and robotics community for academic 
purposes and will be further developed. Full access 
to the necessary files for the reproduction of the 
system is granted by addressing a request by e-mail 
to the corresponding author. 
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