
Sebastian J.F. Fudickar, Bettina Schnor / Computing, 2011, Vol. 10, Issue 4, 337-343

 337

AUTOMATED NETWORK PROTOCOL EVALUATION – THE POTSDAM
WIRELESS TESTBED

Sebastian J.F. Fudickar, Bettina Schnor

University of Potsdam, August-Bebel-Strasse 89, 14482 Potsdam, Germany

[fudickar | schnor]@cs.uni-potsdam.de, www.cs.uni-potsdam.de/bs

Abstract: The Potsdam Wireless Testbed supports validation and evaluation of Wi-Fi radio stacks and wireless
applications in environments with heterogeneous hardware. In contrast to simulators, wireless testbeds support the
network stack validation with specific radio chipsets and radio signal propagations. Furthermore, wireless testbeds
unburden programmers from manually updating software on nodes. Scheduled test-runs are executed automatically for
a defined duration including compilation and deployment of the protocols and measurement scripts as well as
collection of measurement results and log files. The testbed supports heterogeneous processor architectures and radio
chipsets via internal cross compilation. The developer can overview the visualized results of its validation and therefore
can focus on the code and the results. Next to the support of several device and processor architectures, the Potsdam
Wireless Testbed is intended to support additional radio frequency ranges as well as mobile device.

Keywords: Test bed, validation, evaluation, wireless, Wi-Fi.

1. INTRODUCTION
This article introduces the Potsdam wireless

testbed utilized for the validation and evaluation of
radio network stacks and is an extended version of
an article published in the proceedings of the
Wireless communications and information
conference [1].

A necessity for automated protocol and
application validation and evaluation was recognized
in the ongoing development of the KopAL [2]
support system for elderly. In KopAL users are
equipped with mobile devices that assist them by
reminding on upcoming appointments, recognizing
critical situations (such as falls or losing-tracks) and
offering emergency-call functionality.

Since the mobile devices are maintained by their
caretakers, long device runtimes and reduced
maintenance times are necessary, to be accepted.
The development of the necessary energy efficient
protocols (e.g. for communication and localization)
requires regular validation and evaluations on
multiple device types. These devices’ characteristics
differ regarding radio chips (with radio frequency
utilization or functionality variations) and processor
architectures.

In case of KopAL, the development covers the
routing, logical link control (LLC) or media access
control (MAC) layers as well as the radio device
drivers and application logic. Therefore the KopAL

indicates a tendency towards mobile applications
that regularly require cross layer developments and
wireless communication stack manipulation to
achieve precise in-door localization, wireless sensor
node access or higher energy efficiency.

The development of wireless network stacks
requires extensive validation and evaluation, in
general. Since changes may influence additional
layers, an overall validation und evaluation is
required especially in case of cross-layer network
stack implementations (as found in Sub-1 GHz
networks or RFID). As a result, the proper
functioning of wireless network stacks can only be
ensured by validating the complete communication
stack, as recognized by Moss [3].

With heterogeneous hardware even the functional
spectrum of device drivers and chips differs as
recognized in [4] and therefore radio hardware and
drivers’ influences have to be taken into account
during validation and evaluation, as well.

The proper functioning of wireless network
stacks must sufficiently handle inter-node
communication and physical phenomena such as
noise or reflections to assure sufficient robustness.

As a result, network stacks must be validated
with multiple nodes in a representative environment
(with realistically placed obstacles and mobility) to
assure its proper functioning within the dedicated
environments.

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Sebastian J.F. Fudickar, Bettina Schnor / Computing, 2011, Vol. 10, Issue 4, 337-343

 338

Frequent node reprogramming is a time
consuming part of the validation and evaluation
process. The manual alteration of node software
(including node collection, reprogramming and node
redistribution) is time consuming and deployed
nodes are hard to access. To increase the validation
efficiency, alternative approaches have been
developed that aim to automate the deployment of
software on distributed wireless devices and reduce
the manual validation and evaluation effort.

Existing automated validation or evaluation
systems can be categorized in network simulators,
wireless testbeds and hybrid solutions as discussed
in Section Related Work. As shown, the advantage
of testbed approaches is that they support the
validation of the full network stack including the
radio chipsets functionality.

However, since existing testbeds mostly focus on
homogeneous equipment, they have limited value
for the validation of networks that include devices
with heterogeneous hardware capabilities (such as
different radio chipsets, processor architectures or
memory). Limited solutions support automated node
mobility. Since the KopAL system requires the
network stacks validation for heterogeneous devices
(as summarized in Section 2) and node mobility, the
existing solutions do not fit our requirements, as
discussed in Section 3 of the KopAL project. A
novel testbed system has been developed (as
described in Section 5 to 7) and successfully
deployed within the Potsdam Wireless test bed.
Section 8 gives an overview of future extensions,
which are currently under development.

2. HARDWARE

As shown in Figure 1, the Potsdam Wireless
Testbed includes a PC with Ethernet and Wi-Fi
(IEEE 802.11 b/g) network interfaces acting as a
testbed management server and the following Wi-Fi
devices:
• The LinkSys WRT54GL Router1 supports the

IEEE 802.11b/g Wi-Fi standard via a Broadcom
Wi-Fi chipset and 4 +1 Ethernet interfaces. Next
to 4 10/100 GBit Ethernet connectors 16 MB
main memory, 4 MB flash drive and a
Broadcom BCM5352 MIPS processor with 200
MHz.

• The Nokia N8x02 devices are supported as
mobile devices. They contain IEEE 802.11b and
g Wi-Fi transceivers, next to an USB serial
connection, a 400 MHz ARM CPU, 128MB
memory.

1http://www.linksysbycisco.com/LATAM/en/products/WRT54
GL (14.09.2011)
2 http://mea.nokia.com/support/product-support/nokia-n800-
internet-tablet (14.09.2011)

• The Openmoko Freerunner3 is an alternate
supported mobile device type. It contains as well
IEEE 802.11b/g Wi-Fi transceivers, an USB
serial connection, a 400 MHz ARM CPU, and
256MB memory.

Therefore the testbed has to support different
processor architectures such as x86, ARM 9E and
MIPS. As described in Section 3.3, this fact is
concealed from the developer, as long as the
compilation succeeded. In case of errors, the
developer can analyze the logfiles and after
alterations restart the compilation.

Depending on the devices network interfaces and
mobility characteristics, the devices are connected
with the testbed server. While the routers are
accessible via an Ethernet connection, the mobile
devices connect via Wi-Fi links – either with an in
range Wi-Fi access point or directly with the server.

Since the inclusion of additional devices that
include Sub-1 GHz radio network interfaces as the
Chronoz Watch and the Mica2 sensor nodes is
intended the testbed system should be able to handle
multiple network standards and additional device
classes.

3. REQUIREMENTS

The development of the KopAL System indicated
general requirements that must be handled by the
Potsdam Wireless testbed. The devices of the
KopAL project have heterogeneous characteristics.
These heterogeneous characteristics include the
available radio interfaces (either the chipset and the
frequency ranges and protocols), processor
architectures and processing, memory or energy
capabilities. In addition the devices mobility differs
between the different device classes – while some
remain stationary (as the Linksys Wi-Fi routers)
others are mobile since carried around by the users.
The validation system must handle this device
diversity and the resulting necessities, which are
further discussed in detail.

3 http://wiki.openmoko.org/wiki/Neo_FreeRunner (14.09.2011)

Fig. 1 – Testbed hardware

Sebastian J.F. Fudickar, Bettina Schnor / Computing, 2011, Vol. 10, Issue 4, 337-343

 339

The intended radio standard diversity (even on a
single node) requires the support of multiple
network interfaces and the dynamic (de-)activation
per node. In addition, the functional implementation
provided by radio chips and device drivers differs
from each other. As recognized in chips of the Sub-1
GHz frequency band, the implementation of CRC
checks is supported by hardware in selected chipsets
(such as the CC1100) while others (such as the
CC1000) outsource it to the network drivers. In
these frequencies even encoding of the Checksum
varies (between high-bit and low-bit order). The Wi-
Fi chipset variances as found in timestamp precision
(of received messages) was recognized by Haustein
[4] but complicates the network stack adaptation,
next to differences between FullMAC and SoftMAC
network cards. Since radio stacks may highly
depend on functionalities (such as timestamp
precision, RSSI measurements and CRC checks)
network stacks must be evaluated on all relevant
radio chipsets. The combination of different
hardware devices with heterogeneous radio chips is
problematic as well (e.g. by differing CRC
checksum encoding or signal modulation). To
validate robustness for these error types the
validation must include all potential radio chipset
combinations.

The heterogeneity of the devices (of the KopAL
project) is not limited to the included radio chipsets.
The devices as well include a various processor
architectures (such as x86, ARM and MIPS). The
compilation of the network stack for the different
architectures should be handled autonomous by the
testbed system, to relieve the programmer from
preparing several solutions.

In addition, the available main memory of the
devices varies. This has to be taken into account,
since limiting the storage of measurement and log
file on the devices during test runs. To exclude
potential message losses, the testbed must handle
this challenge as well.

The KopAL system includes localization
functionality and supports node mobility. Since the
node mobility may influence the link stability and
the topology changes, it must be evaluated as well.
To assure the comparability of the results, the node
mobility must be reproducible.

While some devices exclude an internal energy
supply (and are charged via power connectors)
mobile devices include batteries and therefore are
energy critical. Since the energy efficiency is a
critical factor of a network stack – the testbed should
support the collection of energy consumption as well.

Additional aspects of heterogeneity include
supported programming languages for measurement
scripts.

4. RELATED WORK
The manual reprogramming of nodes for the

validation of wireless network stacks, can be
overcome by several automated validation systems.
These systems can be categorized as follows:
• Network simulators emulate virtual devices and

simulate the message transmission between
them with software. For simulating radio
networks, the message transmissions are
calculated via radio wave propagation models
(such as [5] and [6]). Since the network stack is
loaded into the simulator, developers must not
reprogram multiple devices. In addition, for
network simulation no specific hardware
equipment is required. The limited investments
and the reduced deployment times make
network simulators a good choice for research
groups with limited resources. In addition,
simulators enable the evaluation of network
stacks and protocols on tremendous amount of
nodes. Simulators as well give easy debugging
functionality and runtime speed-ups (by time
accelerated).

However, simulators include several drawbacks
that limit their validation usage to primer functional
test of the upper layers.

Current radio propagation models approximate
the radio propagation for algorithms efficiency,
since “propagating each message all over the
playground and hence delivering it to each node,
slows down the simulation.”[6] Therefore, if not
excluded, these models [7] approximate phenomena
such as interference, reflection or diffraction via ray
tracing. In addition, the influence of obstacles (e.g.
containing metal or water) on radio waves signal
strength is excluded from any propagation
algorithms, to the authors’ best knowledge.

The recognized differences of radio chipset
supported functionalities cannot be covered by
simulators, making a validation on the utilized
hardware indispensable.
• Testbed systems automate the deployment and

validation process of network stacks on multiple
devices. Therefore testbeds relieve developers
from manual software-deployments, by
automatically updating software on nodes. Next
to the automatic update mechanism testbeds
support the initiation and termination of test runs
including the collection of measurement results
and log files. Several existing testbeds include
node mobility, either via robots [8], [9], or via
humans carrying devices [10]. A major
drawback of testbed systems is the limited
debugging support, which in contrast the
detailed simulation debug information is mainly
limited to message statistics or log output (as

Sebastian J.F. Fudickar, Bettina Schnor / Computing, 2011, Vol. 10, Issue 4, 337-343

 340

Figure 2: Testbed state transitions

found in MoteLab [11]). While most existing
wireless testbed systems support a single radio
frequency, the EWANT [12], WHYNET [13]
and DES [14] testbeds include wireless network
transceivers for multiple frequencies (and
combine 2,4GHz Wi-Fi with 868MHz
transceivers). However even this system limits a
test run to one frequency, while the alternate
ones utilization is limited for configuration
purposes instead of combined routing purposes.
As a result these testbeds do not support the
evaluation of hybrid networking solutions, what
we aim for.

• Emulators, such as MiNT [15], combine node
simulation with package transmissions over
physical radio links by utilizing antennas (or
attenuators) for message transmissions while the
processing is executed on a single computer
(similar to the simulator approach). Therefore
emulators combine the advantages of both
(efficient debugging of the simulation results
with realistic radio signal distribution
characteristics). However, the proper
functioning cannot be validated on different
hardware devices via hybrid solutions.

The above mentioned systems include the
following restrictions, making their utilization for
the KopAL system validation suboptimal. The
simulation based testing and debugging seems
appropriate for initial debugging, testing and
validation – since message flows can be validated
(even for large scale networks). However,
simulation cannot validate the appropriate
functioning on specific hardware and realistic
circumstances (e.g. caused by approximate radio
propagation models). Therefore an initial simulation
based validation of developments must be
supplemented by a “physical” test in realistic
environments that should cover the intended
hardware and physical conditions.

5. TESTBED MANAGER

The testbed manager is the essential component
of the testbed. The testbed manager handles creation,
deployment, execution and operation of test runs and
initiates the collection of measurement results and
log files.

Test-runs have a defined duration after which
they are stopped.

Created via the Web-Frontend (as described in
Section 6) they as well include a routing protocol, a
measurement script and a (sub-) set of available
nodes.

Once created, test-runs are scheduled in a Fi-Fo
queue within the testbed manager for execution. The
testbed manager executes uploaded testruns

sequentially. When a test-run is executed, the nodes
software is updated with the dedicated routing
protocols and measurement scripts. In case the nodes
have a separate network interface (such as Ethernet)
it is used for configuration purposes. Nodes without
a separate network interface, connected with the
testbed server can continuously lose connection
(caused by a faulty routing protocol). To prevent
permanent disconnection of any node a management
routing protocol is stored on the nodes. In the so
called management mode the OLSR protocol [16] is
used as “management routing protocol”. In case a
node permanently lost connectivity to the base
station (recognized via heart-beat messages) the
management mode is started.

For reprogramming purposes all nodes switch
(between test runs) to the management mode as
shown in Figure 2. Therefore disconnected nodes
automatically switch to the management mode,
waiting to rejoin the network after the current test
run is finished.

When a test run is finished, the management

server collects all measurements and log files and
generates (visual and textual) summaries of them.
Afterwards it requests all nodes to reset its routing
protocol to the management mode. Receiving this
reset request each node stays connected for 1
minute, to assure sufficient time to forward the reset
message to the whole network, before changing into
management mode.

After all required nodes have entered the backup
mode, the routing protocol and measurement scripts
of the new test run are deployed on the devices. The
appropriate routing and measurement scripts are
transmitted compressed to the nodes and afterwards

Sebastian J.F. Fudickar, Bettina Schnor / Computing, 2011, Vol. 10, Issue 4, 337-343

 341

decompressed and installed on them.
Afterwards the testbed manager initiates a

(delayed) start of the uploaded routing protocol on
all specified nodes. As a result the nodes leave the
managed mode. So does the testbed server.

The installation is validated via a status request
message, which is initiated by the testbed manager
after the restart. The status response indicates (next
to the connection success) the version of the active
routing protocol and measurement script.

Unavailable nodes are excluded from the testrun
but are logged by the testbed manager for later
debugging purposes. The user can interrupt the
current testrun manually (at any time) and
reschedule an altered version for later execution.

The testbed manager starts the test run by
initiating the measurement script. As described in
Section 7 measurement scripts collect connection
data (such as quality or signal strength
measurements) and generate the network traffic. As
a result, the message flows during a testrun are
regulated by measurement scripts and the routing
protocols. Nodes as the Linksys WRT54GL router
may regularly face full memory problems. In such
case, measurements results can be transmitted
(pushed) from the devices, to the testbed server
during a test run. To reduce the network load all data
is compressed on the devices before transmission.
Being aware of potential influences on the
measurement results, the measurements (and log
files) are preferably stored on the nodes and pulled
by the testbed server when the test run is finished.
Since the Linksys routers use a wired connection
with the testbed server for these transmissions these
influences are excluded in our current setup.

On the testbed server the data is decompressed,
processed and attached to the test run.

When the specified testrun duration has passed, a
stop message is send by the testbed manager to all
participating nodes, which finalize the measurement
script execution (if not already finished).

All control messages for protocol and
measurement script updates, test run management
and collection of measurement results and log files
are handled by the testbed manager. HTTP is
utilized as communication protocol combined with a
php processor on each node, to handle incoming
requests, for interoperability and portability reasons.
Some control tasks (such as the update of routing
protocols or packaging of measurement results)
utilize additional shell scripts, executed by the PHP
scripts.

If available, testbed devices utilize the buildings’
Ethernet infrastructure. To minimize the impact of
resulting network traffic (which might increase in

case of updates) on other computers and the overall
network performance, the participating nodes are
grouped within a virtual LAN.

Next to the execution and planning of upcoming
testruns, the testbed manager handles additional
functionality such as the preparation of uploaded
routing protocols or measurement scripts.

Uploaded measurement scripts (that require
compilation) or routing protocols are immediately
prepared for deployment.

Therefore they are automatically compiled for all
supported platforms via cross compiler tool chains.

6. USER INTERFACE

All user interactions of the test-bed system are
executed via an AJAX Web page. As a result the
testbed can be managed location independent.

Users can upload measurement scripts and
routing protocols, manage nodes, create
configuration and schedule test runs.

In addition the current state of a testrun and the
results are summarized. Therefore test run results
(including dynamic visualizations and raw data of
measurement results as well as log files) are
visualized. Automatic generated gnuplots of
measurements can be downloaded as well and used
for future documentation.

Since the testbed server is developed with Java,
the user interface as well was developed in Java
including the Spring4 and Hibernate5 Frameworks.

7. MEASUREMENT SCRIPTS

Measurement scripts should be executable on all
device-types. Since separated from the routing
protocols, measurement scripts are applicable in
general (as long as the protocol supports the required
interfaces) and enable a comparison of routing
protocols.

In the Potsdam Wireless Testbed, measurement
scripts can be programmed either as shell scripts, or
as C programs. Therefore developers can use the full
spectrum of the available Linux tools (such as ping
or wget through scripting) or may develop specific
solutions to precisely fit their requirements. The
measurement scripts can be extended by additional
precompiled programs (as long as portable to the
selected nodes) which then should be packaged with
the specific measurement script package.

4 http://www.springsource.org/ (14.09.2011)
5 http://www.hibernate.org/ (14.09.2011)

Sebastian J.F. Fudickar, Bettina Schnor / Computing, 2011, Vol. 10, Issue 4, 337-343

 342

8. FUTURE WORK
The Potsdam wireless testbed currently supports

various devices with Wi-Fi transceivers but is
currently extended by additional radio spectrums,
hardware platforms. The supported hardware
platforms are extended by additional devices such as
the Mica26 sensor nodes and the TI eZ430 Chronos
watch7. Therefore additional radio spectrums such as
Sub-1 GHz are supported as well. To ensure a high
portability the inclusion of TinyOS8 as additional
Operating system for these devices is intended.

Furthermore, the testbed will be equipped with
robots carrying mobile devices during test runs,
including autonomous recharging functionality.

9. REFERENCES

[1] S. J. F. Fudickar, M. Strewe, O. Eggert,
B. Schnor, The Potsdam wireless testbed, in
Proceedings of Wireless Communication and
Information 2011, Berlin, Germany, October
2011, Verlag Werner Hülsbusch.

[2] S. J. F. Fudickar, B. Schnor. J. Felber,
F. J. Neyer, M. Lenz, M. Stede, KopAL – An
orientation system for patients with dementia,
in Behaviour Monitoring and Interpretation –
BMI Well-Being, B. Gottfried. H. Aghajan, IOS
Press, Amsterdam, Netherlands, April 2011.

[3] D. Moss, CCxx00 Radio Stack, Technical
documentation.

[4] M. Haustein, Untersuchung von Methoden zur
Laufzeitmessung in Wireless LAN Netzwerken
zum Zwecke der Positionsbestimmung,
Diploma Thesis, Chemnitz, 2011.

[5] A. Köpke, M. Swigulski, K. Wessel, D. Will-
komm, P. T. Klein Haneveld, T. E. V. Parker,
O. W. Visser, H. S. Lichte, S. Valentin,
Simulating wireless and mobile networks in
OMNeT++ the MiXiM vision, in Proceedings
of the 1st international conference on
Simulation tools and techniques for
communications, networks and systems &
workshops (Simutools’08).

[6] A. Kuntz, F. Schmidt-Eisenlohr, O. Graute,
M. Zitterbart, Introducing probabilistic radio
propagation models in OMNeT++ mobility
framework and cross validation check with NS-
2, in Proceedings of the 1st International
Workshop on OMNeT++ (hosted by
SIMUTools 2008).

6 http://bullseye.xbow.com:81/Products/productdetails.
aspx?sid=174 (14.09.2011)
7 http://processors.wiki.ti.com/index.php/EZ430-Chronos
(14.09.2011)
8 http://www.tinyos.net/ (14.09.2011)

[7] A. Lewandowski, V. Köster, C. Wietfeld, A
new dynamic co-channel interference model for
simulation of heterogenous wireless networks,
In Proceedings of the 2nd International
Workshop on OMNeT++ (hosted by
SIMUTools 2009).

[8] P. De, A. Raniwala, R. Krishnan, K. Tatavarthi,
N. S. Ahmed, J. Modi, T. Chiueh, MiNT-m: An
autonomous mobile wireless experimentation
platform, In Proceedings of Mobisys, 2006.

[9] Oliver Hahm, Mesut Günes, Felix Juraschek,
Bastian Blywis, Nicolai Schmittberger, An
experimental facility for wireless multi-hop
networks in future internet scenarios, In
Proceedings of The 2011 IEEE International
Conference on Internet of Things, IEEE,
Dalian, China (2011)

[10] Geoffrey Werner-Allen, Patrick Swieskowski,
Matt Welsh, MoteLab: a wireless sensor
network testbed, In Proceedings of the 4th
international symposium on Information
processing in sensor networks. IPSN 2005

[11] H. Lundgren, D. Lundberg, J. Nielsen,
E. Nordstrom, C. Tschudin, A large-scale
testbed for reproducible ad hoc protocol
evaluations, In Proceedings of IEEE Wireless
Communications and Networking Conference,
WCNC2002, 2002.

[12] S. Sanghani, T. X. Brown, S. Bhandare,
S. Doshi, EWANT: the emulated wireless ad
hoc network testbed, In Proceedings of
Wireless Communications and Networking,
WCNC 2003.

[13] Maneesh Varshney, Zhiguo Xu, Shrinivas
Mohan, Yi Yang, Defeng Xu, Rajive Bagrodia,
WHYNET: a framework for in-situ evaluation
of heterogeneous mobile wireless systems, In
Proceedings of the second ACM international
workshop on Wireless network testbeds,
experimental evaluation and characterization.
WinTECH 2007

[14] Oliver Hahm, Mesut Güneş, Kaspar Schleiser,
DES-Testbed a wireless multi-hop network
testbed for future mobile networks, In
Proceedings of 5th GI/ITG KuVS Workshop on
Future Internet, Stuttgart, Germany (2010)

[15] Pradipta De, Ashish Raniwala, Srikant Sharma,
Tzi-cker Chiueh, MiNT: a miniaturized
network testbed for mobile wireless research,
In Proceedings of IEEE Infocom, 2005.

[16] T. Clausen, P. Jacquet, Optimized Link State
Routing Protocol (OLSR), IETF Request for
Comments 3626, 2003.

Sebastian J.F. Fudickar, Bettina Schnor / Computing, 2011, Vol. 10, Issue 4, 337-343

 343

Sebastian J.F. Fudickar, is a
Phd. student at the department
of Operating Systems and
Distributed Systems at Potsdam
University, where he received
his Master of Science degree,
following his B.Sc. in Software
Systems Engineering of Hasso
Plattner Institute at Potsdam
University.

Next to his research in Wireless Sensor Networks
and Mobile Ad-hoc Networks, he holds an expertise
in Assisted Living Solutions for Elderlies.

Bettina Schnor, was from 1990
to 1996 research scientist at the
Institute of Operating Systems
and Computer Networks at the
Technical University
Braunschweig. There, she
established the research field
“Distributed Systems” and the
working group “Failure Tolerance
and Load Balancing in

Distributed Systems”. From 1996 to 2000 she was
researcher and lecturer at the Institute of Telematics
at the University of Luebeck, Germany.

Since April 2000 she is head of the Department
of Operating Systems and Distributed Systems at
the Potsdam University.

Her research interests are distributed systems,
cluster and grid computing, network security, and
assisted living applications.

