
Ghannam Aljabari, Evren Eren / Computing, 2011, Vol. 10, Issue 4, 322-329

 322

VIRTUAL WLAN: EXTENSION OF WIRELESS NETWORKING
INTO VIRTUALIZED ENVIRONMENTS

Ghannam Aljabari 1), Evren Eren 2)

1) Palestine Polytechnic University, Hebron, Palestine, galjabari@ppu.edu

2) University of Applied Sciences Dortmund, Emil-Figge-Strasse 42,
D-44227 Dortmund, Germany, eren@fh-dortmund.de

Abstract: In wired Ethernet networks (IEEE 802.3), a physical network interface can be connected to different network
segments or shared among multiple virtual machines. In wireless LAN (IEEE 802.11) sharing a wireless network
interface is recognized to be a difficult task. However, virtualization can solve this problem. In this paper we will
introduce a software platform for hosting multiple virtual wireless networks over a shared physical infrastructure by
means of open source virtualization techniques. We present the design, implementation, and performance testing of this
platform. Results have shown that the hosting platform can extend wireless networking into virtualized environments
without compromising the performance, isolation, or wireless LAN security mechanisms.

Keywords: Virtualization; Wireless LAN; Virtual network; Hypervisor; KVM.

1. INTRODUCTION
Virtualization technology has been widely

adopted in data centers to optimize resource sharing
and utilization. This technology has helped to
consolidate and standardize hardware and software
platforms in data centers, i.e. servers and storage.
The main benefit of virtualization technologies is
savings in power and infrastructure costs in addition
to improving availability, scalability, and security.

In recent years, virtualization has been pushed
forward to also virtualize physical network
infrastructures. By allowing multiple logical
networks to co-exist on a shared physical
infrastructure, network virtualization provides
flexibility and manageability. Network virtualization
often combines hardware and software resources to
deploy virtual networks for different architectures.
The term virtual network has been used to describe
different types of network virtualization such as
VLAN (Virtual Local Area Network) and VPN
(Virtual Private Network). But recently, network
virtualization is moving toward virtualized
environments.

Virtualization of wireless LANs (WLANs) has
become one of the important issues in network
virtualization and also for cloud computing by now.
It is useful in many scenarios such as hosting
multiple wireless service providers on a single
shared physical infrastructure, providing wireless
services with different authentication mechanisms,

and for virtual test bed environments. Hence, there
are some research activities in this field [1-4].

There are several approaches to system
virtualization and several software implementations,
both open source and commercial. However, most of
the virtualization approaches are mainly developed
for wired Ethernet networks, and are not suitable for
virtualizing wireless LAN interface due to the nature
of wireless LAN devices. More specifically, the
limitations of current virtualization approaches are
due the difficulties in emulating wireless LAN
management functions [3]. Therefore, existing
virtualization approaches require a separate physical
wireless LAN device for each virtual machine (VM)
to have its own wireless network.

A viable solution to address the above issue is by
giving all VMs access to the same wireless network
and rely on network virtualization techniques such
as VLAN or VPN to provide isolation for VM
network traffic. However, this solution will add
additional cost and overhead for configuring and
maintaining a secured connection to all VMs. As a
result, a new approach is needed to enable a single
wireless network interface to be shared among
several VMs without compromising the
performance, isolation, or wireless LAN security
mechanisms.

By means of open source virtualization
techniques, it is possible to create multiple virtual
wireless networks through one physical wireless
LAN interface, so that each virtual machine has its

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Ghannam Aljabari, Evren Eren / Computing, 2011, Vol. 10, Issue 4, 322-329

 323

own wireless network. Available open source
solutions such as KVM, hostapd, and VDE provide
the software infrastructure to deploy and implement
such an approach on Linux operating system (OS).
This paper aims at demonstrating this approach.

2. BACKGROUND

Virtualization approaches enable running
multiple OSs and applications concurrently on the
same physical machine, eliminating the need for
multiple physical machines. Each VM has its own
operating system and applications such as the
physical machine [5-7]. Thus making the
applications unaware of the underlying hardware,
yet viewing computing resources as shared resource
pools available via virtualization.

The primary benefits offered by virtualization are
resource sharing and isolation. Unlike real
environments where physical resources are
dedicated to a single machine, virtual environments
share physical resources such as CPU, memory, disk
space, and I/O devices of the host machine with
several VMs. With isolation, applications running on
one VM cannot see, access, and use resources on
other VMs [5].

Virtualization provides a software abstraction
layer on top of hardware. This layer is called Virtual
Machine Monitor (VMM), also known as a
hypervisor. The main task of the VMM is to manage
the hardware resource allocation for VMs and to
provide interfaces for additional administration and
monitoring tools [5]. However, the functionality of
the VMM varies greatly based on architecture and
implementation.

Today, two alternative approaches exist to
virtualization on x86 hardware architecture. In the so
called full virtualization approach, VMs and guest
OSs run on top of virtual hardware provided by the
VMM. However, the VMM has to provide the VM
with an image of an entire system, including virtual
BIOS, virtual CPU, virtual memory, and virtual
devices to allow the guest OS to run without
modification. As a result, the guest OS or
application is not aware of the virtual environment.
The main advantage of full virtualization approach is
that it supports any platform and provides complete
isolation of different applications, which helps make
this approach highly secure. However, this approach
has poor performance in trying to emulate a
complete set of hardware in software [5,7].

KVM, which stands for Kernel-based Virtual
Machine, is a full virtualization solution that takes
advantage of hardware-assist features such as Intel
VT and AMD-V to improve the performance of
guest OSs [8]. The first generation of hardware
assist features was added to processors in 2006, so

that KVM hypervisor supports only newer x86
hardware systems. Using KVM, several fully VMs
can be created and operated in Linux environments,
since KVM adds VMM capabilities to the Linux
kernel. KVM hypervisor consists of two main
components: a set of kernel modules providing the
core virtualization infrastructure such as CPU and
memory management, and a user space program that
provides emulation for I/O hardware devices,
currently through QEMU [9].

OS assisted virtualization or paravirtualization
presents each VM with an abstraction of the
hardware that is similar but not identical to the
underlying physical hardware. This approach
requires modifications to the guest OSs that are
running in the VMs. As a result, guest OSs are
aware that they are executing on a VM, allowing for
near-native performance [5].

Xen is an open source virtualization software
based on the paravirtualization approach. The Xen
hypervisor runs directly on hardware, allowing the
host machine to run multiple modified guest OSs
concurrently [6]. Modifying the guest OS is not
feasible for non-open source platforms such as
Microsoft Windows. As a result, such OSs are not
supported in a paravirtualization environment.
Recently, unmodified guest OSs are also supported
by Xen. In this mode, Xen provides a fully
abstracted VM with hardware support (Intel VT and
AMD-V) referred to as hardware virtual machine
(HVM) [10].

With the adoption of virtualization in data
centers, a new layer of network virtualization is
emerging that provides inter- and intra- VM
connectivity and has many of the same functions
provided by the physical networking hardware.
Today, this layer is providing connectivity to tens of
VMs for a physical machine [11].

The main network components provided by
virtual networking, as shown in Fig. 1, are virtual
Ethernet interfaces, used by individual VMs, and
virtual switches, which connect the VMs to each
other [12]. VMs can also be configured with one or
more virtual Ethernet interface to offer different
virtual network appliances for virtual environments
such as virtual routers (VR) and virtual firewalls.
VRs are essential components in the virtual
networking infrastructure because they operate in
much the same way as physical routers, forwarding
and routing packets based on standard routing
protocols such as RIP and OSPF. Virtual firewalls
provide the usual packet filtering and monitoring
role provided via a physical network firewall. Thus,
virtual networking components manage
communication between co-located VMs, and
connectivity to physical machines.

Ghannam Aljabari, Evren Eren / Computing, 2011, Vol. 10, Issue 4, 322-329

 324

Modern OSs provides the ability to create virtual
network interfaces that are supported entirely in
software. From the OS’s point of view, these
interfaces behave similar to physical network
interfaces. However, the virtual interface does not
send the packets into the wire, but makes them
available to userspace programs running on the
system. Virtual network interfaces are commonly
referred to as TAP and TUN interfaces under Linux.
TAP interfaces operate with Layer 2 packets, while
TUN interfaces can handle Layer 3 packets. VMs
use the TAP interface to create a network bridge
with the physical network interface [2].

Fig. 1 – Virtual networking components

Most of the virtualization approaches also
provide some form of virtual networking. For
example, VMware virtualization software has a
distributed switch for virtual machine networking
[13]. Linux-based virtualization platforms, including
Xen and KVM, generally use network bridging or
Virtual Distributed Ethernet (VDE) switch [14]. A
network bridge acts like an Ethernet hub; passing all
traffic. While, VDE provides Layer 2 switching,
including spanning-tree protocol and VLAN
support.

Open vSwitch is an open source software switch
that provides connectivity between the VMs and the
physical interfaces. It implements standard Layer 2
and Layer 3 switching with advanced features such
as traffic monitoring (e.g. NetFlow), port mirroring
(e.g. SPAN), basic ACL (Access Control List) and
QoS (Quality of Service) policies. The Open
vSwitch consists of two components: a fast kernel
module and lightweight userspace program. The
kernel module implements the forwarding engine,
while the userspace program implements forwarding
logic and configuration interfaces. Open vSwitch
supports multiple Linux-based virtualization
software, including Xen and KVM [11,15].

Quagga is an open source routing software that
provides implementations of TCP/IP based routing
protocols such as OSPF, RIP, and BGP. In addition

to traditional IPv4 routing protocols, Quagga also
supports IPv6 routing protocols [16]. Vyatta
software [17] incorporates open source routing and
security projects such as Quagga, IPtables,
OpenVPN and many others into a network OS for
x86 hardware platforms. Vyatta also can be
delivered as VMs, providing routing, firewalling,
VPN, and more for virtual and cloud computing
environments. Thus, Vyatta network OS
complements virtual networking components by
delivering the virtual router, virtual firewall, and
virtual VPN in the hypervisor.

3. VIRTUALIZATION OF WLAN

INTERFACE
A network interface can be shared and hence

virtualized using either a software or hardware
based approach, as shown in Fig. 2. In software-
based approach, network interface virtualization is
completely implemented as software to provide
virtual network interfaces (VIF) for multiple VMs
[3,18,19]. In this approach, bridging functionality is
often enabled on the physical network interface to
grant all VMs access to the same physical network.

Full virtualization techniques provide virtual
network interfaces by emulating legacy Ethernet
devices for simplicity. The virtual network interfaces
appear to the VM as virtualized hardware devices
within the hypervisor. With this technique, no
modification is required for the guest OS. However,
there is a significant performance overhead due to
the context switching between VM and hypervisor.
In the paravirtualization technique, the
paravirtualized driver is used in the guest OS to
achieve high I/O performance. However, this
method requires modifying the guest OS and having
a special driver to expose some details of the
hardware [3].

Fig. 2 – Network interface virtualization approaches

The second approach depends on hardware
virtualization support to partition a physical network
device to multiple virtual network interfaces. Then,
each virtual interface can be assigned directly to a
specific VM. While this approach reduces the

Ghannam Aljabari, Evren Eren / Computing, 2011, Vol. 10, Issue 4, 322-329

 325

performance overhead of software-based network
interface virtualization, it increases the complexity,
maintainability and cost of network devices
[3,18,19]. An example of hardware-based approach
is Single Root I/O Virtualization (SR-IOV) where a
single PCI device can be divided into multiple
Virtual Functions (VFs). Each VF can then be used
by a VM, allowing one physical device to be shared
among multiple VMs. As a result, close to native I/O
performance can be achieved, in addition to fair
sharing of the bandwidth [20].

Virtualization of a wireless LAN interface is
more complicated than for wired network interface
because the capacity of the wireless LAN channel
varies with radio signal strength and interference
from other wireless LAN devices. This requires
including complex management functions into
wireless devices to achieve efficient and reliable
communication. Examples of such management
functions include data rate adaption, power
management, and power control. The device driver,
which is part of the OS, is also involved in such
management functions for control and configuration.
In contrast, wired LAN devices are data centric and
have very little management functions [3].

A typical WLAN device consists of: RF
transceiver, Baseband, and MAC layer. The RF
transceiver performs radio signal transmitting and
receiving, while the Baseband mainly responsible
for digital signal processing. RF transceiver and
Baseband are generally referred to as PHY layer.
The MAC layer often consists of a hardware
controller on the WLAN device and a software
driver on the host computer. Most of the wireless
LAN functions such as authentication and
authorization are performed at MAC layer [3].

In the beginning, the MAC layer was entirely
managed by the firmware on the wireless LAN
device. This approach is called FullMAC, where full
MAC layer functionality is executed by the
hardware controller on the wireless device. New
implementation of wireless LAN devices is based on
SoftMAC approach, where most of the MAC layer
functionality is moved to device driver on the host
computer, with the firmware providing a set of
functional primitives [2]. This approach provides a
high degree of software control over the MAC layer
functions, while still allowing the PHY layer to
define the radio waveform.

MultiNet [21], which was later named
VirtualWiFi, proposes a software based approach to
virtualize a single wireless interface. Virtualization
of wireless LAN interface is implemented with
intermediate driver, called MultiNet Protocol Driver,
which continuously switches the radio resources
across multiple wireless networks. This approach
has been adopted in Microsoft Windows 7 to give a

user the ability to simultaneously connect to multiple
IEEE 802.11 networks with one WiFi card.
However, MultiNet approach was not designed to
support the VM environment [3].

Recently, a novel virtualization approach on
802.11 MAC layer has emerged in the wireless
industry. Multiple virtual wireless LAN interfaces
are separated at MAC layer sharing the same PHY
layer [3]. As shown in Fig. 3, multiple virtual MAC
entities can be active and share a common PHY
layer via Time Division Multiplexing (TDM) on the
same channel. This approach reduces costs,
eliminating co-channel interference, and offering
smooth roaming as clients move through the
WLAN’s coverage area. WLAN products that
provide support for such an approach include
Atheros, Intel, and Marvell.

Fig. 3 – Wireless network interface virtualization

In the case that different virtual MACs need to
operate on different RF channels, a time-critical
scheduling is required for multi-channel MAC
functions. Implementing such solution will allow the
PHY layer to switch between different RF channels
and keep virtual MACs in synchronization with the
associated networks. Several research efforts have
been made in implementing multi-channel
virtualization approach for WLAN devices such as
Net-X [22] and FreeMAC [23].

Virtualization of the WLAN interface enables
several usage scenarios for wireless networking,
some of these are:
• Simultaneous Connectivity: a wireless device

can be connected to multiple wireless networks
simultaneously. E.g., One virtual interface
operates in STA mode to connect to an AP, while
another virtual interface operates in an ad – hoc
mode to create a peer-to-peer wireless network.

• Wireless Relay/Extension: a wireless client can
extend the coverage area of the network by
creating a second virtual interface in AP mode,
allowing remote clients outside the basic
operating range to relay data to the main AP.

• Soft Handover: a wireless client can use a
second virtual interface to scan all available APs,
while the first virtual interface is connected to the

Ghannam Aljabari, Evren Eren / Computing, 2011, Vol. 10, Issue 4, 322-329

 326

wireless network. After selecting the new AP, a
client can authenticate and associate with it
without losing the connection with the current
AP. In this scenario, we can avoid packet loss
and delay times in real-time applications such
VoIP and video streaming [2].

• Multi-Streaming Service: a mobile device can
communicate with multiple APs operating on
different channels, as the device has several
virtual interfaces. The most stable connection
becomes the main connection and others can
become sub-connections. By this scenario, we
can improve streaming performance such as
multi-path streaming without relay server [24].

• Wireless Mesh Network (WMN): a multi-hop
WMN is built through virtual interfaces created
at some mesh nodes. In this case, a mesh node is
configured to work in STA mode and acts as AP
by creating a second virtual interface in AP
mode. Thus, remote clients located outside the
coverage range (wireless cell) can get access to
the network via clients connected to any AP in
the wireless cell [25].

• Virtualized Environment: a virtual machine can
establish its own wireless LAN connection by
creating a virtual interface in STA mode. In this
case, multiple wireless connections are supported
through one physical wireless LAN network
interface.

4. VIRTUAL WLAN APPROACH
With the introduction of IEEE 802.11n and the

increase in bandwidth, wireless LAN virtualization
is required as an alternative approach for deploying
multiple virtual wireless LANs with different
authentication methods. Wireless LAN virtualization
enables several virtual wireless networks to coexist
on a common shared physical device. Multiple
virtual interfaces can be created on top of the same
radio resources, allowing the same functionality as
in multi-radio solution.

All virtual interfaces operate concurrently
without considering the physical nature of the
wireless medium as well as physical management
tasks. Each virtual interface abstracts a single
wireless device and has its own wireless network
and its own unique MAC address. From the
application’s perspective, the virtual wireless
network behaves like wired Ethernet, but is wireless.

Using wireless LAN virtualization, a virtual
interface can be configured to operate as an access
point (AP) and also as a station (STA) device. A
virtual AP is bound to a virtual network interface
and each virtual AP independently keeps the
configuration and service of the wireless network. In
this way, several virtual APs can be configured on

top of solely one physical wireless LAN device, as
shown in Fig. 4.

A virtual AP acts as the master device in a virtual
wireless network and operates in much the same
way as physical AP, allowing wireless stations to
communicate with each other by managing and
maintaining a list of associated stations. In general,
the virtual AP consists of two parts: control plane
and forwarding plane. The control plane is
concerned with the information that defines the
functionality of the AP such as the SSID (Service
Set Identifier), operation mode, and RF channel.
While the forwarding plane defines the part of the
AP, that uses a lookup table as a base to forward
packets to its destination.

Fig. 4 – Physical and virtual APs

By integrating wireless LAN virtualization
techniques into the hypervisor, the wireless LAN
interface can be shared among several VMs. To each
VM one or more virtual wireless interfaces can be
assigned. As shown in Fig. 5, VIFs are configured to
operate in one of the wireless operating modes,
specifically the AP mode, and then can be assigned
to various virtual networking components.

The main goal of this approach is to combine
wireless network functionality into a common
virtualized environment and to achieve performance
levels comparable to the native hardware wireless
LAN. A similar approach named virtual WiFi [3]
has been taken to provide wireless LAN client
functionality inside VMs. However, virtual WiFi
approach is intended to support mobile client
environments where the VM runs on the client
device and has to be aware of the wireless interface
to establish its own wireless connection.

The Virtual WLAN approach is suitable for
virtualizing wireless LAN infrastructures, where
multiple separate wireless LANs can be deployed on
a shared physical infrastructures with different
security mechanisms such as WPA and IEEE
802.11i. Since each virtual wireless LAN is logically
separated, wireless LAN providers may use virtual
WLANs to offer multiple services on the same
physical infrastructure. Alternatively, virtual
WLANs can be shared by multiple providers
allowing each provider to offer separate services for
their subscribers [1].

Ghannam Aljabari, Evren Eren / Computing, 2011, Vol. 10, Issue 4, 322-329

 327

Fig. 5 – Virtual wireless LAN approach

This approach is based on the Atheros WLAN
chipset which supports concurrent wireless
connections sharing the same PHY layer of the
wireless LAN device. This capability in wireless
LAN devices is also referred to as multi-SSIDs,
where each SSID is equivalent to a VLAN on a
wired network. We extend multi-SSIDs capability to
operate in the virtualization environments, where
each virtual WLAN can have its own addressing,
forwarding, routing, and security mechanism.

To emulate a physical AP, it is necessary to
provide the emulation at different layers such as
layer 2 (MAC), layer 3 (IP), and above. At the MAC
layer, the behavior of a physical AP is being
emulated by allocating a distinct MAC address and
SSID to each virtual AP. At the IP layer, it is
emulated by allocating a distinct IP address and
potentially a Fully Qualified Domain Name (FQDN)
to each virtual AP. In higher layers, the emulation
can be carried out by providing each virtual AP with
a unique authentication and accounting
configuration such as (a shared key, or EAP methods
with RADIUS authentication), or SNMP
communities.

In our approach, a virtual wireless AP or router is
constructed by configuring the VIF to operate in AP
mode. This sets the main functionality of the
wireless AP such as IEEE 802.11 operation mode
and SSID. Once configured, the wireless interface is
attached to a virtual switch to enable MAC
forwarding similar to a physical AP. Then, the
virtual AP interface is connected to a virtual router,
in the same way as the virtual Ethernet interface, to
enable IP forwarding and routing.

5. IMPLEMENTATION

The multi-SSID capability given by the Atheros
chipset allows implementing multiple IEEE 802.11
networks on a single physical wireless card with

Linux (Linux kernel version 2.6.33 and higher),
since it includes a wireless driver supporting
multiple VIF configurations.

The wireless driver for Atheros WLAN devices
was initially developed by the madwifi project, and
then became part of the Linux kernel. The
implementation model of Linux kernel WLAN
driver is currently based on SoftMAC wireless
devices, where most of the MAC layer functionality
is managed by the driver. For the time being, Linux
kernel supports all wireless modes with PCI/PCI-
Express Atheros WLAN devices only [26].

In order to implement our approach, we used a
conventional PC with a wireless LAN card based on
the Atheros IEEE 802.11n chipset. It had an Intel
Core 2 processor with VT support, Gigabit Ethernet
interface and 3 GB RAM. Ubuntu Linux has been
chosen to host the virtualization environment for
virtual WLAN approach. We used KVM as backend
for virtualization and libvirt as frontend for
managing VMs. With libvirt, there come two
management tools: virt-manager as graphical user
interface (GUI) and virtsh as command line interface
(CLI).

The virtual wireless interfaces have been created
using a CLI configuration utility in Linux named
“iw”. Once created, the interfaces have been
configured to function as virtual AP or virtual STA
interfaces. It is essential for all VIFs to have a
unique MAC address, which can be assigned with
“ifconfig hw” command or “macchanger” utility.

A virtual AP functionality has been implemented
using the hostapd daemon or background service.
hostapd is an open source software for controlling
wireless LAN authentication and association. It
implements IEEE 802.11 AP management and
provide support for several security mechanisms
such as WPA, IEEE 802.11i, and IEEE 802.1X [27].
The virtual AP interface has been connected to a
VDE switch to enable MAC forwarding similar to a
physical AP.

For testing our approach, three virtual wireless
routers have been hosted on the PC with a shared
Internet connection. We created three virtual APs in
IEEE 802.11g operation mode, and three virtual
routers running Vyatta OS. Each virtual router had
two virtual Ethernet interfaces. One of them was
connected to the virtual AP interface and the other to
the physical Ethernet interface using the Linux
interface bridging feature. Each virtual router acted
as a DHCP server and DNS forwarder for the virtual
wireless LAN and each virtual AP broadcasted
different SSIDs to distinguish the wireless networks.
NAT functionality was also added to the virtual
routers to maintain public IP addresses and to
enhance wireless network security. Using these
virtual routers, different wireless LAN clients could

Ghannam Aljabari, Evren Eren / Computing, 2011, Vol. 10, Issue 4, 322-329

 328

access the Internet with different wireless LAN
security mechanisms.

6. PERFORMANCE AND RESULTS

We have conducted some tests to understand the
impact of the virtual software layer on wireless
LANs. The objective of the tests was to compare and
quantify the performance of both conventional and
virtualized wireless networks. Testing WLAN
performance primarily included two test metrics:
throughput and response time. These performance
metrics were used to evaluate the applicability of our
approach for WLAN infrastructure virtualization
since the virtual networks had to handle the same
kind of traffic as conventional networks.

The throughput of WLAN is defined as the speed
with which a user can send and receive data between
the client and the AP. Throughput varies across the
WLAN’s coverage area. For this reason, we placed
the test machines at close range to operate on the
maximum available channel bandwidth.
Theoretically, the maximum TCP rate of 802.11g
network is 24.4 Mbps and the maximum UDP rate is
30.5 Mbps. The UDP throughput is higher than TCP
throughput because there is less protocol overhead
associated with UDP. Therefore, TCP throughput is
the most relevant metric in our performance
measurements.

To measure the throughput, we used IPerf and
JPerf as the graphical interface. IPerf tool was used
to measure TCP and UDP throughput in two
directions: uplink direction (from the client to the
virtual AP) and downlink direction (from the virtual
AP to the client). To measure response times or
latencies, we used ping. Ping is used to measure the
round-trip time between the client and the virtual
AP. In our test setup, IPerf was installed on two
machines; the machine which hosts the virtual
wireless routers functioned as IPerf server and the
wireless client machine as IPerf client. IPerf was
configured on the wireless client to run tests for 60
seconds in both directions and provided values in
Mbps.

We performed the same test in both native and
virtual environments. In the native hardware
environment, the tests were performed between a
remote client and host machine running three virtual
APs without virtualization. In the virtual
environment, the tests are performed between a
remote client and a VM directly attached to the
virtual routers. In this case, the wireless traffic
passing through the virtual routers.

Fig. 6 depicts the throughput test results where
all throughput results have been averaged over three
measurements. The average downlink/uplink TCP
throughput is 21.8/18.6 Mbps in the native hardware

environment and 21.4/18.2 Mbps in a virtual
environment. Latency test results show that the
average round-trip time in native hardware
environment is 1.1 msec and 2.1 msec in the virtual
case. This latency overhead comes from the
virtualization layer. The results show that our
proposed solution achieves performance metrics
comparable to the native hardware environment.

Fig. 6 – Throughput test results

7. CONCLUSION

In this paper, we introduced a virtual networking
infrastructure using different virtualization
techniques. Also, we proposed a viable approach to
realize virtual WLANs by combining wireless LAN
virtualization technique with open source
virtualization platform.

Our approach adds wireless LAN functionally to
virtualization environments. Summarizing some of
the benefits, we can conclude that our proposed
solution:
• Enables virtualized wireless LAN architectures.
• Builds wired and wireless networks without

deploying physical infrastructure.
• Adds the wireless LAN management and control

functions to virtualization environments.
For the future, it is planned to investigate

performance measurement and optimization with the
Xen open source hypervisor. Also, we will design a
platform for virtual WLAN approach with different
security infrastructures.

8. REFERENCES

[1] B. Aboba, Virtual access points, 2003,
http://aboba.drizzlehosting.com/IEEE/11-04-
0238-00-0wng-definition-virtual-access-
point.doc.

[2] H. Coskun, I. Schieferdecker, and Y. Al-Hazmi,
Virtual WLAN: Going beyond virtual access
points, Electronic Communications of the EASST,
17, 2009.

[3] Lei Xia et al, Virtual WiFi: Bring virtualization
from wired to wireless, ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution
Environments (VEE), 2011.

[4] J. Lee and Y. Moon, Research on virtual network
for virtual mobile network, Second International

Ghannam Aljabari, Evren Eren / Computing, 2011, Vol. 10, Issue 4, 322-329

 329

Conference on Computer and Network
Technology (ICCNT), pp. 98-101, 2010.

[5] J. Sahoo, S. Mohapatra, and R. Lath,
Virtualization: A survey on concepts, taxonomy
and associated security issues, Second
International Conference on Computer and
Network Technology (ICCNT), pp. 222-226, 2010.

[6] P. Barham et al, Xen and the art of virtualization,
ACM Symposium on Operating Systems
Principles (OSSP), pp. 164-177, 2003.

[7] VMware. Understanding Full Virtualization,
Paravirtualization, and Hardware Assist, 2007,
http://www.vmware.com/files/pdf/VMware_para
virtualization.pdf.

[8] A. Kivity, Kvm: The linux virtual machine
monitor, Ottawa Linux Symposium (OLS), pp.
225-230, 2007.

[9] I. Habib, Virtualization with kvm, Linux Journal,
2008 (166). http://www.linuxjournal.com/
article/9764.

[10] T. Abels, P. Dhawan, and B. Chandrasekaran, An
overview of xen virtualization,
http://www.dell.com/downloads/global/power/ps3
q05-20050191-Abels.pdf.

[11] B. Pfaff et al., Extending networking into the
virtualization layer, 8th ACM Workshop on Hot
Topics in Networks (HotNets-VIII), 2009.

[12] Vmware, VMware Virtual Networking Concepts,
2007, http://www.vmware.com/files/pdf/virtual
_networking_concepts.pdf.

[13] Vmware, VMware vNetwork Distributed Switch,
http://www.vmware.com/files/pdf/VMware-
vNetwork-Distributed-Switch-DS-EN.pdf.

[14] R. Davoli, Vde: Virtual distributed ethernet, First
International Conference on TRIDENTCOM,
2005.

[15] J. Pettit, J. Gross, B. Pfaff, M. Casado, and
S. Crosby, Virtual switching in an era of
advanced edges, 2nd Workshop on Data Center –
Converged and Virtual Ethernet Switching (DC-
CAVES), 2010.

[16] Quagga, Quagga: A routing software package for
TCP/IP networks, http://www.quagga.net/
docs/quagga.pdf.

[17] Vyatta Website, http://www.vyatta.org.
[18] J. Renato et al., Bridging the gap between

software and hardware techniques for i/o
virtualization, USENIX Annual Technical
Conference, 2008.

[19] M. Anwer and N. Feamster, Building a fast
virtualized data plane with programmable
hardware, ACM SIGCOMM Workshop on
Virtualized Infastructure Systems and
Architectures, 2009.

[20] S. Tripathi, N. Droux, and T. Srinivasan,
Crossbow: From hardware virtualized nics to
virtualized networks, ACM SIGCOMM Workshop
on Virtualized Infastructure Systems and
Architectures (VISA), 2009.

[21] R. Chandra and P. Bahl, Multinet: Connecting to
multiple ieee 802.11 networks using a single
wireless card, IEEE International Conference on
Computer Communications (INFOCOM), 2004.

[22] C. Chereddi, P. Kyasanur, and N. H. Vaidya, Net-
x: A multichannel multi-interface wireless mesh
implementation, ACM SIGMOBILE Mobile
Computing and Communications Review, pp. 84-
95, 2007.

[23] A. Sharma and E. Belding, Freemac: Framework
for multi-channel mac development on 802.11
hardware, ACM workshop on Programmable
Routers for Extensible Services of Tomorrow
(PRESTO), 2008.

[24] Sung-Won Ahn and Chuck Yoo, Network
interface virtualization in wireless communication
for multi-streaming service, IEEE 15th
International Symposium on Consumer
Electronics (ISCE), 2011.

[25] Y. Al-Hazmi and H. de Meer, Virtualization of
802.11 interfaces for wireless mesh networks, 18th
International Conference on Wireless On-Demand
Network System and Services (WONS), 2011.

[26] Linux Wireless Website. http://linuxwireless.org.
[27] hostapd Website. http://hostap.epitest.fi/hostapd.

Ghannam Aljabari, is a
computer engineer in the field
of networking and security who
used to work as a Network and
System Administrator in the
Computer Center at Palestine
Polytechnics University (PPU).
He holds a BSc in Computer
Systems Engineering from
PPU and pursuing his master

degree in Informatics at PPU in Hebron, Palestine.
His research interests include virtualization,
distributed systems and network security.

Prof. Dr. Evren Eren,
graduated from the University
of Bremen as an Electronics
Engineer (Diplom Ingenieur) in
1988 and started at Krupp
Atlas Elektronik, working within
the marine division as a
Software Engineer. In 1992 he
changed to the Bremen
Institute for Industrial
Technology and Applied Work

Science (BIBA), where he worked as as research
scientist in EU funded projects. 1998 he obtained his
PhD degree and moved to DETECON as Senior
Consultant. Since 1999 he is professor at the
University of Applied Sciences in Dortmund. His
working and research areas encompass IT-security
and networks.

