
John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 141

DESIGN DETAILS OF A LOW COST AND HIGH PERFORMANCE
ROBOTIC VISION ARCHITECTURE

John V. Vourvoulakis 1), John A. Kalomiros 2) and John N. Lygouras 1)

1) Democritus University of Thrace, Section of Electronics and Information Systems Technology, Department of
Electrical and Computer Engineering, Polytechnic School of Xanthi, Xanthi, Greece, 67100, jvourv@ee.duth.gr

2) Technological and Educational Institute of Central Macedonia, Department of Informatics Engineering,
Terma Magnisias, Serres, Greece, 62124

Abstract: The implementation of an advanced real-time, low cost video processing platform capable of supporting a
variety of demanding robotic applications is presented. The system is designed as an open project, accessible in full
detail and has the potential to grow. It is based on a FPGA plus MCU architecture, allowing the implementation of
combined fixed-point and 32-bit floating-point applications with optimized resource allocation. The presented platform
is optimally integrated with appropriate controllers, like video-input frame grabbers for multiple camera applications,
external SDRAM, as well as USB and VGA interfaces. The processing and interfacing capabilities of the proposed
system are illustrated by implementing basic feature extraction and preprocessing tasks, achieving the display of
processed video frames at a rate of 30 fps with resolution 640x480. The proposed architecture is evaluated in terms of
resource usage, power consumption and cost. Potential applications are also discussed. Copyright © Research Institute
for Intelligent Computer Systems, 2015. All rights reserved.

Keywords: FPGA, microcontroller, real-time systems, CMOS image sensor, image processing, reconfigurable
hardware

1. INTRODUCTION

Over the last decades great progress has been
made in the field of image and video processing.
Areas of development include robotic vision,
medical imaging, security monitoring, video games,
satellite photography and etc. Robotic vision [1] is
widely used in industrial manufacturing, assembly
and inspection of components as well as in
autonomous navigation of land, underwater and
aerial vehicles. Image and video processing
algorithms are computationally demanding, as they
apply transformations on a per frame basis, often
processing all different color planes [2,3]. It is well
known that software techniques based on sequential
structures often fail to achieve the performance
desired for real-time applications, even when using
powerful microcomputer systems. Numerous
schemes and systems have been proposed to
overcome this problem. One approach uses vision-
specific software on conventional desktop platforms,
often coupled with graphics accelerators [4,5].
Another approach uses dedicated embedded
hardware [6-9]. The use of Field Programmable
Gate Arrays (FPGAs) is an attractive solution to the
implementation of vision-specific robotic

applications. The main advantages of FPGA
technology are parallelism of iterative algorithms,
hardware reuse, low power consumption, design
flexibility and lower cost in comparison with
Application Specific Integrated Circuits (ASICs).

In this paper, we propose a custom low cost and
scalable circuit board that is suitable for real-time
machine vision and control tasks. The architecture is
based on Altera's Cyclone IV family FPGA
(EP4CE22E22C7 device) and is minimally equipped
with peripheral devices, allowing a large number of
pins and chip resources to be used for image
acquisition and processing tasks. Additional
peripheral functionality and complementary
processing is supported by using a Microchip 32-bit
PIC microcontroller (PIC32MX795F512H device).
The microcontroller undertakes peripheral control
tasks, relieving the FPGA device from an overhead
of fixed additional controllers, like ADCs/DACs or
other serial interface controllers. Also, it expands the
processing capabilities and peripheral functionality
of the board for future tasks.

The basic input-output and processing stages of
the proposed system-on-a-chip are custom-designed
in VHDL, which is standard for research and
industry. Implemented input-output peripherals

computing@computingonline.net
www.computingonline.net

Print ISSN 1727-6209
On-line ISSN 2312-5381

International Journal of Computing

John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 142

include frame-grabber cores interfaced to CMOS
image sensors, a high speed FIFO-to-USB controller
module for host communication, a Video Graphics
Array (VGA) controller for displaying image data on
a computer screen, an optimized SDR SDRAM
controller and a master Serial Peripheral Interface
(SPI) core for serial communication with the
microcontroller. The Altera Quartus II software
platform is used for synthesis and configuration. We
avoid the use of more sophisticated tools for system-
on-chip design, like Qsys, which may shorten
design-cycle, but on the other hand are often heavily
dependent on commercial controllers and IP cores.
In this way, the overhead cost associated with the
purchase of copyrighted intellectual property (IP) is
avoided.

Microcontroller firmware is developed in
MPLAB X IDE. The program is written in C
programming language and the XC32 compiler is
used to translate the source code into machine code.
The I2C peripheral interface is initialized to
configure appropriately the CMOS image sensors.
Moreover, the use of SPI peripheral in conjunction
with Direct Memory Access module achieves
communication between the PIC and FPGA device
without the intervention of the microcontroller's
CPU.

As a consequence of the adopted design concept,
the total system's cost is maintained very low. The
expenditure for a special purpose commercial
development board, dedicated to video processing,
can rise to hundreds or even a few thousands of
euros, which is much more than the final cost of the
proposed custom system.

Beside its low cost, the system is designed as an
open robotic vision project with a potential to grow.
The proposed architecture can be recreated and can
be expanded in the future by adding hardware parts
in the open HDL vision library introduced in this
article.

Following from the above considerations, the
main contribution of this paper is twofold. First, the
development of a high performance reconfigurable
platform, capable of hosting advanced image
processing and control tasks, is described in
reproducible detail. Also, the system is introduced as
a project open to further development. Researchers
can adopt design and build their applications taking
advantage of the presented software and hardware
functionality. Second, the total cost of the system is
kept at a low level, due to key engineering choices
and the use of optimized custom controllers and
vision cores. Introducing a low cost, open-source
vision platform achieving high performance is
important, because the evolution of inexpensive
machine vision processors advances other fields,
such as educational and domestic robotics,

exploration robots and surveillance systems as well
as research in all the above fields.

The rest of the article is organized as follows. In
Section 2, a literature survey is given. In Section 3,
the system's hardware components and their
connectivity are presented in detail. Section 4 refers
to the system architecture, providing design
diagrams for all available controllers and task
modules in the HDL vision library. Brief
descriptions of microcontroller firmware and host
computer software are given in Section 5. In Section
6, the system is evaluated in terms of performance,
resource usage, power consumption and cost. In
Section 7, experimental results are presented.
Section 8 concludes the paper and discusses issues
on reproducing the system.

2. LITERATURE SURVEY

The literature on image processing algorithms
and systems is vast. Image processing algorithms,
methods and their capabilities are often surveyed by
review papers, however there is a major shortage of
such reviews for image processing hardware
architectures. Therefore a comparative study of
published work is essential in order to locate
scientific and technical aspects or even trends that
need to evolve.

Since the main processing unit of the proposed
system is an FPGA device we emphasize on FPGA-
based implementations. We can classify related
work into two categories. The first category
describes the design of image acquisition systems
that also perform some simple pre-processing tasks.
The point of interest is the realization of a complete
architecture and its capabilities. Usually some trivial
processing operations exemplify performance. In the
second category, researchers focus on the
implementation details of specific image processing
algorithms and their parallelization inside the FPGA
data path. Special ready-made commercial boards
are mostly used to host the architecture. Benchmark
images are tested in order to compare results
between papers. The point of interest is not the
overall system but the advances in the
implementation of the applied algorithm. According
to the above classification our work is placed in the
first category, but it is aimed to be used for
applications of the second category, with special
emphasis given to maintaining the overall system's
cost very low.

In Refs. [10-12], FPGA-based image acquisition
systems interfacing with CMOS image sensors are
presented. References [10] and [11] present design
aspects and image results, however resource usage is
not provided and processing rates are not discussed.
They both use a mid-range cost development board
to host the architecture. In [12], an image acquisition

John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 143

system that achieves 25 fps using Camera Link
interface is presented. Image resolution is
1280x1024 pixels. However, the authors do not
provide implementation details, resource usage or
image processing results. In [13], an image
acquisition and remote transmission system is
described. It is based on a low cost FPGA chip
achieving almost 15 fps for its maximum resolution
(2048x1536 pixels). It captures data from a CMOS
image sensor and it also implements Ethernet
transceiver, VGA DAC, SRAM and flash memory.
Since a small FPGA is used, it would be interesting
to know the resource requirements, however they are
not provided.

The following papers go beyond image
acquisition and perform some additional processing,
applying certain algorithms. In [14], the presented
System on a Programmable Chip (SoC) includes a
Sobel Edge Detector. A description of the
architecture is given, but image results, resource
usage and frame rates are not provided. In [15] an
active vision sensor is presented and a tracking
algorithm is implemented. Authors apply a
processing algorithm on a Window Of Interest
(WOI) and they use an expensive Stratix FPGA to
realize the architecture. An interesting low cost
system is demonstrated in [16], utilizing a Digital
Signal Controller (DSC) as the processing unit for
an Edge Detector. The system fails to achieve real-
time performance and is not able to host more
demanding algorithms. A Sobel Edge Detector is
also demonstrated in [17] achieving processing
speed of 60 fps, for image resolution 720x480. This
architecture is hosted on a high cost DSP
development kit. In [18], a very fast and low cost
Sobel Edge Detector is presented, but it is not clear
if the reported speed is derived from experimental
measurements or from timing analysis results. The
same task is demonstrated in [19], where color
information is used. The processing rate is 50 fps for
720x576 size images. The system used in this paper
is the ML510 Virtex-5 FX130T, which is considered
a high cost solution. Reference [20] shows an Edge
Detector on Hexagonal Sample Image Grids. The
proposed architecture stores frames in FPGA's
internal memory and as a result it can be used only
with very small images. In [21], an image pre-
processing system is presented that uses an Auto
White Balancing (AWB) algorithm to improve
quality, producing more realistic colors. It claims a
frame rate of 75 fps for 1280x1024 image resolution,
using a costly FPGA chip from Xilinx Virtex-5
family.

In the following references, implementations of
more advanced processing algorithms are explored.
In [22], a high cost video development kit is used to
acquire infrared images and accomplish image

fusion tasks. A disparity map computation based on
the Sum of Absolute Differences (SAD) algorithm is
presented in [23-25]. A costly DSP Development Kit
is used in [23], succeeding to produce 23 disparity
maps for image resolution 640x480, with a
maximum disparity range of 64 pixels. In [24], an
Edge Detector produces binary images to apply SAD
while dense disparity maps are produced by
interpolation. The architecture is hosted in Xilinx
ML505 Evaluation Platform and achieves a
processing rate of 50 fps, for image resolution
1280x1024 pixels. A lower cost approach is
presented in [25] with the novelty of an injective
consistency check adopted for disparities validation.
A Xilinx Virtex-4 XC4VLX60 FPGA chip is used
and the supported frame rate is up to 97 fps.
Although this implementation is less expensive in
comparison with other systems, only the cost of the
chip is about a few hundred euros. Another stereo
vision system is presented in [26] applying census
transform to solve the correspondence problem. It is
based on a Xilinx Virtex-4 FPGA and generates 60
fps for image resolution of 640x480 pixels. An
optical flow FPGA design is described in [27] using
Altera's DE2-70 development board. The system
receives images from a computer via RS-232 link
and performs Horn and Schunk's method achieving
the computation of the optical flow vector field for
images of resolution 256x256 pixels in 3.89ms.
Reference [28] combines an FPGA chip and a DSP
in order to implement the original SIFT algorithm.
The system detects SIFT features and extracts
keypoint descriptors in real time, with computations
per feature consuming 80 us. In [29], an embedded
FPGA architecture is proposed for the computation
of grey-level co-occurence matrices (GLCM) and
Haralick’s texture features, based on small 128x128
image blocks.

The common disadvantage of the above
implementations is that, in general, they make use of
expensive FPGA devices and development boards.
As a result, the potential total system's cost can rise
to hundreds or even a few thousands of euros. The
system proposed in this paper is designed as a
complete standalone vision processing system.
Special effort has been given to develop measures
that prove the claimed functionality and
performance. The cost of the prototype board is less
than 80 euros, excluding the cost of the CMOS
image sensors. Utilizing inexpensive CMOS image
sensors, such as the Toshiba TCM8230MD can help
to maintain the total cost of the video processing
system below 100 euros, while the image sensor
supports 30 fps for image resolution 640x480 pixels.
If higher frame rates or resolutions are required, then
a more expensive sensor should be used. In our
implementation a 5 Mpixel Aptina Imaging sensor

John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 144

was selected to interface with the system, as
described in the following section.

One disadvantage of the proposed system is its
limited resources in terms of available look-up tables
and registers. The optimal design of the developed
cores ensures minimal usage of resources by the
dedicated interfaces, but even so several resource
demanding computational tasks would be difficult to
implement with the EP4CE22E22C7 FPGA device.
However, review papers, such as [30] for stereo
vision, aid to evaluate a system's suitability for a
given algorithm.

3. SYSTEM HARDWARE

ARCHITECTURE

The system is designed to be scalable. It has
expansion slots where external hardware modules
can be connected. Each one among the supported
functionalities demands a hardware interfacing
module and a proper controller core inside the
FPGA. The block diagram of the system is depicted
in Fig. 1.

Fig. 1 – Block diagram of the system.

The main processing unit consists of an Altera

Cyclone IV EP4CE22E22C7 FPGA device. It has
22K Logic Elements (LE), 80 available I/O pins,
594 Kbits internal SRAM, 132 9-bit multiplers and 4
PLLs. External components are placed on board to
compose the necessary power supply voltages. A
crystal oscillator and a JTAG header connector for
device configuration are also incorporated on board.
The FPGA core needs 1.2V for proper operation,
internal PLL supply circuits demand 2.5V and for
the communication with external devices a voltage
level of 3.3V is required. A 50 MHz crystal
oscillator provides the main clock for FPGA's
synchronous operations. We could have selected a
higher frequency for faster internal processing, but it
would increase the power consumption and also the
radiation emitted from the board. In the future, an
appropriate oscillator replacement will be
considered, depending on the target application. The
JTAG interface is provided to configure the FPGA

for as long as development is in progress. When the
design is finalized the Active Serial Configuration
Device (EPCS16N serial memory) is programmed
through the FPGA using a JTAG Indirect
Configuration file. Then, the EPCS16N device
configures the FPGA every time the power supply is
applied.

The complementary processing unit includes a
Microchip 32-bit PIC32MX795F512H micro-
controller unit (MCU). Communication with the
FPGA device is attained through Serial Peripheral
Interface. Transactions from SPI to microcontroller's
memory and vice versa are accomplished using
DMA transfers releasing the CPU to perform other
processing tasks. If the supported target application
does not need data exchange with the
microcontroller unit, the MCU and the FPGA can be
disconnected from each other in order to preserve
I/O resources of both devices. The MCU’s Inter-
Integrated Circuit (I2C) is used to configure the
CMOS image sensors. Frame resolution, capture
speed, shutter width, blanking intervals are some of
the settings defined by the microcontroller.

Input images are captured from the 5 Mpixel
MT9P031 CMOS color image sensor from Aptina
Imaging on the MT9P031I12STCH header board.
The header board consists of the MT9P031 device, a
suitable lens and other external components needed
by the image sensor. The sensor supports a capture
speed of 14 frames per second (fps) at its full
resolution of 2592x1944 pixels. For VGA resolution
(640x480 pixels) it supports a maximum of 123 fps.
It provides a parallel digital interface for
transmitting data and a serial I2C interface for
configuration. The Analog to Digital Converter
(ADC) has 12-bit resolution, providing 4096 color
scales. In our system, we use the 8 most significant
bits from the ADC, since they are adequate for our
current research purposes. Interconnection with the
FPGA device includes data signals (D4 to D11) and
control signals, frame valid (FV), line valid (LV)
and pixel clock (PIXCLK). The interconnection
between the image sensors, the FPGA device and the
microcontroller is depicted in Fig. 2.

Fig. 2 – Interconnection between the CMOS image
sensors, the microcontroller and the FPGA device.

John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 145

A desirable and useful capability for every image
acquisition, processing and control system is the
transmission of processing results to a personal
computer. In our target applications, the transmitted
results can be used as a visual input for computer-
based robotic algorithms or for evaluation. In order
to incorporate this feature to our system, we used the
UM232H FIFO-to-USB module from FTDIChip. It
is based on FT232H chip and provides USB2.0 high
speed connectivity supporting various operation
modes. Control and bulk transfers according to USB
protocol are hardwired. All necessary descriptor
information for the enumeration procedure is saved
on external EEPROM by the manufacturer at
production time. At this phase of our research, the
USB module is configured for asynchronous
operation which supports up to 8 Mbytes/s transfer
rate. In this operation mode, the associated signals

are eight data bits and four control bits TXE ,

RXF , WR and RD . These signals are active low.
The interconnection between FPGA and UM232H is
depicted in Fig. 3.

Real-time image processing requires a rate of
many frames per second. Demonstration and testing
purposes often demand fast image displaying on a
screen. Even a fast connection like USB in
conjunction with a very fast personal computer may
fail to respond timely due to a huge load of
concurrent processes. Equipping the board with
VGA connectivity is a good solution to this issue. In
order to support the aforementioned capability, a
custom hardware module was designed and
implemented, comprised of the ADV7123 high
speed video DAC from Analog Devices. Although
the chip ADV7123 supports three 10-bit inputs for
every color component, we use one in order to
preserve I/O FPGA pins and as a result only gray-
scale images can be displayed on the screen. Timing
synchronization, which is also referred to as
Horizontal and Vertical Synchronization, is obtained
using control signals HS and VS. The VGA clock
depends on the selected screen resolution.

In Fig. 3 the interconnection scheme between the
FPGA device and SDRAM, VGA DAC and FIFO-
to-USB

Fig. 3 – Interconnection between the FPGA device
and SDRAM, VGA DAC and FIFO-to-USB module.

module is illustrated. At this point of system
development, either VGA connectivity or USB
connectivity is available, due to limited I/O FPGA
pins. Nevertheless, in most cases, this is not a
restriction. Supporting both features simultaneously
is rather redundant, since it is necessary only for a
few specific applications.

4. HDL LIBRARY FOR VISION AND
PERIPHERAL CONTROL TASKS

The internal FPGA architecture is depicted in
Fig. 4. It is comprised of the Image Grabber, the
Image Processing core, ping pong SRAM buffers, a
Data Manager unit as well as the controllers FIFO-
to-USB, VGA, SDRAM and SPI. Each sensor
requires an Image Grabber, an Image Processing
Core and two RAM ping pong buffers. For
simplicity, in Fig. 4 we include only one such
structure. In the next paragraphs, we describe all the
architectural elements in detail.

4.1 IMAGE GRABBER

The principal prerequisite in the image
processing system is the frame grabber. Therefore,
the frame grabber core constitutes a main
functionality in our HDL component library. It can
be transported and used in other systems as well.
Before analyzing the implementation details we first
examine how the CMOS image sensor produces
data. MT9P031 outputs color component
information of image pixels in a progressive scan.
Pixel data start from top right corner of the first row
and end up to the bottom left corner of the last row.
Intervals between consecutive rows are known as
horizontal blanking and between consecutive frames
as vertical blanking. Control signals FV (Frame
Valid) and LV (Line Valid) declare when sensor
outputs data. When FV and LV signals are noticed
'1' then sensor launches pixel data on every rising
edge of PIXCLK. Output data is considered to be
valid and can be read from the FPGA on the next
falling edge of PIXCLK.

Fig. 4 – FPGA architecture.

John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 146

Fig. 5 – Readout order of Bayer encoding.

MT9P031 outputs image data using Bayer

encoding. Bayer encoding describes every pixel by
reducing color information to one byte instead of
three. Even rows use the pattern Green-Red-Green-
Red and odd rows use the pattern Blue-Green-Blue-
Green. RGB color information for every pixel is
extracted from its neighbors. The pattern usually is
referred to as Color Filter Array (CFA) and the
procedure of extracting full color information is
called demosaicing. The readout order is presented
in Fig. 5 and the timing diagram of image readout is
depicted in Fig. 6.

The Frame Grabber is implemented in VHDL
using state machines. The clock used for the state
machines is PIXCLK and is derived from the image
sensor board. The flow of Finite State Machines
(FSMs) is depicted in Fig. 7. In the “Synch”
(Synchronization) state, the system just waits. This
state has been added to enforce the FPGA device to
wait until the next frame generation in case that
power was applied to the FPGA device while the
sensor was already streaming image data at an
intermediate point of a frame. When FV signal is
asserted '0', it declares that the sensor is in the
vertical blanking interval, which means that the
FPGA is now synchronized and can proceed to the
“VB” (Vertical Blanking) state. When FV is asserted
'1', the FPGA enters into “HB” (Horizontal
Blanking) state and if LV is also asserted '1', it
enters into the “VID” (Valid Image Data) state.

P1 P2 P3

PIXCLK

FV

LV
Dout[11:0]

VB: Vertical Blanking
HB: Horizontal Blanking

Valid Image DataVB HB HB VB

P1, P2, P3…: pixel 1, pixel 2, pixel 3...

Fig. 6 – Timing diagram of an image readout.

Fig. 7 – Image readout FSM.

Now, the device can read sensor's output, as

sensor data is considered valid at every falling edge
of PIXCLK. When the sensor completes
transmission of the first row's pixel data, it asserts
LV to '0' and the FPGA device enters into “HB”
state. When the horizontal blanking interval is over,
LV is asserted again to '1' and the FPGA enters back
to the “VID” state. This sequence will continue until
the sensor completes the transmission of the last
image row. Afterwards, LV and FV are asserted '0'
consecutively and the FPGA enters first into “HB”
state and finally into “VB” state. The FPGA device
remains there until the sensor starts sending the next
frame.

4.2 IMAGE PROCESSING CORE

The Image Processing Core is responsible for the
main image processing task. In the present version
of our HDL library, a Mean filter, a Gauss filter and
an Edge detector have been implemented. These
functions are required in many applications as basic
pre-processing stages.

Below, the 3x3 kernel matrices applied on input
image are quoted. Kernel M is for mean filter, G is
for Gauss filter and S1, S2 are Sobel masks for edge
detection.

,

111

111

111

















M



















121

242

121

G ,

























101

202

101

1S ,





















121

000

121

2S , (1)

Parallelism requires the pixel intensities of a nxn

image area, where the convolution kernel is applied,
to be simultaneously available. In our pre-processing
stages, we defined n=3. As we have already
mentioned, the sensor outputs color component

John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 147

information using Bayer encoding. The total
procedure requires two intermediate steps in order to
complete processing. The first step is to extract pixel
intensities from Bayer encoded data for every 3x3
image window and the second step is to apply the
filter mask. Parallelism is achieved using RAM-
based shift registers. Sensor data is pipelined into
shift registers. They are designed in a specific way
which outputs image data from 3x3 subwindows in a
progressive scan. The operations “Demosaicing/
Intensity Extraction” and “Mean Filter/Gauss
Filter/Prewitt Mask”, shown as blocks in Fig. 4, are
combinational logic functions. The propagation
delay of the signals determines maximum processing
speed.

The function Demosaicing can be implemented
using several ways, as shown in the literature [31].
One simple algorithm is to use the mean value of
neighboring colors. Depending on their known color
component information, pixels are named as Gr, Gb,
R or B, as shown in Fig. 5. Table 1 presents how full
color information is calculated in each case. After
the Demosaicing procedure completes calculations
for a pixel that belongs to row i and column j,
grayscale intensities are extracted as in (2):

I(j,i) = (Red + Green + Blue) / 3, (2)

Intensity calculations and filtering are carried

out concurrently, while the FPGA is reading
subsequent pixel data. When the FPGA reads data
from row i, it also completes processing on previous
rows. From now on we follow the convention of
naming a pixel that is at the ith row and the jth
column as pj,i. Let us consider applying the
aforementioned filters on a 3x3 image window to
describe how this mechanism works in detail. A
random window of input image is illustrated in Fig.
8. Let us focus on the 4x4 window that is
highlighted with bold borders. Assume that the
bottom right pixel of that window belongs to the
random row i and column j of the input image. In
order to apply a filter mask at pj-2,i-2, we need to
know pixel intensities from a 3x3 window, the
bottom right pixel of which is pj-1,i-1. This means that
the processing elements must have already
calculated the intensity of pj-1,i-1 and have it available
for use. This premises that demosaicing of pj-1,i-1 has
been completed. In order to perform demosaicing on
pj-1,i-1 and then extract the grayscale intensity of that
pixel, we need to know the color component from
the 3x3 window of which the bottom right pixel is
pj,i. This implies that only when FGPA has read pj,i,
it will be able to perform filtering computations on
pj-2,i-2. Hence, in order the FPGA to be able to apply
the processing algorithm on pixel pj-2,i-2, it must have

available the pixel information in the bold 4x4
window of Fig. 8.

Table 1. Extracting full color information –
Demosaicing.

Pixel Full Color Component Calculation

 Red = (R(j-1,i) + R(j+1,i)) / 2

Gr Green = Gr

 Blue = (B(j,i-1) + B(j,i+1)) / 2

 Red = (R(j,i-1) + R(j,i+1)) / 2

Gb Green = Gb

 Blue = (B(j-1,i) + B(j+1,i)) / 2

 Red = R

 G1 = Gr(j-1,i) + Gr(j+1,i)

 G1 = Gb(j,i-1) + Gb(j,i-1)

R Green = (G1 + G2) / 4

 B1 = B(j-1,i-1) + B(j-1,i+1)

 B2 = B(j+1,i+1) + B(j+1,i-1)

 Blue = (B1 + B2) / 4

 R1 = R(j-1,i-1) + R(j-1,i+1)

 R2 = R(j+1,i-1) + R(j+1,i+1)

 Red = (R1 + R2) / 4

B G1 = Gb(j-1,i) + Gb(j+1,i)

 G2 = Gr(j,i-1) + Gr(j,i+1)

 Green = (G1 + G2) / 4

 Blue = B

Fig. 8 – Image window necessary for 3x3 convolutions.

Mean filter implementation for pixel pj-2,i-2
includes first the calculation of the following matrix:

































111213

212223

313233

111

111

111

22

i,ji,ji,j

i,ji,ji,j

i,ji,ji,j

p

III

III

III

M
i,j

, (3)

Naming every element of matrix M as mx,y, where
x=1,2,3 and y=1,2,3 the output image is produced as
in (4):

John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 148


 

 
3

1

3

1
,2,2

9

1
'

x y
yxij mI . (4)

Gauss filter implementation for pixel pj-2,i-2
includes the calculation of the following matrix:

































111213

212223

313233

121

242

121

22

i,ji,ji,j

i,ji,ji,j

i,ji,ji,j

p

III

III

III

G
i,j (5) (5)

Naming every element of matrix G as gx,y, where

x=1,2,3 and y=1,2,3 the output image is produced as
in (6):


 

 
3

1

3

1
,2,2

16

1
'

x y
yxij gI . (6)

Edge detector implementation is slightly different

from Mean and Gauss filters. First, two Sobel
matrices S1 and S2 are calculated for the pixel pj-2,i-2.

































111213

212223

313233

22
1

101

202

101

i,ji,ji,j

i,ji,ji,j

i,ji,ji,j

i,jp)(

III

III

III

S (7a)

































1,11,21,3

2,12,22,3

3,13,23,3

)2(

121

000

121

2,2

ijijij

ijijij

ijijij

p

III

III

III

S
ij

 (7b)

Considering every element of matrix S1 and S2 as

s(1)x,y and s(2)x,y where x=1,2,3 and y=1,2,3 the output
image is produced as in (8):



































  

  



Tss

Tss

I

x y
yx

x y
yx

x y
yx

x y
yx

ij 3

1

3

1
,)2(

3

1

3

1
,)1(

3

1

3

1
,)2(

3

1

3

1
,)1(

2,2

,255

,0

' (8)

The magnitude of image gradient is produced as

the sum of the absolute values of horizontal and
vertical gradients, instead of the square root of the
sum of the squares. This method is simpler,
produces similar results and requires less hardware
resources. In order to receive a binary edge image, a
thresholding procedure is applied. The gradient
threshold is defined as T=40.

All the above computations are implemented in
VHDL. Most of the divisions were implemented

performing right shifts. Instead of division by 3 in
(2) and by 9 in (4), we approximate the quotient by
multiplying with the divisor's reciprocal. In (2), we
multiply the sum of color component information
with 341 and then we divide with 1024 performing
right shift ten times. In (4), we multiply with 113
and then we proceed with ten right shifts,
accordingly.

Using TimeQuest Timing Analyzer tool, it is
found that the propagation delay-times limit the
maximum processing rate of the Image Processing
Core to approximately 270 fps. No further
optimization was attempted, since the maximum
supported frame rate of the overall system is actually
lower than the above limit, due to the bottleneck
introduced by other components.

4.3 DATA MANAGER

The processed pixel data is extracted from Image
Processing Core and then it is stored to a dual port
RAM, with a capacity of 1280 bytes. This memory
is divided into two ping-pong buffers. Each buffer is
sufficient for one row of pixel data. While data is
being saved to buffer 1, the contents of buffer 2 are
being transferred to the Data Manager. When ping
pong buffer 1 is full, subsequent pixel data is saved
to ping-pong buffer 2 and vice versa. It is important
that data must have been transferred before the same
memory location is accessed again. RAM ping pong
buffers use PIXCLK for write accesses and the on-
board 50 MHz clock for read accesses. Also the rest
of the logic uses the 50 MHz oscillator as system
clock.

The Data Manager consists of various VHDL
processes that are responsible for the communication
with all other implemented cores inside the FPGA. It
receives data from dual port RAM ping pong buffers
and transmits them to the SDRAM controller in
order to have a full frame stored in the external
SDRAM. Moreover it reads image data from the
SDRAM controller and transmits to a second dual
port RAM. This RAM is also divided into two ping-
pong 640 byte buffers. They are used in conjunction
with VGA or FIFO-to-USB controllers for the
display of video frames on a screen and for the
transfer of images to a host computer respectively.
The Data Manager also exchanges data with SPI
controller for communication with the
microcontroller. In general, it is a crossroads for data
streaming in the overall system.

4.4 SDR SDRAM CONTROLLER

An optimized SDR SDRAM controller was
developed in VHDL for communication between the
FPGA chip and external RAM. It is designed as a

John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 149

fully optimized custom module and therefore a brief
description is required. The controller handles all
low level operations such as bank/row activation,
design aspects of an SDRAM controller can be
found in [32]. Our controller provides a user friendly

communication interface to interconnect with other
cores inside FPGA. The designed module is
presented in Fig. 9a. The input signals wr_req and
rd_req are used to send write or read requests to the
controller.

Table 2. SDRAM controller truth table.

Input bits Clock Status bits
Function

rd_req wr_req clk Rd_valid sdram_busy wr_dis

X X X X 1 X Busy – write/read requests are ignored

0 0 ↑ X 0 X NOP

1 0 ↑ X 0 X
Start read sequence – addr[24:0] must have
SDRAM access location

X 0 ↑ 1 0 X DQ[7:0] word has valid data to be read

0 X ↑ X 0 1 Write requests are prohibited

0 1 ↑ 0 0 0
Start write sequence – signal dqin[7:0]
must have input data addr[24:0] must have
SDRAM access location

1 1 ↑ X 0 0
Write request is serviced, it has higher
priority

 X: Do not care.

The dqin[7:0] bus is data input and addr[24:0]
bus is address input. The signals sdram_busy, wr_dis
and rd_valid are outputs and indicate the status. The
rest of the signals are used to interface with
SDRAM. The controller's truth table is presented in
table 2.

In Fig. 9b, the block diagram of controller's
functionality is shown. After power is on, an
initialization procedure follows. It consists of the
required auto-refresh cycles, sets the Mode Register
and precharges SDRAM to end up in the “Idle”
state. When a request from some external function
arrives, the controller activates the appropriate bank
and row and proceeds with the corresponding write
or read action. It stays on that state to allow
consecutive operations until the next row/bank has
to be activated or a different execution is requested.
This will force the controller to precharge the row
and/or bank leading to the “Idle” state. Afterwards,
the appropriate activation of a bank/row is
performed to complete the target operation.

4.5 SPI CONTROLLER

A communication interface between the FPGA
and the microcontroller is necessary for data
exchange.

SPI is chosen because it is simple, demands few
I/O pins and is available on the microcontroller side.
Thus an optimized master SPI controller has been
developed in VHDL for the FPGA. Design aspects
of the SPI controller can be found in [33]. The
necessary low level operations such as clock
extraction, data registers shift, etc. are realized by
the controller. External functions need only to

manage appropriately the interface signals. The SPI
controller module is depicted in Fig. 10a. Inputs and
outputs to the controller are the SPI signals SCLK
(Serial Clock generated by the master), MISO
(Master Input Slave Output) and MOSI (Master
Output Slave Input), as well as the interfacing
signals for communication with other functions
inside the FPGA.

Fig. 9 – (a) The SDRAM controller module. (b) The
block diagram of the controller.

The heart of the controller consists of two shift
registers. Register spitxsr is the transmit and spirxsr
is the receive shift register. Transmission starts when
data is loaded in spitxsr. In every clock cycle
(SCLK), one bit is shifted out from the transmit shift
register and one bit is shifted into the receive shift
register. A load to the spitxsr is performed when an
external function writes data to the spitx input
register. If spitxsr is empty an immediate transfer to
that register occurs and communication starts. When
a transaction is successfully completed, input data is
loaded from spirxsr to the spirx output register.
There is also an internal buffer, named spitxb, which
can be loaded before previous transmission is

John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 150

finished. This allows next transaction to start
immediately. The SPI clock has been configured at
25 MHz which supports bidirectional
communication at 25 Mbits/s. The block diagram of
SPI controller is illustrated in Fig. 10b. The truth
table is presented in Table 3. Signal spirx_req is

used when data is read from output buffer by an
external function. Signal spitx_req is
used to load data to the transmit buffer or shift
register. Signals spirxf, spitxbf are status bits
indicating that the output register has valid data to be
read and that transmit buffer is full, respectively.

Table 3. SPI controller truth table.

Input bits Clock Status bits
Function

spirx_req spitx_req clk spirxf spitxf

0 0 ↓ X X NOP or proceed with current transfer

1 0 ↓ 1 X Read data from spirx register

0 X ↓ X 1 Transfer in progress – transmit buffer is full

X 1 ↓ X 0 Transmit request, data from spitx are loaded to spitxb

X: Do not care.

4.6 VGA CONTROLLER

Real-time applications require processing of
many frames per second. Displaying data on a
screen can be a good solution for evaluation
purposes or supervision of what the machine “sees”.
A VGA screen has satisfactory refresh rate and
therefore it is suitable to display plain or processed
frames. For the current research, a VGA controller
that supports resolution of 640x480 pixels at a
refresh rate of 60 Hz is developed. The controller is
responsible to produce synchronization signals and
to send pixel data to the VGA DAC module. More
details on the implementation of a VGA controller
can be found in [34]. The custom designed module
is presented in Fig. 11a. In order to preserve I/O pins
from the FPGA, the controller uses one 8-bit bus to
send data and consequently it supports only gray-
scale images. External functions need to interface
the following signals:

vga_in[7:0] – Data to be sent to VGA DAC
which correspond to pixel intensity.

vga_req – Output signal indicating that the
controller needs data.

clk – Controller clock - a frequency of 25 MHz is
required for resolution 640x480 pixel, at 60 Hz.

Every time vga_req signal is set, external
functions must feed the controller with next valid
pixel data. The controller does not include internal
buffers in order to be as compact as possible.

In Fig. 11b the controller's FSM diagram is
depicted. Every new frame starts with the controller
in state A and after 64 us enters in state B. States C,
D, E and F are responsible for managing every row.
The row sequence is initiated with the controller in
C and then in D managing Horizontal
Synchronization (HS) signal appropriately.
Thereafter, the controller enters in E for 640 clock
cycles receiving row pixel data. When the row ends
the controller enters in F state for a small delay. If it

is not the end of a frame then the sequence of states
C, D, E and F is repeated. If it is the end of a frame
then the controller enters in G state, where it blanks
its output. After the G state, it goes again to A state,
for the next frame to be displayed.

Fig. 10 – (a) The SPI controller module. (b) SPI
controller block diagram.

4.7 FIFO-to-USB CONTROLLER

It is often the case that processed image results
are needed to be available to a personal computer.
They can be input to a computer-based algorithm for
further processing or can just be stored for further
evaluation. By transmitting results to a personal
computer, debugging purposes can be served as
well. This capability is incorporated in our system
providing USB connectivity with a computer. The
system includes the UM232H FIFO-to-USB module,
which is responsible for all low and high level
operations for bidirectional communication with
computer's USB port. It uses a First In First Out
buffer to transmit or receive data and also has a
specific communication interface for write and read
purposes. At this point of our research we use the
USB module in asynchronous operation mode. This
mode does not need a clock to exchange data. Since
we mostly send data to the computer, we concentrate
on the write interface.

John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 151

Fig. 11 – (a) The VGA controller module.
(b) VGA controller's FSM.

The timing diagram for a typical write sequence

is shown in Fig. 12. The FPGA device must assert
interface signals according to the write sequence in
order to transmit. Apart from the correct order,
signal assertion is subject to timing constraints.
Timing constraints are defined by the manufacturer
and for successful transactions they must be adhered
precisely. Signal timing constraints related to the
write procedure are quoted in Table 4. A suitable
FIFO-to-USB VHDL controller has been
implemented, as a Finite State Machine. The state
machine is optimized to operate at 50MHz, derived
from the external crystal oscillator. The write
sequence is depicted in Fig. 13.

Fig. 12 – FIFO-to-USB write sequence.

Table 4 Timing constraints for FIFO-to-USB write
sequence.

Time Description Min Max Units

t1
WR active to TXE
inactive

1 14 ns

t2
TXE active to TXE
after WR cycle

49 ns

t3
DATA to WR active
setup time

5 ns

t4
DATA hold time after
WR inactive

5 ns

t5 WR active pulse width 30 ns

t6 WR active after TXE 0 ns

At the beginning, the FPGA controller stays at

the “Idle” state. In this state, no data is sent. CMD
constitutes an internal control signal, which is
asserted to '1' when the FPGA wants to transmit
data. When the CMD signal is asserted '1' from a

process, then the controller enters the “Send” state.
It stays in that state for as long as the TXE signal is
asserted '1'. The TXE is an output signal and when it
asserts '1', it indicates that UM232H module is busy
or the internal FIFO buffer is full, as a result of a
previous transmission. As long as the TXE signal is
asserted '1', every write attempt will be ignored.
When TXE is noticed '0' the controller asserts the
WR signal to '0', launches data on the data bus and
enters into state “Intermediate 1”. Transition to state
“Intermediate 2” occurs on the next clock pulse.
States “Intermediate 1” and “Intermediate 2” provide
two clock cycles delay, according to the timing
requirements of the write sequence.

Fig. 13 – FIFO-to-USB write sequence FSM.

Finally the process arrives to the “Complete

state”. It waits there until the CMD signal is asserted
'0' by the internal process that asserted it '1' and then
it returns to “Idle” state. The overall state machine
sequence is designed to be fully compatible with
UM232H write sequence.

5. MICROCONTROLLER FIRMWARE
AND COMPUTER SOFTWARE

The microcontroller constitutes a co-processing
unit in the system. The FPGA device exchanges data
with the PIC MCU. The microcontroller has
reserved two buffers in its internal RAM. Each
buffer's capacity is about 60 Kbytes, capable to hold
more than 90 rows of image data. In the first buffer,
data is saved as it is received from the SPI. After
processing, results are stored in the second buffer.
Thereafter, the microcontroller sends the contents of
the second buffer back to the FPGA. While the
microcontroller receives data that belongs to a
current row it can simultaneously transmit processed
pixels of previous rows. SPI uses DMA to access
RAM without CPU intervention. When a transfer is
completed, a request is passed to the DMA
controller and a transfer from the SPI receive
register to a location of the first RAM buffer is
performed. At the same time, a second request is
passed to the DMA controller and a transfer from a
location of the second RAM buffer to the SPI
transmit register is accomplished. The above scheme
is repeated every time a SPI transaction is

John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 152

performed. Thus, the microcontroller's CPU is
relieved from communication procedures and is
devoted entirely to the processing task. At this stage
of our research, only the communication interface is
implemented exchanging test data between the
FPGA and the microcontroller. In the future, when
more complex tasks will be requested, the PIC MCU
will undertake essential operations.

The microcontroller is also used for
interconnection with the CMOS image sensors
through I2C bus. It configures the resolution of the
captured image at 640x480 pixels, the horizontal and
vertical blanking intervals as well as the shutter
width. It also manages PIXCLK which defines
sensor's output pixel data rate. Taking into
consideration the bottleneck introduced by SDRAM
accesses, PIXCLK was defined at 24 MHz. Blanking
intervals and shutter width were configured
appropriately and as a result the sensor produces
images at 30 fps which is the maximum supported
frame rate for the overall system.

On the host computer side, a software application
has been developed in Visual Basic. The application
receives image data and displays them on the screen.
It is also capable of saving image frames to disk for
future research or for evaluation purposes. It uses
D2XX vendor's driver for USB communication. At
present, the supported transfer speed to the computer
is 4 fps, however, the proposed system is capable of
higher transfer rates. As a future project, a more
sophisticated computer interface will be developed
to support real-time transfer rates.

6. SYSTEM EVALUATION
The system uses two clock sources. The first

clock source is PIXCLK which is derived from the
CMOS sensor and is the main clock for the Image
Processing Core. The second clock source is the on
board oscillator with frequency 50MHz. This clock
is used for every other synchronous operation in the
system. The maximum frequency of PIXCLK that
meets the timing requirements of the implemented
image processing tasks was found to be 83 MHz.
This value was calculated using Altera's timing
analysis tool for the Mean Filter, Gauss Filter and
Sobel Edge Detector. This means that the Image
Processing Core is capable of processing 83
Mpixel/sec or 270 fps for a resolution of 640x480
pixels of gray-scale images. This frame rate could be
further increased by optimizing the circuit realized
by the synthesizer. However, this would be a
meaningless effort, since the overall performance is
reduced by other elements. The Data Manager, the
FIFO buffers and the internal peripheral controllers
are clocked by the 50 MHz oscillator. Since these
circuits execute only data transfers without applying
any processing, they can support higher clock

frequencies. A higher frequency would increase
performance but it would also increase power
consumption and radiation emitted from the board
leading to EMC or EMI issues. Thus a compromise
in performance is considered. The main bottleneck is
found in SDRAM operation. After pixels are read
and processed, pixel data is stored in SDRAM.
When output FIFO buffers are empty, pixel data is
read from SDRAM and buffers are loaded until they
are full. External SDRAM is also clocked at 50 MHz
with a signal derived from the FPGA. This means
that it is capable to read or write or combine
reads/writes at a maximum rate of 50 Mpixel/sec. In
practice, the speed is lower since internal SDRAM
operations such as auto-refresh cycles, bank/row
activation, precharge operation and etc. consume
considerable number of cycles. When a fast interface
is realized for image display, then maximum write
speed is reduced. When a slower output interface is
applied then write speed can be increased. When the
VGA interface is used, a bandwidth of 25
Mpixel/sec is required. Our experimental results
show that the image sensor's maximum clock
frequency, at which the system operates normally, is
24 MHz. Considering the horizontal and vertical
blanking intervals, our system is capable of
displaying plain or processed video data at 30 fps
which stands for real time performance. When our
system is connected with a host computer then it is
capable of processing at higher speeds but it can
display plain or processed video data at the rate
allowed by the USB interface.

As we have already mentioned, we did not
proceed to further optimizations for the maximum
theoretical speed of the Image Processing Core. We
have only replaced divisions with multiplications
with divisor's reciprocals and let the development
tools to synthesize and fit the circuit inside the
FPGA, using only logic elements. Hardware
multipliers have been left unused for future tasks
and necessary multiplications are performed using
only LEs. The total resources needed to implement
our system are presented in Table 5. These resources
include two frame grabbers, two Image Processing
Cores, two RAM buffers for storing plain or
processed data from both sensors, the Data Manager,
two RAM buffers for use with output device and the
SDR SDRAM/SPI/VGA controllers. When the VGA
controller is replaced with FIFO-to-USB controller,
in order to send frames to the computer, two more
I/O pins are required, but fewer logic elements are
allocated.

In Table 6, the power dissipation of the system
in operation is presented. Low power consumption is
important, since our vision system is designed for
robotic applications that often run on batteries. The
FPGA consumes about 190 mW. The

John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 153

Microcontroller and the SDRAM demand about 430
mW, which is a considerable consumption. This is a
trade off for having a co-processing unit
incorporated in the system. VGA DAC consumption
is 231mW. However, this is a supplementary
function used for evaluation and demonstration
purposes and will be excluded in a final application.
The main drawback is the power consumption of the
CMOS header board. It is supplied with additional
circuitry which demands a total of 500mW. For a
stereo vision system, the power consumption of both
sensors is 1 W. The choice of the specific sensor
header board aims to support high performance in
future research. However, if power consumption and
cost are essential elements in an application, a
replacement would rather be considered. The
Toshiba TCM8230MD color CMOS image sensor
may constitute a candidate, since it is inexpensive
and consumes only 60mW.

A main advantage of the system is the ultra-low
cost with only a small degradation in performance.
Not only the processing module, but the overall
system achieves real time speed and it provides
comparable results with other systems that cost
many thousands of euros. Excluding the CMOS
image sensor the system costs less than 80 euros. By
using two TCM8230MD devices instead of the 5
Mpixel sensors, the total cost of the complete stereo
vision system does not exceed 100 euros. To the best
of our knowledge, no other FPGA-based system
presented in the literature, that is intended to be used
for image processing, maintains the cost at such a
low level. Since the system is designed as a project
open to further development, it is fully implemented
in standard VHDL, free of dependencies on
Intellectual Property cores, with all its parts
optimized for minimum resource usage.
The proposed system is intended to be used in
advanced robotic vision projects. The HDL library,
introduced in this article, will be expanded to
include necessary processing tasks, such as stereo
vision, feature extraction, optical flow calculation
etc. On the hardware part, some enhancements are

also considered. Since the main bottleneck of the
system appears to be in the communication with the
SDR SDRAM, a replacement of this memory with a
DDR is considered. In this way, the overall speed
can be doubled using the same main clock frequency
and a processing rate of 60 fps can be achieved.
Another future enhancement is the implementation
of a high speed wireless link for transferring image
data to a base station. VGA and USB connectivity
will be removed from the mobile unit and will be
incorporated into the base station.

7. EXPERIMENTAL RESULTS

In this section we present image results
monitored while the overall system is in action. All
images have resolution 640x480. The image in Fig.
14 (a) is in Bayer encoding. It is transmitted to the
host computer as captured by the image sensor,
without any further processing. The image in Fig. 14
(b) is derived after demosaicing the first image. Fig.
15 shows results from the Edge Detector, as received
by the host application. The image in Fig. 15 (a) is
the output of the Frame Grabber in gray-scale. Fig
15(b) is the image produced applying the Sobel
masks and the thresholding procedure. The display
of the transmitted image on a VGA screen is
captured by a camera and is demonstrated in Fig. 16.
In the first picture the plain image is shown, while in
the second the corresponding edge detector results
are presented. The test rig of the developed system is
illustrated in Fig. 17.

Table 5. Resource usage.

Resources Available Used Percentage

Total LE 22320 2423 10,86%

Total pins 80 69 86,25%

Total memory
bits

608256 51360 8,44%

Embedded
9-bit multipliers

132 0 0%

Total PLLs 4 0 0%

Table 6 Power dissipation.

Structure Current drawn Power consumption

FPGA core 17mA at 1.2V 20,4 mW

FPGA analog circuitry supply 28mA at 2.5V 70 mW

FPGA I/O 30mA at 3.3V 99 mW

Microcontroller 100mA at 3.3V 330 mW

SDRAM 30mA at 3.3V 99 mW

VGA DAC 70mA at 3.3V 231 mW

CMOS sensor header boards 2x100mA at 5V 1000 mW

Total power dissipation for a stereo vision system in
operation

≈1850mW

John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 154

Fig. 14 – (a) Image in Bayer encoding. (b) Image after
demosaicing.

Fig. 15 – (a) Gray-scale image. (b) Edges of gray-scale
image.

Fig. 16 – (a) Gray-scale image on VGA screen. (b)
Edges of gray-scale image on VGA screen.

Fig. 17 – Test rig of the proposed system.

8. CONCLUSION

In this paper, the design and implementation of a
high performance video-processing FPGA/
microcontroller board is presented. The system is
based on a flexible modular architecture comprised
of a Cyclone IV Altera FPGA device and a 32-bit
PIC microcontroller. FPGA resources are allocated
to implement video processing functions and basic
peripheral controllers, while the MCU is able to
support peripheral functions and/or co-processing

tasks. The system includes a frame grabber suitable
to interface with two CMOS image sensors. It also
includes external SDRAM, able to store captured
frames, a VGA DAC module for fast image display
on a screen and a FIFO-to-USB module, providing
connectivity to a host computer for further
processing. The Image Processing Core processes up
to 270 fps and the overall system in action has a
proved performance of 30 fps. The controllers along
with basic video processing tasks require only a
small fraction of the available resources. The cost of
the proposed board is low compared to existing
commercial video kits or other implementations
published in the literature. The system is expandable
and is intended to host demanding machine vision
applications. The schematic and PCB designs and
the HDL source code of designed tasks are open to
the vision and robotics community for academic
purposes and will be further developed. Full access
to the necessary files for the reproduction of the
system is granted by addressing a request by e-mail
to the corresponding author.

6. REFERENCES

[1] H. Hagiwara, K. Asami, and M. Komori, FPGA
implementation of image processing for real-
time robot vision system, in Proceedings of the
5th International Conference on Convergence
and Hybrid Information Technology,
ICHIT’2011, Daejeon, Korea, (2011), pp. 134-
141.

[2] S. Venugopal, C. R. Castro-Pareja, and
O. Dandekar, An FPGA-based 3D image
processor with median and convolution filters
for real-time applications, in Proceedings of the
SPIE-IS and T Electronic Imaging - Real-Time
Imaging IX, San Jose, CA, (2005), pp. 174-182.

[3] I. S. Uzun, A. Amira, and A. Bouridane, FPGA
implementations of fast Fourier transforms for
real-time signal and image processing, IEE
Proceedings: Vision, Image and Signal
Processing, Belfast, (152) 3 (2005), pp. 283-
296.

[4] OpenCV (Open Source Computer Vision),
2013, available online on http://opencv.org/.

[5] Nvidia, CUDA: Parallel computing platform,
2013, available online on http://www.nvidia.
com/object/cuda_home_new.html, accessed
June 2013.

[6] J. A. Kalomiros and J. Lygouras, Design and
evaluation of a hardware/software FPGA-based
system for fast image processing,
Microprocessors and Microsystems, (32) 2
(2008), pp. 95–106 [doi: 10.1016/
j.micpro.2007.09.001].

John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 155

[7] D.-T. Lin, M.-C. Lin, and K.-Y. Huang, Real-
time automatic recognition of omnidirectional
multiple barcodes and DSP implementation,
Machine Vision and Applications, (22) 2
(2011), pp. 409-419.

[8] C. González, S. Sánchez, A. Paz, J. Resano,
D. Mozos, and A. Plaza, Use of FPGA or GPU-
based architectures for remotely sensed
hyperspectral image processing, Integration,
the VLSI Journal, (46) 2 (2013), pp. 89-103.

[9] J. Fowers, G. Brown, J. Wernsing, and G. Stitt,
A performance and energy comparison of
convolution on GPUs, FPGAs, and multicore
processors, Transactions on Architecture and
Code Optimization, (9) 4 (2013), art. no. 25.

[10] H. Hou, W. Zhang, D. Huang, and T. Zhang,
Design and realization of real-time image
acquisition and display system based on FPGA,
in Proceedings of the International Conference
on Mechanical Engineering and Technology,
ICMET’2011, 125, London (2012), pp. 565-
573.

[11] C. Li, Y.-L. Zhang, and Z.-N. Zheng, FPGA-
based CMOS image acquisition system,
Communications in Computer and Information
Science, (34) (2009), pp. 122-127.

[12] B. Yan, Y. Sun, F. Ding, and H. Yuan, Design
of CMOS image acquisition system based on
FPGA, in Proceedings of the 6th IEEE
Conference on Industrial Electronics and
Applications, ICIEA’2011, Beijing (2011), pp.
1726-1730.

[13] D. Huang, T. Zhang, H. Hou, and W. Zhang,
Design of system for high-frame frequency
image acquisition and remote transmission, in
Proceedings of the 3rd International Asia
Conference on Informatics in Control,
Automation and Robotics, CAR’2011,
Shenzhen (2011), pp. 743–750.

[14] R. Wang, Z. Mi, H. Yu, and W. Yuan, The
design of image processing system based on
SOPC and OV7670, in Proceedings of the
International Conference on Advances in
Engineering, ICAE’2011, Nanjing (2011),
pp. 237-241.

[15] P. Chalimbaud and F. Berry, Design of an
imaging system based on FPGA technology
and CMOS imager, in Proceedings of the IEEE
International Conference on Field-
Programmable Technology, FPT’04, Brisbane
(2004), pp. 407-411.

[16] P. Premaratne, S. Ajaz, R. Monaragala,
N. Bandara, and M. Premaratne, Design and
implementation of edge detection algorithm in
dsPIC embedded processor, in Proceedings of
the 5th International Conference on

Information and Automation for Sustainability,
ICIAfS’2010, Colombo (2010), pp. 8–13.

[17] Y. Said, T. Saidani, F. Smach, M. Atri, and
H. Snoussi, Embedded real-time video
processing system on FPGA, in Proceedings of
the 5th International Conference on Image and
Signal Processing, ICISP 2012, Agadir (2012),
pp. 85-92.

[18] S. Halder, D. Bhattacharjee, M. Nasipuri, and
D. K. Basu, A fast FPGA based architecture for
Sobel edge detection, in Proceedings of the
16th International Symposium on VLSI Design
and Test, VDAT’2012, Shibpur (2012), pp. 300-
306.

[19] S. Singh, A. K. Saini, and R. Saini, Real-time
FPGA based implementation of color image
edge detection, International Journal of Image,
Graphics and Signal Processing, (4) 12 (2012),
pp. 19-25.

[20] S. Veni, K. A. Narayanankutty, and M. Raffi,
Hardware implementation of edge detection on
hexagonal sampled image grids, International
Journal of Computer Applications, (24) 2
(2011), pp. 29-38.

[21] L. Tian, X. Liu, J. Li, and X. Guo, Image
preprocessing of CMOS image acquisition
system based on FPGA, International Journal
of Digital Content Technology and its
Applications, 6 (20) (2012), pp. 130–139.

[22] B. Putz, M. Bartyś, A. Antoniewicz,
J. Klimaszewski, M. Kondej, and M. Wielgus,
Real-time image fusion monitoring system:
Problems and solutions, in Proceedings of the
4th International Conference on Image
Processing and Communications, IPC’2012,
Bydgoszcz (2012), pp. 143-152.

[23] X. Zhang and Z. Chen, SAD-based stereo
vision machine on a system-on-programmable-
chip (SoPC), Sensors, (Switzerland), (13) 3
(2013), pp. 3014-3027.

[24] C. Ttofis, S. Hadjitheophanous,
A. S. Georghiades, and T. Theocharides, Edge-
directed hardware architecture for real-time
disparity map computation, IEEE Transactions
on Computers, (62) 4 (2013), pp. 690-704.

[25] P. Zicari, S. Perri, P. Corsonello, and
G. Cocorullo, Low-cost FPGA stereo vision
system for real time disparity maps calculation,
Microprocessors and Microsystems, (36) 4
(2012), pp. 281-288.

[26] S. Jin, J. Cho, X. D. Pham, K. M. Lee,
S.-K. Park, M. Kim, and J. W. Jeon, FPGA
design and implementation of a real-time stereo
vision system, IEEE Transactions on Circuits
and Systems for Video Technology, (20) 1
(2010), pp. 15-26.

John V. Vourvoulakis, John A. Kalomiros and John N. Lygouras / International Journal of Computing, 14 (3) 2015, 141-156

 156

[27] G. K. Gultekin and A. Saranli, An FPGA based
high performance optical flow hardware design
for computer vision applications,
Microprocessors and Microsystems, (37) 3
(2013), pp. 270-286.

[28] S. Zhong, J. Wang, L. Yan, L. Kang, and
Z. Cao, A real-time embedded architecture for
SIFT, Journal of Systems Architecture, (59) 1
(2013), pp. 16–29.

[29] L. Siéler, C. Tanougast, and A. Bouridane, A
scalable and embedded FPGA architecture for
efficient computation of grey level co-
occurrence matrices and Haralick textures
features, Microprocessors and Microsystems,
(34) 1 (2010), pp. 14-24.

[30] B. Tippetts, D. J. Lee, K. Lillywhite, and
J. Archibald, Review of stereo vision
algorithms and their suitability for resource-
limited systems, Journal of Real-Time Image
Processing, Available on line at
http://link.springer.com/content/pdf/10.1007%2
Fs11554-012-0313-2.pdf on 1/18/2013.

[31] D. Menon and G. Calvagno, Color image
demosaicking: An overview, Signal
Processing: Image Communication, (26) 8-9
(2011), pp. 518-533.

[32] G. Li and Z. Wu, Design and realization of
SDRAM controller based on FPGA, in
Proceedings of the International Conference on
Measurement, Instrumentation and
Automation, ICMIA’2012, Guangzhou (2012),
pp. 2233-2237.

[33] X. Tian, J. Li, Y. Fan, X. Yu, and J. Liu,
Design and implementation of SPI
communication based-on FPGA, in
Proceedings of the International Conference on
Advanced Engineering Materials and
Technology, AEMT’2011, Sanya (2011),
pp. 2658-2661.

[34] F. Ying and X. Feng, Design and
implementation of VGA controller using
FPGA, International Journal of Advancements
in Computing Technology, (4) 17 (2012),
pp. 458-465.

John V. Vourvoulakis recei-
ved his Diploma in 2002 and
his MSc Degree in 2004 from
the department of Electrical
and Computer Engineering of
the Democritus University of
Thrace. His research interests
are in the field of embedded
systems based on FPGAs and
microcontrollers. He is also

working as adjunct teaching staff in the
Technological Educational Institute of Lamia,
Greece.

John A. Kalomiros received
the degree of Physics and a
MS degree in Electronics from
the Aristotle University of
Thessaloniki, Greece. His PhD
thesis is on the development of
vision systems for robotic
applications. His research
interests include design of
embedded systems, machine

vision and semiconductors. He is faculty member in
the department of Informatics Engineering, Techno-
logical Educational Institute of Central Macedonia,
Greece.

John N. Lygouras received
the Diploma degree and the
Ph.D. in Electrical Engineering
from the Democritus University
of Thrace, Greece in 1982 and
1990, respectively, both with
honors. From 2012 he is a
Professor at the Department of
Electrical & Computer Engi-
neering in DUTh.

His research interests are in the field of robotic
systems trajectory planning and execution. His
interests also include analog and digital electronic
systems and controller design for underwater
remotely operated vehicles.

