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Abstract: The Potsdam Wireless Testbed supports validation and evaluation of Wi-Fi radio stacks and wireless 
applications in environments with heterogeneous hardware. In contrast to simulators, wireless testbeds support the 
network stack validation with specific radio chipsets and radio signal propagations. Furthermore, wireless testbeds 
unburden programmers from manually updating software on nodes. Scheduled test-runs are executed automatically for 
a defined duration including compilation and deployment of the protocols and measurement scripts as well as 
collection of measurement results and log files. The testbed supports heterogeneous processor architectures and radio 
chipsets via internal cross compilation. The developer can overview the visualized results of its validation and therefore 
can focus on the code and the results. Next to the support of several device and processor architectures, the Potsdam 
Wireless Testbed is intended to support additional radio frequency ranges as well as mobile device. 
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1. INTRODUCTION 
This article introduces the Potsdam wireless 

testbed utilized for the validation and evaluation of 
radio network stacks and is an extended version of 
an article published in the proceedings of the 
Wireless communications and information 
conference [1]. 

A necessity for automated protocol and 
application validation and evaluation was recognized 
in the ongoing development of the KopAL [2] 
support system for elderly. In KopAL users are 
equipped with mobile devices that assist them by 
reminding on upcoming appointments, recognizing 
critical situations (such as falls or losing-tracks) and 
offering emergency-call functionality.  

Since the mobile devices are maintained by their 
caretakers, long device runtimes and reduced 
maintenance times are necessary, to be accepted. 
The development of the necessary energy efficient 
protocols (e.g. for communication and localization) 
requires regular validation and evaluations on 
multiple device types. These devices’ characteristics 
differ regarding radio chips (with radio frequency 
utilization or functionality variations) and processor 
architectures.  

In case of KopAL, the development covers the 
routing, logical link control (LLC) or media access 
control (MAC) layers as well as the radio device 
drivers and application logic. Therefore the KopAL 

indicates a tendency towards mobile applications 
that regularly require cross layer developments and 
wireless communication stack manipulation to 
achieve precise in-door localization, wireless sensor 
node access or higher energy efficiency. 

The development of wireless network stacks 
requires extensive validation and evaluation, in 
general. Since changes may influence additional 
layers, an overall validation und evaluation is 
required especially in case of cross-layer network 
stack implementations (as found in Sub-1 GHz 
networks or RFID). As a result, the proper 
functioning of wireless network stacks can only be 
ensured by validating the complete communication 
stack, as recognized by Moss [3].  

With heterogeneous hardware even the functional 
spectrum of device drivers and chips differs as 
recognized in [4] and therefore radio hardware and 
drivers’ influences have to be taken into account 
during validation and evaluation, as well. 

The proper functioning of wireless network 
stacks must sufficiently handle inter-node 
communication and physical phenomena such as 
noise or reflections to assure sufficient robustness.  

As a result, network stacks must be validated 
with multiple nodes in a representative environment 
(with realistically placed obstacles and mobility) to 
assure its proper functioning within the dedicated 
environments.  
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Frequent node reprogramming is a time 
consuming part of the validation and evaluation 
process. The manual alteration of node software 
(including node collection, reprogramming and node 
redistribution) is time consuming and deployed 
nodes are hard to access. To increase the validation 
efficiency, alternative approaches have been 
developed that aim to automate the deployment of 
software on distributed wireless devices and reduce 
the manual validation and evaluation effort.  

Existing automated validation or evaluation 
systems can be categorized in network simulators, 
wireless testbeds and hybrid solutions as discussed 
in Section Related Work. As shown, the advantage 
of testbed approaches is that they support the 
validation of the full network stack including the 
radio chipsets functionality.  

However, since existing testbeds mostly focus on 
homogeneous equipment, they have limited value 
for the validation of networks that include devices 
with heterogeneous hardware capabilities (such as 
different radio chipsets, processor architectures or 
memory). Limited solutions support automated node 
mobility. Since the KopAL system requires the 
network stacks validation for heterogeneous devices 
(as summarized in Section 2) and node mobility, the 
existing solutions do not fit our requirements, as 
discussed in Section 3 of the KopAL project. A 
novel testbed system has been developed (as 
described in Section 5 to 7) and successfully 
deployed within the Potsdam Wireless test bed. 
Section 8 gives an overview of future extensions, 
which are currently under development. 

 
2. HARDWARE 

As shown in Figure 1, the Potsdam Wireless 
Testbed includes a PC with Ethernet and Wi-Fi 
(IEEE 802.11 b/g) network interfaces acting as a 
testbed management server and the following Wi-Fi 
devices: 
• The LinkSys WRT54GL Router1 supports the 

IEEE 802.11b/g Wi-Fi standard via a Broadcom 
Wi-Fi chipset and 4 +1 Ethernet interfaces. Next 
to 4 10/100 GBit Ethernet connectors 16 MB 
main memory, 4 MB flash drive and a 
Broadcom BCM5352 MIPS processor with 200 
MHz. 

• The Nokia N8x02 devices are supported as 
mobile devices. They contain IEEE 802.11b and 
g Wi-Fi transceivers, next to an USB serial 
connection, a 400 MHz ARM CPU, 128MB 
memory. 

                                                 
1http://www.linksysbycisco.com/LATAM/en/products/WRT54
GL (14.09.2011) 
2 http://mea.nokia.com/support/product-support/nokia-n800-
internet-tablet (14.09.2011) 

• The Openmoko Freerunner3 is an alternate 
supported mobile device type. It contains as well 
IEEE 802.11b/g Wi-Fi transceivers, an USB 
serial connection, a 400 MHz ARM CPU, and 
256MB memory. 

Therefore the testbed has to support different 
processor architectures such as x86, ARM 9E and 
MIPS. As described in Section 3.3, this fact is 
concealed from the developer, as long as the 
compilation succeeded. In case of errors, the 
developer can analyze the logfiles and after 
alterations restart the compilation.  

Depending on the devices network interfaces and 
mobility characteristics, the devices are connected 
with the testbed server. While the routers are 
accessible via an Ethernet connection, the mobile 
devices connect via Wi-Fi links – either with an in 
range Wi-Fi access point or directly with the server.  

Since the inclusion of additional devices that 
include Sub-1 GHz radio network interfaces as the 
Chronoz Watch and the Mica2 sensor nodes is 
intended the testbed system should be able to handle 
multiple network standards and additional device 
classes. 

 
3. REQUIREMENTS 

The development of the KopAL System indicated 
general requirements that must be handled by the 
Potsdam Wireless testbed. The devices of the 
KopAL project have heterogeneous characteristics. 
These heterogeneous characteristics include the 
available radio interfaces (either the chipset and the 
frequency ranges and protocols), processor 
architectures and processing, memory or energy 
capabilities. In addition the devices mobility differs 
between the different device classes – while some 
remain stationary (as the Linksys Wi-Fi routers) 
others are mobile since carried around by the users. 
The validation system must handle this device 
diversity and the resulting necessities, which are 
further discussed in detail.  

 
 

                                                 
3 http://wiki.openmoko.org/wiki/Neo_FreeRunner (14.09.2011) 

 
Fig. 1 – Testbed hardware 
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The intended radio standard diversity (even on a 
single node) requires the support of multiple 
network interfaces and the dynamic (de-)activation 
per node. In addition, the functional implementation 
provided by radio chips and device drivers differs 
from each other. As recognized in chips of the Sub-1 
GHz frequency band, the implementation of CRC 
checks is supported by hardware in selected chipsets 
(such as the CC1100) while others (such as the 
CC1000) outsource it to the network drivers. In 
these frequencies even encoding of the Checksum 
varies (between high-bit and low-bit order). The Wi-
Fi chipset variances as found in timestamp precision 
(of received messages) was recognized by Haustein 
[4] but complicates the network stack adaptation, 
next to differences between FullMAC and SoftMAC 
network cards. Since radio stacks may highly 
depend on functionalities (such as timestamp 
precision, RSSI measurements and CRC checks) 
network stacks must be evaluated on all relevant 
radio chipsets. The combination of different 
hardware devices with heterogeneous radio chips is 
problematic as well (e.g. by differing CRC 
checksum encoding or signal modulation). To 
validate robustness for these error types the 
validation must include all potential radio chipset 
combinations.  

The heterogeneity of the devices (of the KopAL 
project) is not limited to the included radio chipsets. 
The devices as well include a various processor 
architectures (such as x86, ARM and MIPS). The 
compilation of the network stack for the different 
architectures should be handled autonomous by the 
testbed system, to relieve the programmer from 
preparing several solutions.  

In addition, the available main memory of the 
devices varies. This has to be taken into account, 
since limiting the storage of measurement and log 
file on the devices during test runs. To exclude 
potential message losses, the testbed must handle 
this challenge as well.  

The KopAL system includes localization 
functionality and supports node mobility. Since the 
node mobility may influence the link stability and 
the topology changes, it must be evaluated as well. 
To assure the comparability of the results, the node 
mobility must be reproducible. 

While some devices exclude an internal energy 
supply (and are charged via power connectors) 
mobile devices include batteries and therefore are 
energy critical. Since the energy efficiency is a 
critical factor of a network stack – the testbed should 
support the collection of energy consumption as well. 

Additional aspects of heterogeneity include 
supported programming languages for measurement 
scripts. 

 

4. RELATED WORK 
The manual reprogramming of nodes for the 

validation of wireless network stacks, can be 
overcome by several automated validation systems. 
These systems can be categorized as follows:  
• Network simulators emulate virtual devices and 

simulate the message transmission between 
them with software. For simulating radio 
networks, the message transmissions are 
calculated via radio wave propagation models 
(such as [5] and [6]). Since the network stack is 
loaded into the simulator, developers must not 
reprogram multiple devices. In addition, for 
network simulation no specific hardware 
equipment is required. The limited investments 
and the reduced deployment times make 
network simulators a good choice for research 
groups with limited resources. In addition, 
simulators enable the evaluation of network 
stacks and protocols on tremendous amount of 
nodes. Simulators as well give easy debugging 
functionality and runtime speed-ups (by time 
accelerated).  

However, simulators include several drawbacks 
that limit their validation usage to primer functional 
test of the upper layers.  

Current radio propagation models approximate 
the radio propagation for algorithms efficiency, 
since “propagating each message all over the 
playground and hence delivering it to each node, 
slows down the simulation.”[6] Therefore, if not 
excluded, these models [7] approximate phenomena 
such as interference, reflection or diffraction via ray 
tracing. In addition, the influence of obstacles (e.g. 
containing metal or water) on radio waves signal 
strength is excluded from any propagation 
algorithms, to the authors’ best knowledge. 

The recognized differences of radio chipset 
supported functionalities cannot be covered by 
simulators, making a validation on the utilized 
hardware indispensable. 
• Testbed systems automate the deployment and 

validation process of network stacks on multiple 
devices. Therefore testbeds relieve developers 
from manual software-deployments, by 
automatically updating software on nodes. Next 
to the automatic update mechanism testbeds 
support the initiation and termination of test runs 
including the collection of measurement results 
and log files. Several existing testbeds include 
node mobility, either via robots [8], [9], or via 
humans carrying devices [10]. A major 
drawback of testbed systems is the limited 
debugging support, which in contrast the 
detailed simulation debug information is mainly 
limited to message statistics or log output (as 
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Figure 2: Testbed state transitions 

found in MoteLab [11]). While most existing 
wireless testbed systems support a single radio 
frequency, the EWANT [12], WHYNET [13] 
and DES [14] testbeds include wireless network 
transceivers for multiple frequencies (and 
combine 2,4GHz Wi-Fi with 868MHz 
transceivers). However even this system limits a 
test run to one frequency, while the alternate 
ones utilization is limited for configuration 
purposes instead of combined routing purposes. 
As a result these testbeds do not support the 
evaluation of hybrid networking solutions, what 
we aim for.  

• Emulators, such as MiNT [15], combine node 
simulation with package transmissions over 
physical radio links by utilizing antennas (or 
attenuators) for message transmissions while the 
processing is executed on a single computer 
(similar to the simulator approach). Therefore 
emulators combine the advantages of both 
(efficient debugging of the simulation results 
with realistic radio signal distribution 
characteristics). However, the proper 
functioning cannot be validated on different 
hardware devices via hybrid solutions.  

The above mentioned systems include the 
following restrictions, making their utilization for 
the KopAL system validation suboptimal. The 
simulation based testing and debugging seems 
appropriate for initial debugging, testing and 
validation – since message flows can be validated 
(even for large scale networks). However, 
simulation cannot validate the appropriate 
functioning on specific hardware and realistic 
circumstances (e.g. caused by approximate radio 
propagation models). Therefore an initial simulation 
based validation of developments must be 
supplemented by a “physical” test in realistic 
environments that should cover the intended 
hardware and physical conditions. 

 
5. TESTBED MANAGER  

The testbed manager is the essential component 
of the testbed. The testbed manager handles creation, 
deployment, execution and operation of test runs and 
initiates the collection of measurement results and 
log files. 

Test-runs have a defined duration after which 
they are stopped.  

Created via the Web-Frontend (as described in 
Section 6) they as well include a routing protocol, a 
measurement script and a (sub-) set of available 
nodes.  

Once created, test-runs are scheduled in a Fi-Fo 
queue within the testbed manager for execution. The 
testbed manager executes uploaded testruns 

sequentially. When a test-run is executed, the nodes 
software is updated with the dedicated routing 
protocols and measurement scripts. In case the nodes 
have a separate network interface (such as Ethernet) 
it is used for configuration purposes. Nodes without 
a separate network interface, connected with the 
testbed server can continuously lose connection 
(caused by a faulty routing protocol). To prevent 
permanent disconnection of any node a management 
routing protocol is stored on the nodes. In the so 
called management mode the OLSR protocol [16] is 
used as “management routing protocol”. In case a 
node permanently lost connectivity to the base 
station (recognized via heart-beat messages) the 
management mode is started. 

For reprogramming purposes all nodes switch 
(between test runs) to the management mode as 
shown in Figure 2. Therefore disconnected nodes 
automatically switch to the management mode, 
waiting to rejoin the network after the current test 
run is finished.  

When a test run is finished, the management 

server collects all measurements and log files and 
generates (visual and textual) summaries of them. 
Afterwards it requests all nodes to reset its routing 
protocol to the management mode. Receiving this 
reset request each node stays connected for 1 
minute, to assure sufficient time to forward the reset 
message to the whole network, before changing into 
management mode. 

After all required nodes have entered the backup 
mode, the routing protocol and measurement scripts 
of the new test run are deployed on the devices. The 
appropriate routing and measurement scripts are 
transmitted compressed to the nodes and afterwards 
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decompressed and installed on them.  
Afterwards the testbed manager initiates a 

(delayed) start of the uploaded routing protocol on 
all specified nodes. As a result the nodes leave the 
managed mode. So does the testbed server. 

The installation is validated via a status request 
message, which is initiated by the testbed manager 
after the restart. The status response indicates (next 
to the connection success) the version of the active 
routing protocol and measurement script. 

Unavailable nodes are excluded from the testrun 
but are logged by the testbed manager for later 
debugging purposes. The user can interrupt the 
current testrun manually (at any time) and 
reschedule an altered version for later execution. 

The testbed manager starts the test run by 
initiating the measurement script. As described in 
Section 7 measurement scripts collect connection 
data (such as quality or signal strength 
measurements) and generate the network traffic. As 
a result, the message flows during a testrun are 
regulated by measurement scripts and the routing 
protocols. Nodes as the Linksys WRT54GL router 
may regularly face full memory problems. In such 
case, measurements results can be transmitted 
(pushed) from the devices, to the testbed server 
during a test run. To reduce the network load all data 
is compressed on the devices before transmission. 
Being aware of potential influences on the 
measurement results, the measurements (and log 
files) are preferably stored on the nodes and pulled 
by the testbed server when the test run is finished. 
Since the Linksys routers use a wired connection 
with the testbed server for these transmissions these 
influences are excluded in our current setup. 

On the testbed server the data is decompressed, 
processed and attached to the test run. 

When the specified testrun duration has passed, a 
stop message is send by the testbed manager to all 
participating nodes, which finalize the measurement 
script execution (if not already finished). 

All control messages for protocol and 
measurement script updates, test run management 
and collection of measurement results and log files 
are handled by the testbed manager. HTTP is 
utilized as communication protocol combined with a 
php processor on each node, to handle incoming 
requests, for interoperability and portability reasons. 
Some control tasks (such as the update of routing 
protocols or packaging of measurement results) 
utilize additional shell scripts, executed by the PHP 
scripts.  

If available, testbed devices utilize the buildings’ 
Ethernet infrastructure. To minimize the impact of 
resulting network traffic (which might increase in 

case of updates) on other computers and the overall 
network performance, the participating nodes are 
grouped within a virtual LAN. 

Next to the execution and planning of upcoming 
testruns, the testbed manager handles additional 
functionality such as the preparation of uploaded 
routing protocols or measurement scripts. 

Uploaded measurement scripts (that require 
compilation) or routing protocols are immediately 
prepared for deployment.  

Therefore they are automatically compiled for all 
supported platforms via cross compiler tool chains.  

 
6. USER INTERFACE 

All user interactions of the test-bed system are 
executed via an AJAX Web page. As a result the 
testbed can be managed location independent. 

Users can upload measurement scripts and 
routing protocols, manage nodes, create 
configuration and schedule test runs.  

In addition the current state of a testrun and the 
results are summarized. Therefore test run results 
(including dynamic visualizations and raw data of 
measurement results as well as log files) are 
visualized. Automatic generated gnuplots of 
measurements can be downloaded as well and used 
for future documentation. 

Since the testbed server is developed with Java, 
the user interface as well was developed in Java 
including the Spring4 and Hibernate5 Frameworks. 

 
7. MEASUREMENT SCRIPTS 

Measurement scripts should be executable on all 
device-types. Since separated from the routing 
protocols, measurement scripts are applicable in 
general (as long as the protocol supports the required 
interfaces) and enable a comparison of routing 
protocols.  

In the Potsdam Wireless Testbed, measurement 
scripts can be programmed either as shell scripts, or 
as C programs. Therefore developers can use the full 
spectrum of the available Linux tools (such as ping 
or wget through scripting) or may develop specific 
solutions to precisely fit their requirements. The 
measurement scripts can be extended by additional 
precompiled programs (as long as portable to the 
selected nodes) which then should be packaged with 
the specific measurement script package.  

 

                                                 
4  http://www.springsource.org/ (14.09.2011) 
5  http://www.hibernate.org/ (14.09.2011) 
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8. FUTURE WORK 
The Potsdam wireless testbed currently supports 

various devices with Wi-Fi transceivers but is 
currently extended by additional radio spectrums, 
hardware platforms. The supported hardware 
platforms are extended by additional devices such as 
the Mica26 sensor nodes and the TI eZ430 Chronos 
watch7. Therefore additional radio spectrums such as 
Sub-1 GHz are supported as well. To ensure a high 
portability the inclusion of TinyOS8 as additional 
Operating system for these devices is intended. 

Furthermore, the testbed will be equipped with 
robots carrying mobile devices during test runs, 
including autonomous recharging functionality. 
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