Chefi Triki, Lucio Grandinetti / Computing, Vol. 1, Issue 1 (2002), 77-81

5]

computing@tanet.edu.te.ua
www.tanet.edu.te.ua/computing

] ~ ISSN1727-6209
Intemational Scientific

COMPUTATIONAL GRIDS TO SOLVE LARGE SCALE OPTIMIZATION
PROBLEMS WITH UNCERTAIN DATA

Chefi Triki, Lucio Grandinetti

University of Calabria

Department of Electronics, Informatics and Systems
87030 Rende (CS) — ITALY

e-mail : chefi@parcolab.unical.it

URL: http:/www.parcopab.unical.it

Abstract: In this paper we discuss the use computational grids to solve stochastic optimization
problems. These problems are generally difficult to solve and are often characterized by a high number
of variables and constraints. Furthermore, for some applications it is required to achieve a real-time
solution. Obtaining reasonable results is a difficult objective without the use of high performance com-
puting. Here we present a grid-enabled path-following algorithm and we discuss some experimental

results.

Keywords: - Large-Scale Optimization Problems, Two-Stage Stochastic models, Grid Computation,

Condor
1.INTRODUCTION

Many real world applications are characterized
by input data which are uncertain, incomplete and/
or erroneous. One way to deal with this difficulty
is to model these data as random variables with
some probability distribution. Stochastic Program-
ming (SP) is an effective tool used to solve this
kind of problems giving the optimal solution across
the different events that could be observed.

We focus on two-stage SP problems with a fi-
nite and discrete distribution of the random vari-
ables. The realization of the random variables con-
sists in the occurrence of one of the N possible
events, known as scenarios. In this formulation,
decision variables are divided into two groups:
anticipative decisions taken before knowing the
random values, and adaptive variables determined
after the realization of the random event. For each
scenario /=1, .., N a corresponding adaptive vec-
tor is calculated containing the relative decisions.

Using a mathematical representation the prob-
lem can be formulated as following (see [1] for
details):

N
) T
min ¢’ x + pic Yy

I=1

s.v. Ax=»b
T, x+Wy=h, I=1..N
xi 0
y,i0 I=1..N

It can be easily noted that the number of vari-
ables and constraints increases considerably as the
number of scenarios N increases. For most of the
real-world applications N is very big so the result-
ing problems can not be solved using conventional
sequential systems. The use of parallel machines
is necessary to achieve high level of efficiency in
reasonable time. The parallelization techniques is
based on the idea of splitting the overall problem
in order to handle N independent sub-blocks of the
constraint matrix, each block corresponding to one
scenario.

For the implementation of the parallel algorithm
on a computational grid we used Condor as a resource
management software. After a short description of
the parallel algorithm, we will present the motiva-
tions behind the choice of Condor and then we de-
scribe the basic parallel implementation by using the
message-passing paradigm. The paper will be con-
cluded by experimental results and a summary.

2. PARALLEL ALGORITHM

For the solution of the limited recourse model
we used a path-following interior point algorithm
as described in [1]. The algorithm is based on the
iterative solution of a symmetric linear system of
the following form:

ADAT At=y (H
where A is the constraints matrix of the optimi-

77

Chefi Triki, Lucio Grandinetti / Computing, Vol. 1, Issue 1 (2002), 77-81

zation problem and D is a diagonal positive defi-
nite matrix. Both the right hand side vector ¥ and
the diagonal matrix D depend on the current solu-
tion and are, consequently, updated at each itera-
tion of the path-following scheme. The output of

system (1), i.e. the dual step Ar , isused to update

the iterate that moves along the central path to reach
the optimal solution.

The repeated solution of the system (1) at each
iteration of the PF algorithm represents the most
expensive task in the solution procedure. Its imple-
mentation on parallel platforms should reduce the
solutiontime and increase the size oftractable prob-
lems. The parallelization of the other steps of the
algorithm will not be discussed in this paper since
it is either trivial or impossible.

Since the computation associated with the N
scenarios may be performed independently, the
proposed approach can fruitfully benefit from a
scenario-oriented parallelism. Only a modest
amount of data movements is required among pro-
cessors in order to collect the information needed

for the successive iterations.

‘ Scen. 1 ‘ ‘ Scen. 2 ‘

L

Scenarios-Coupled Matrices

A
Scen. 1 Scen. 2
\ ‘

Form the Dual Step

Fig. 1 — Parallel Scheme of the Path-Following
Algorithm.

More specifically, the parallel scheme proposed
in our previous paper [1] can be extended to this
case by reporting some slight modifications as fol-
lows: a scenario-wise parallelism is performed
across the N independent tasks, then a reduction is
required to form the scenario-coupled matrices
needed by all independent tasks in order to achieve
the computation of the dual step’s components. The
parallelization strategy can be represented sche-
matically as shown by the chart in Fig. 1.

3. CONDOR ENVIRONMENT

In this section we will briefly outline the char-
acteristics of the Condor grid-computing environ-

ment, with particular emphasise on the advantages
that have encouraged us to choose this software
among many other available packages.

Condor is essentially a “specialized batch sys-
tem for managing compute-intensive jobs” [3] tai-
lored for opportunistic environments. Indeed, Con-
dor is designed to find the free resources in a dy-
namically changing configuration, and to use them
in order to execute the submitted jobs. Several in-
teresting features, such as Checkpoint, Migration
and Matchmaking, makes of Condor a quite effec-
tive tool for computational grids. Moreover, Con-
dor is also suitable to be used with dedicated sys-
tems.

Some of the more attractive features offered by
Condor and from which our implementation can
take advantage are the following:

* Condor can be configured to save the state of
the running jobs at a given interval of time. In case
of failure or unexpected interruption of the pro-
cess , the state of the process is preserved and the
execution of the job can be continued starting from
the interruption point;

* the checkpoint data can be used to migrate a
process from a computational resource to another.
A job should migrate if the resource it was using is
needed by a user with higher priority or by the
OWners;

» Matchmaking is used to find the appropriate
resources to execute the submitted jobs. This ap-
proach s based on finding all the feasible resource-
job pairs and choosing the best matches among
them. To perform the matchmaking condor needs
indications on the requirements and preferences of
both the resource owners and the job submitters.
These indications can be described by defining the
so-called ClassAds. Owners and users use Class Ads
as sellers and buyers use classified advertisement
on the newspapers: the firsts describe their prod-
ucts (the resources) and the seconds define their
(computational) needs. By using Boolean expres-
sions ClassAds permits to find easily the optimal
matching on the grid;

* Even though the standard Message Passing
Interface [4] is not yet implemented, it is possible
to use the Parallel Virtual Machine [10] environ-
ment made available within Condor by an inde-
pendent module called Condor-PVM;

* Condor can share his resources with other
flocking and can be used to submit jobs within the
Globus package [8].

Finally, it is important to note that for the use
of Condor the root privileges are not needed. In-
deed, it is enoughto have an account with username
condor and it is possible to proceed with the in-

78

Chefi Triki, Lucio Grandinetti / Computing, Vol. 1, Issue 1 (2002), 77-81

stallation and the execution of all the facilities of
Condor.

4. MESSAGE PASSING IMPLEMENTATION

The parallel PVM implementation is based on
the parallelization scheme for an interior point
method as described in [1]. In this scheme most of
the computation tasks, corresponding to the inde-
pendent scenarios, are carried out in parallel on
the available processors. Some communication and
synchronization points are necessary in order to
form the scenarios-coupled matrices.

With the aim of developing a grid-enabling
solver, a static implementation of the PVM ver-
sion does not seem to be an appealing choice. It is,
indeed, unlikely to have the chance to run programs
on dedicated grids for which an ‘’a priori” split-
ting of the workload fits well with the static con-
figuration of the system. Furthermore, for real
world applications, the number of scenarios is too
big to match the available processors of any nowa-
days systems.

A more attractive alternative is based on a dy-
namic version that implements the master-slave
model. The master task schedules the independent
tasks corresponding to the N scenarios of the prob-
lem. The master spawns also the slaves and assigns
to each slave its first task to be processed. Once a
slave is idle it requests the master for the next not
processed task until all the tasks are assigned.

This scheme is not a classic master-slave model.
The master, indeed, does not have the task of col-
lecting the processed data because this will increase
the number of communication points within the al-
gorithm and, consequently, deteriorates the perfor-
mance. Instead, each processor will keep the data
corresponding to its processed tasks in order to
achieve the reduction operationto formthe scenario-
coupled matrices. The master program, actingin this
case as a scheduler of the tasks, can be ran on a
dedicated host machine (workstation, PC, ...).

The reduction should be performed by using two
different kinds of PVM subroutines. The broad-
cast of partial and final results among all the slaves
and the sum operator call to form the scenarios-
coupled matrices. Once the reduction among pro-
cessors is performed, each processor will continue
to operate on the same data corresponding to the
task it had in hand just before the synchronization
point. This will allow the reuse of the cached data
and will avoid further communications with the
master.

This dynamically load balancing implementa-
tion combined with a careful tuning and optimiza-
tion of the algorithm to fit the characteristics of

both the single processor and the whole parallel
system have shown good performance in terms of
speedups on standard stochastic test problems by
using an Origin2000 architecture machine.

5. GRID-ENABLED EXPERIMENTS

In this section we will discuss the performance
of the parallel implementation of the Path-Follow-
ing algorithm ona grid. Computational experiments
have been carried out by using some standard sto-
chastic test problems collected by Holmes [5]. The
experimental mini-grid used has been defined by
using two different Origin2000 machines having
the characteristics described in Table 1.

Table 1. Origin2000 machines characteristics

Machine | Number of CPU | RAM memory
Origin 1 8 512
Origin 2 4 1024

The two Origin machines are located in two
different Departments of the University of Calabria.
The latency time for a communication between the
two machines is quite high. For example, the
roundtrip measured by using the ping command
needs some milliseconds.

5.1. Dedicated Grid

In order to evaluate the influence of the over-
head caused by the communication between the
two hosts with respect to the overhead of the com-
munication within each single machine, we car-
ried out some experiments in a dedicated environ-
ment. During the small slice of time in which it
was possible to have both the machines idle, we
ran the parallel algorithm on two and eight proces-
sors, respectively.

Origin 1

0 |,

Local PVM tasks

Origin 2

I

Local PVM tasks

Fig. 2 — Scheduling of the PVM tasks
on the Grid.

In the first case, we generated only one process
on each machine. Only inter-machines communi-
cation is involved in this execution. In the second
experiment we have both inter-machines and in-
tra-machines communications. Four PVM pro-
cesses have been spawned on each machine. The
critical operation of reduction is done in two dif-
ferent steps: an intra reduction among the four tasks

79

Chefi Triki, Lucio Grandinetti / Computing, Vol. 1, Issue 1 (2002), 77-81

belonging to each machine and then a PVM call
among the two machines. Schematically, this ap-
proach can be represented as depicted in Fig, 2.

Table 2. Times on dedicated grid (sec.)

Test Problem 2 tasks 8 tasks
Scagr7.432 4.61 2.99
Scsd8.432 22.62 12.13
Sctap1.480 21.44 10.60

The results collected in a dedicated environment
are reported in Table 2 and depicted in the Fig 3.
These experiments have been carried out by using a
static load balance approach. Ina dedicated environ-
ment this approach is preferred with respect to the
dynamic one because it avoids some communication.
In this case, indeed, there is no need to have a master
task and the implementation based onthe slave-alone
model follows the scheme depicted in Fig. 1.

5.2. Non Dedicated Grid

Using a non dedicated system the number of a
priori unknown factors that can influence the per-
formance of the code increases. Among these fac-
tors the latency of the communication network and
the level of use of the different machines of the
grid. For this reason, it is preferable in this case to
use the dynamic version of the implementation as
described in section 3. The allocation of the tasks
to the different processors has been done by acti-
vating the matchmaking facility of Condor.

[6)]

25

$ 2 []

L

2]

E 15 [2 tasks
S 10 m 8 tasks
7

(7]

X

w

o

Scagr7.432 Scsd8.432 Sctap1.480

Test Problem

Fig. 3 — Results on dedicated Grid.

The results collected on a set of test problems
are summarised in Table 3. We report the execu-
tion time (in seconds) by varying the number of
slaves spawned by the master task. For the sake of
comparison, we report in the same Table the ex-
ecution time of the same test problems on a single
local machine (i.e. Origin 1) without activating
Condor environment (italic values).

Table 3. Times on non dedicated grid (sec.)

of Tasks
Test Problem 1 2 3 4
Scagr7.432 5.23 3.80 3.24 3.04
520 | 3.06 | 2.40 2.13
Scagr7.216 2.75 2.19 1.93 1.84
2.73 1.78 1.49 1.28
Scsd8.216 12.08 | 8.62 7.01 6.52
11.88 | 7.46 | 6.04 5.13
Sctapl.216 13.88 | 9.45 7.30 6.42
13.80 | 8.32 6.55 5.92

From these results we can note immediately that
the execution time decreases as number of slaves
increases. The relative decrease depends on the
structure of the test problem and the number of
scenarios.

From the other side, it is easy to note the effect
of the communication overhead on the algorithm
performance. This effect can be calculated as the
difference between the execution time on the grid
(regular values) and on the local Origin machine
without Condor (italic values). The gap increases
as the number of tasks increase. By generating only
one task the gap is very small and represents the
effect of the activation of Condor on the Origin
machine. When two tasks are spawned the gap is
caused by the activation of Condor and also the
inter-machines communication since no commu-
nication among the processors of the same machine
is needed in this case. In addition to these two
reasons, a further increase of the gap can be ob-
served when we are in presence of intra-communi-
cation overhead. This is the case of the execution
time by using more than two slaves.

6. CONCLUSIONS

In this paper we dealt with the solution of opti-
mization problems with uncertain input data. We
modelled the random variables as a set of finite
scenarios and we formulated a two-stage stochas-
tic problem. We exploited the discrete representa-
tion of the random data to split the overall con-
straints matrix in small sub-blocks and we devel-
oped a scenario-wise parallelization scheme. Com-
putational results on an experimental mini-grid has
shown how we can take effective advantage from
the use of computational grid to solve difficult
optimization problems. We expect that this trend
will persist in the solution of huge stochastic prob-
lem whenever a real computation grid becomes
available.

80

Chefi Triki, Lucio Grandinetti / Computing, Vol. 1, Issue 1 (2002), 77-81

7. REFERENCES

[1] P. Beraldi, L. Grandinetti, R. Musmanno,
and C. Triki, Parallel algorithms to solve stochas-
tic linear programs with robustness constraints.
Parallel Computing, 26:1889—1908, 2000.

[2] S. W. Bova et alt. Dual level parallel analy-
sis of harbor wave response using MPI and
OpenMP. The International Journal of High Per-
formance Computing, 14(1):384—392, 2000.

[3] Condor Team. Condor Version 6.1.15
Manual. University of Wisconsin, 2000.

[4] Message Passing Interface Forum, MPI-2:
Extentions to the Message Passing Interface, 1997.

[5] D. Homes. A collection af stochastic pro-
gramming problems. Rapporto tecnico 91 - 11,
Department of Industrial and Operations Engi-
neering, University of Michigan, 1994.

[6] S. Zenios and Y. Censor. Parallel Optimi-
zation: Theory, Algorithms and Application. Ox-
ford University Press, 1997.

[7] O. Chen, M. C. Ferris, and J. T. Linderoth.
FATCOP 2.0: Advanced Features in an Opportu-

nistic Mixed Integer Programming Solver. Techni-
cal Report, Computer Science Department, Uni-
versity of Wisconsin, 1999 (to appear on Annals of
Operations Research).

[8] The Globus Project. The Globus Toolkit
1.1.3 System Administration Guide. Available on
the web from: http.//'www.globus. org/toolkit/docu-
mentation/, 2000.

[9] M. Livny. Personal Condor — Your Win-
dow to the Computational Grid. Proceedings of
the Advanced Research Workshop on High Perfor-
mance Computing, Cetraro, Italy, June 2000.

[10] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam. PVM: Parallel Vir-
tual Machine, A users’ guide and tutorial for net-
worked parallel computing, The MIT Press, 1994.

[11] J.-P. Goux, J. T. Linderoth, and M. Yoder.
Metacomputing and the Master-Worker Paradigm.
Preprint ANL/MCS-P792-0200, Mathematics and
Computer Science Division, Argonne National
Laboratory. Available on the web from http://
www.mcs.anl.gov/metaneos/publications, 2000.

Chefi Triki is an assistant
professor at Mathematics De-
partment of the University of
Lecce, Italy. He received his
PhD at the University of
_ Calabria in May 1998 in the

= arca of operations reserach.

. W " His interests are mainly in the

= 'é-': fields of stochastic program-

ming and parallel optimization

algorithms with application to energy management
problems.

LUCIO GRANDINETTI.

Full Professor at the De-
partment of Electronics, Infor-
matics and Systems of Univer-
sity of Calabria; scientific direc-
tor of the Parallel Computing
Laboratory at the University of
Calabria; co-director of NATO
ARW on Software for Parallel
Computation, Italy (1992) and
NATO ARW on High Perfor-
mance Computing, Italy (1996); member of numer-
ous organising and scientific committees of inter-
national conferences on high-performance paral-
lel computing (e.g. EUROPAR, HPCN Europe,
PARCO); member of IEEE Technical Committee
on Parallel Processing; founding member of the
International Society of Computational Engineer-
ing and Sciences (ISCES).

His areas of expertise are the design of numeri-

cal algorithms for parallel and distributed computer
systems, modeling and simulation of large scale
systems, numerical optimisation methods for com-
plex problems, software engineering aspects re-
lated to parallel processing.

He has been and is currently involved in re-
search projects sponsored and financed by the
National Research Council of Italy, by CEC, and
by Italian Ministry of Research.

He has been evaluator and reviewer of CEC
Research Projects in the IT Programme ESPRIT,
during 1993 and 1995. He is currently serving as
reviewer of ESPRIT projects in the 4" framework
programme and evaluator of research projects in
the 5" Framework Programme.

He is co-author of more than 60 papers in refer-
eed journals, and co-editor of several books on
numerical methods for nonlinear optimization, com-
putational engineering, parallel algorithms and soft-
ware for vector and parallel computing. He is mem-
ber of the editorial board of the following interna-
tional journals:

Parallel Computing (Elsevier)

Parallel Computing Special Issues on Applica-
tions (Elsevier)

Optimization Methods and Software (Gordon
and Breach)

He is also co-Editor of the book series “Scien-
tific and Engineering Computation” published by
MIT Press (USA).

81

