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Abstract: In wired Ethernet networks (IEEE 802.3), a physical network interface can be connected to different network 
segments or shared among multiple virtual machines. In wireless LAN (IEEE 802.11) sharing a wireless network 
interface is recognized to be a difficult task. However, virtualization can solve this problem. In this paper we will 
introduce a software platform for hosting multiple virtual wireless networks over a shared physical infrastructure by 
means of open source virtualization techniques. We present the design, implementation, and performance testing of this 
platform. Results have shown that the hosting platform can extend wireless networking into virtualized environments 
without compromising the performance, isolation, or wireless LAN security mechanisms. 
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1. INTRODUCTION 
Virtualization technology has been widely 

adopted in data centers to optimize resource sharing 
and utilization. This technology has helped to 
consolidate and standardize hardware and software 
platforms in data centers, i.e. servers and storage. 
The main benefit of virtualization technologies is 
savings in power and infrastructure costs in addition 
to improving availability, scalability, and security. 

In recent years, virtualization has been pushed 
forward to also virtualize physical network 
infrastructures. By allowing multiple logical 
networks to co-exist on a shared physical 
infrastructure, network virtualization provides 
flexibility and manageability. Network virtualization 
often combines hardware and software resources to 
deploy virtual networks for different architectures. 
The term virtual network has been used to describe 
different types of network virtualization such as 
VLAN (Virtual Local Area Network) and VPN 
(Virtual Private Network). But recently, network 
virtualization is moving toward virtualized 
environments. 

Virtualization of wireless LANs (WLANs) has 
become one of the important issues in network 
virtualization and also for cloud computing by now. 
It is useful in many scenarios such as hosting 
multiple wireless service providers on a single 
shared physical infrastructure, providing wireless 
services with different authentication mechanisms, 

and for virtual test bed environments. Hence, there 
are some research activities in this field [1-4]. 

There are several approaches to system 
virtualization and several software implementations, 
both open source and commercial. However, most of 
the virtualization approaches are mainly developed 
for wired Ethernet networks, and are not suitable for 
virtualizing wireless LAN interface due to the nature 
of wireless LAN devices. More specifically, the 
limitations of current virtualization approaches are 
due the difficulties in emulating wireless LAN 
management functions [3]. Therefore, existing 
virtualization approaches require a separate physical 
wireless LAN device for each virtual machine (VM) 
to have its own wireless network. 

A viable solution to address the above issue is by 
giving all VMs access to the same wireless network 
and rely on network virtualization techniques such 
as VLAN or VPN to provide isolation for VM 
network traffic. However, this solution will add 
additional cost and overhead for configuring and 
maintaining a secured connection to all VMs. As a 
result, a new approach is needed to enable a single 
wireless network interface to be shared among 
several VMs without compromising the 
performance, isolation, or wireless LAN security 
mechanisms. 

By means of open source virtualization 
techniques, it is possible to create multiple virtual 
wireless networks through one physical wireless 
LAN interface, so that each virtual machine has its 
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own wireless network. Available open source 
solutions such as KVM, hostapd, and VDE provide 
the software infrastructure to deploy and implement 
such an approach on Linux operating system (OS). 
This paper aims at demonstrating this approach. 

 
2. BACKGROUND 

Virtualization approaches enable running 
multiple OSs and applications concurrently on the 
same physical machine, eliminating the need for 
multiple physical machines. Each VM has its own 
operating system and applications such as the 
physical machine [5-7]. Thus making the 
applications unaware of the underlying hardware, 
yet viewing computing resources as shared resource 
pools available via virtualization. 

The primary benefits offered by virtualization are 
resource sharing and isolation. Unlike real 
environments where physical resources are 
dedicated to a single machine, virtual environments 
share physical resources such as CPU, memory, disk 
space, and I/O devices of the host machine with 
several VMs. With isolation, applications running on 
one VM cannot see, access, and use resources on 
other VMs [5]. 

Virtualization provides a software abstraction 
layer on top of hardware. This layer is called Virtual 
Machine Monitor (VMM), also known as a 
hypervisor. The main task of the VMM is to manage 
the hardware resource allocation for VMs and to 
provide interfaces for additional administration and 
monitoring tools [5]. However, the functionality of 
the VMM varies greatly based on architecture and 
implementation. 

Today, two alternative approaches exist to 
virtualization on x86 hardware architecture. In the so 
called full virtualization approach, VMs and guest 
OSs run on top of virtual hardware provided by the 
VMM. However, the VMM has to provide the VM 
with an image of an entire system, including virtual 
BIOS, virtual CPU, virtual memory, and virtual 
devices to allow the guest OS to run without 
modification. As a result, the guest OS or 
application is not aware of the virtual environment. 
The main advantage of full virtualization approach is 
that it supports any platform and provides complete 
isolation of different applications, which helps make 
this approach highly secure. However, this approach 
has poor performance in trying to emulate a 
complete set of hardware in software [5,7]. 

KVM, which stands for Kernel-based Virtual 
Machine, is a full virtualization solution that takes 
advantage of hardware-assist features such as Intel 
VT and AMD-V to improve the performance of 
guest OSs [8]. The first generation of hardware 
assist features was added to processors in 2006, so 

that KVM hypervisor supports only newer x86 
hardware systems. Using KVM, several fully VMs 
can be created and operated in Linux environments, 
since KVM adds VMM capabilities to the Linux 
kernel. KVM hypervisor consists of two main 
components: a set of kernel modules providing the 
core virtualization infrastructure such as CPU and 
memory management, and a user space program that 
provides emulation for I/O hardware devices, 
currently through QEMU [9]. 

OS assisted virtualization or paravirtualization 
presents each VM with an abstraction of the 
hardware that is similar but not identical to the 
underlying physical hardware. This approach 
requires modifications to the guest OSs that are 
running in the VMs. As a result, guest OSs are 
aware that they are executing on a VM, allowing for 
near-native performance [5]. 

Xen is an open source virtualization software 
based on the paravirtualization approach. The Xen 
hypervisor runs directly on hardware, allowing the 
host machine to run multiple modified guest OSs 
concurrently [6]. Modifying the guest OS is not 
feasible for non-open source platforms such as 
Microsoft Windows. As a result, such OSs are not 
supported in a paravirtualization environment. 
Recently, unmodified guest OSs are also supported 
by Xen. In this mode, Xen provides a fully 
abstracted VM with hardware support (Intel VT and 
AMD-V) referred to as hardware virtual machine 
(HVM) [10]. 

With the adoption of virtualization in data 
centers, a new layer of network virtualization is 
emerging that provides inter- and intra- VM 
connectivity and has many of the same functions 
provided by the physical networking hardware. 
Today, this layer is providing connectivity to tens of 
VMs for a physical machine [11]. 

The main network components provided by 
virtual networking, as shown in Fig. 1, are virtual 
Ethernet interfaces, used by individual VMs, and 
virtual switches, which connect the VMs to each 
other [12]. VMs can also be configured with one or 
more virtual Ethernet interface to offer different 
virtual network appliances for virtual environments 
such as virtual routers (VR) and virtual firewalls. 
VRs are essential components in the virtual 
networking infrastructure because they operate in 
much the same way as physical routers, forwarding 
and routing packets based on standard routing 
protocols such as RIP and OSPF. Virtual firewalls 
provide the usual packet filtering and monitoring 
role provided via a physical network firewall. Thus, 
virtual networking components manage 
communication between co-located VMs, and 
connectivity to physical machines. 
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Modern OSs provides the ability to create virtual 
network interfaces that are supported entirely in 
software. From the OS’s point of view, these 
interfaces behave similar to physical network 
interfaces. However, the virtual interface does not 
send the packets into the wire, but makes them 
available to userspace programs running on the 
system. Virtual network interfaces are commonly 
referred to as TAP and TUN interfaces under Linux. 
TAP interfaces operate with Layer 2 packets, while 
TUN interfaces can handle Layer 3 packets. VMs 
use the TAP interface to create a network bridge 
with the physical network interface [2]. 

 
Fig. 1 – Virtual networking components 

Most of the virtualization approaches also 
provide some form of virtual networking. For 
example, VMware virtualization software has a 
distributed switch for virtual machine networking 
[13]. Linux-based virtualization platforms, including 
Xen and KVM, generally use network bridging or 
Virtual Distributed Ethernet (VDE) switch [14]. A 
network bridge acts like an Ethernet hub; passing all 
traffic. While, VDE provides Layer 2 switching, 
including spanning-tree protocol and VLAN 
support. 

Open vSwitch is an open source software switch 
that provides connectivity between the VMs and the 
physical interfaces. It implements standard Layer 2 
and Layer 3 switching with advanced features such 
as traffic monitoring (e.g. NetFlow), port mirroring 
(e.g. SPAN), basic ACL (Access Control List) and 
QoS (Quality of Service) policies. The Open 
vSwitch consists of two components: a fast kernel 
module and lightweight userspace program. The 
kernel module implements the forwarding engine, 
while the userspace program implements forwarding 
logic and configuration interfaces. Open vSwitch 
supports multiple Linux-based virtualization 
software, including Xen and KVM [11,15]. 

Quagga is an open source routing software that 
provides implementations of TCP/IP based routing 
protocols such as OSPF, RIP, and BGP. In addition 

to traditional IPv4 routing protocols, Quagga also 
supports IPv6 routing protocols [16]. Vyatta 
software [17] incorporates open source routing and 
security projects such as Quagga, IPtables, 
OpenVPN and many others into a network OS for 
x86 hardware platforms. Vyatta also can be 
delivered as VMs, providing routing, firewalling, 
VPN, and more for virtual and cloud computing 
environments. Thus, Vyatta network OS 
complements virtual networking components by 
delivering the virtual router, virtual firewall, and 
virtual VPN in the hypervisor. 

 
3. VIRTUALIZATION OF WLAN 

INTERFACE  
A network interface can be shared and hence 

virtualized using either a software or hardware 
based approach, as shown in Fig. 2. In software-
based approach, network interface virtualization is 
completely implemented as software to provide 
virtual network interfaces (VIF) for multiple VMs 
[3,18,19]. In this approach, bridging functionality is 
often enabled on the physical network interface to 
grant all VMs access to the same physical network. 

Full virtualization techniques provide virtual 
network interfaces by emulating legacy Ethernet 
devices for simplicity. The virtual network interfaces 
appear to the VM as virtualized hardware devices 
within the hypervisor. With this technique, no 
modification is required for the guest OS. However, 
there is a significant performance overhead due to 
the context switching between VM and hypervisor. 
In the paravirtualization technique, the 
paravirtualized driver is used in the guest OS to 
achieve high I/O performance. However, this 
method requires modifying the guest OS and having 
a special driver to expose some details of the 
hardware [3]. 

 
Fig. 2 – Network interface virtualization approaches 

The second approach depends on hardware 
virtualization support to partition a physical network 
device to multiple virtual network interfaces. Then, 
each virtual interface can be assigned directly to a 
specific VM. While this approach reduces the 
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performance overhead of software-based network 
interface virtualization, it increases the complexity, 
maintainability and cost of network devices 
[3,18,19]. An example of hardware-based approach 
is Single Root I/O Virtualization (SR-IOV) where a 
single PCI device can be divided into multiple 
Virtual Functions (VFs). Each VF can then be used 
by a VM, allowing one physical device to be shared 
among multiple VMs. As a result, close to native I/O 
performance can be achieved, in addition to fair 
sharing of the bandwidth [20]. 

Virtualization of a wireless LAN interface is 
more complicated than for wired network interface 
because the capacity of the wireless LAN channel 
varies with radio signal strength and interference 
from other wireless LAN devices. This requires 
including complex management functions into 
wireless devices to achieve efficient and reliable 
communication. Examples of such management 
functions include data rate adaption, power 
management, and power control. The device driver, 
which is part of the OS, is also involved in such 
management functions for control and configuration. 
In contrast, wired LAN devices are data centric and 
have very little management functions [3]. 

A typical WLAN device consists of: RF 
transceiver, Baseband, and MAC layer. The RF 
transceiver performs radio signal transmitting and 
receiving, while the Baseband mainly responsible 
for digital signal processing. RF transceiver and 
Baseband are generally referred to as PHY layer. 
The MAC layer often consists of a hardware 
controller on the WLAN device and a software 
driver on the host computer. Most of the wireless 
LAN functions such as authentication and 
authorization are performed at MAC layer [3]. 

In the beginning, the MAC layer was entirely 
managed by the firmware on the wireless LAN 
device. This approach is called FullMAC, where full 
MAC layer functionality is executed by the 
hardware controller on the wireless device. New 
implementation of wireless LAN devices is based on 
SoftMAC approach, where most of the MAC layer 
functionality is moved to device driver on the host 
computer, with the firmware providing a set of 
functional primitives [2]. This approach provides a 
high degree of software control over the MAC layer 
functions, while still allowing the PHY layer to 
define the radio waveform. 

MultiNet [21], which was later named 
VirtualWiFi, proposes a software based approach to 
virtualize a single wireless interface. Virtualization 
of wireless LAN interface is implemented with 
intermediate driver, called MultiNet Protocol Driver, 
which continuously switches the radio resources 
across multiple wireless networks. This approach 
has been adopted in Microsoft Windows 7 to give a 

user the ability to simultaneously connect to multiple 
IEEE 802.11 networks with one WiFi card. 
However, MultiNet approach was not designed to 
support the VM environment [3]. 

Recently, a novel virtualization approach on 
802.11 MAC layer has emerged in the wireless 
industry. Multiple virtual wireless LAN interfaces 
are separated at MAC layer sharing the same PHY 
layer [3]. As shown in Fig. 3, multiple virtual MAC 
entities can be active and share a common PHY 
layer via Time Division Multiplexing (TDM) on the 
same channel. This approach reduces costs, 
eliminating co-channel interference, and offering 
smooth roaming as clients move through the 
WLAN’s coverage area. WLAN products that 
provide support for such an approach include 
Atheros, Intel, and Marvell. 

 
Fig. 3 – Wireless network interface virtualization 

In the case that different virtual MACs need to 
operate on different RF channels, a time-critical 
scheduling is required for multi-channel MAC 
functions. Implementing such solution will allow the 
PHY layer to switch between different RF channels 
and keep virtual MACs in synchronization with the 
associated networks. Several research efforts have 
been made in implementing multi-channel 
virtualization approach for WLAN devices such as 
Net-X [22] and FreeMAC [23]. 

Virtualization of the WLAN interface enables 
several usage scenarios for wireless networking, 
some of these are: 
• Simultaneous Connectivity: a wireless device 

can be connected to multiple wireless networks 
simultaneously. E.g., One virtual interface 
operates in STA mode to connect to an AP, while 
another virtual interface operates in an ad – hoc 
mode to create a peer-to-peer wireless network. 

• Wireless Relay/Extension: a wireless client can 
extend the coverage area of the network by 
creating a second virtual interface in AP mode, 
allowing remote clients outside the basic 
operating range to relay data to the main AP. 

• Soft Handover: a wireless client can use a 
second virtual interface to scan all available APs, 
while the first virtual interface is connected to the 
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wireless network. After selecting the new AP, a 
client can authenticate and associate with it 
without losing the connection with the current 
AP. In this scenario, we can avoid packet loss 
and delay times in real-time applications such 
VoIP and video streaming [2]. 

• Multi-Streaming Service: a mobile device can 
communicate with multiple APs operating on 
different channels, as the device has several 
virtual interfaces. The most stable connection 
becomes the main connection and others can 
become sub-connections. By this scenario, we 
can improve streaming performance such as 
multi-path streaming without relay server [24]. 

• Wireless Mesh Network (WMN): a multi-hop 
WMN is built through virtual interfaces created 
at some mesh nodes. In this case, a mesh node is 
configured to work in STA mode and acts as AP 
by creating a second virtual interface in AP 
mode. Thus, remote clients located outside the 
coverage range (wireless cell) can get access to 
the network via clients connected to any AP in 
the wireless cell [25]. 

• Virtualized Environment: a virtual machine can 
establish its own wireless LAN connection by 
creating a virtual interface in STA mode. In this 
case, multiple wireless connections are supported 
through one physical wireless LAN network 
interface. 
 

4. VIRTUAL WLAN APPROACH  
With the introduction of IEEE 802.11n and the 

increase in bandwidth, wireless LAN virtualization 
is required as an alternative approach for deploying 
multiple virtual wireless LANs with different 
authentication methods. Wireless LAN virtualization 
enables several virtual wireless networks to coexist 
on a common shared physical device. Multiple 
virtual interfaces can be created on top of the same 
radio resources, allowing the same functionality as 
in multi-radio solution. 

All virtual interfaces operate concurrently 
without considering the physical nature of the 
wireless medium as well as physical management 
tasks. Each virtual interface abstracts a single 
wireless device and has its own wireless network 
and its own unique MAC address. From the 
application’s perspective, the virtual wireless 
network behaves like wired Ethernet, but is wireless. 

Using wireless LAN virtualization, a virtual 
interface can be configured to operate as an access 
point (AP) and also as a station (STA) device. A 
virtual AP is bound to a virtual network interface 
and each virtual AP independently keeps the 
configuration and service of the wireless network. In 
this way, several virtual APs can be configured on 

top of solely one physical wireless LAN device, as 
shown in Fig. 4. 

A virtual AP acts as the master device in a virtual 
wireless network and operates in much the same 
way as physical AP, allowing wireless stations to 
communicate with each other by managing and 
maintaining a list of associated stations. In general, 
the virtual AP consists of two parts: control plane 
and forwarding plane. The control plane is 
concerned with the information that defines the 
functionality of the AP such as the SSID (Service 
Set Identifier), operation mode, and RF channel. 
While the forwarding plane defines the part of the 
AP, that uses a lookup table as a base to forward 
packets to its destination.  

 
Fig. 4 – Physical and virtual APs 

By integrating wireless LAN virtualization 
techniques into the hypervisor, the wireless LAN 
interface can be shared among several VMs. To each 
VM one or more virtual wireless interfaces can be 
assigned. As shown in Fig. 5, VIFs are configured to 
operate in one of the wireless operating modes, 
specifically the AP mode, and then can be assigned 
to various virtual networking components. 

The main goal of this approach is to combine 
wireless network functionality into a common 
virtualized environment and to achieve performance 
levels comparable to the native hardware wireless 
LAN. A similar approach named virtual WiFi [3] 
has been taken to provide wireless LAN client 
functionality inside VMs. However, virtual WiFi 
approach is intended to support mobile client 
environments where the VM runs on the client 
device and has to be aware of the wireless interface 
to establish its own wireless connection. 

The Virtual WLAN approach is suitable for 
virtualizing wireless LAN infrastructures, where 
multiple separate wireless LANs can be deployed on 
a shared physical infrastructures with different 
security mechanisms such as WPA and IEEE 
802.11i. Since each virtual wireless LAN is logically 
separated, wireless LAN providers may use virtual 
WLANs to offer multiple services on the same 
physical infrastructure. Alternatively, virtual 
WLANs can be shared by multiple providers 
allowing each provider to offer separate services for 
their subscribers [1]. 
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Fig. 5 – Virtual wireless LAN approach 

This approach is based on the Atheros WLAN 
chipset which supports concurrent wireless 
connections sharing the same PHY layer of the 
wireless LAN device. This capability in wireless 
LAN devices is also referred to as multi-SSIDs, 
where each SSID is equivalent to a VLAN on a 
wired network. We extend multi-SSIDs capability to 
operate in the virtualization environments, where 
each virtual WLAN can have its own addressing, 
forwarding, routing, and security mechanism.  

To emulate a physical AP, it is necessary to 
provide the emulation at different layers such as 
layer 2 (MAC), layer 3 (IP), and above. At the MAC 
layer, the behavior of a physical AP is being 
emulated by allocating a distinct MAC address and 
SSID to each virtual AP. At the IP layer, it is 
emulated by allocating a distinct IP address and 
potentially a Fully Qualified Domain Name (FQDN) 
to each virtual AP. In higher layers, the emulation 
can be carried out by providing each virtual AP with 
a unique authentication and accounting 
configuration such as (a shared key, or EAP methods 
with RADIUS authentication), or SNMP 
communities. 

In our approach, a virtual wireless AP or router is 
constructed by configuring the VIF to operate in AP 
mode. This sets the main functionality of the 
wireless AP such as IEEE 802.11 operation mode 
and SSID. Once configured, the wireless interface is 
attached to a virtual switch to enable MAC 
forwarding similar to a physical AP. Then, the 
virtual AP interface is connected to a virtual router, 
in the same way as the virtual Ethernet interface, to 
enable IP forwarding and routing. 

 
5. IMPLEMENTATION 

The multi-SSID capability given by the Atheros 
chipset allows implementing multiple IEEE 802.11 
networks on a single physical wireless card with 

Linux (Linux kernel version 2.6.33 and higher), 
since it includes a wireless driver supporting 
multiple VIF configurations.  

The wireless driver for Atheros WLAN devices 
was initially developed by the madwifi project, and 
then became part of the Linux kernel. The 
implementation model of Linux kernel WLAN 
driver is currently based on SoftMAC wireless 
devices, where most of the MAC layer functionality 
is managed by the driver. For the time being, Linux 
kernel supports all wireless modes with PCI/PCI-
Express Atheros WLAN devices only [26]. 

In order to implement our approach, we used a 
conventional PC with a wireless LAN card based on 
the Atheros IEEE 802.11n chipset. It had an Intel 
Core 2 processor with VT support, Gigabit Ethernet 
interface and 3 GB RAM. Ubuntu Linux has been 
chosen to host the virtualization environment for 
virtual WLAN approach. We used KVM as backend 
for virtualization and libvirt as frontend for 
managing VMs. With libvirt, there come two 
management tools: virt-manager as graphical user 
interface (GUI) and virtsh as command line interface 
(CLI). 

The virtual wireless interfaces have been created 
using a CLI configuration utility in Linux named 
“iw”. Once created, the interfaces have been 
configured to function as virtual AP or virtual STA 
interfaces. It is essential for all VIFs to have a 
unique MAC address, which can be assigned with 
“ifconfig hw” command or “macchanger” utility. 

A virtual AP functionality has been implemented 
using the hostapd daemon or background service. 
hostapd is an open source software for controlling 
wireless LAN authentication and association. It 
implements IEEE 802.11 AP management and 
provide support for several security mechanisms 
such as WPA, IEEE 802.11i, and IEEE 802.1X [27]. 
The virtual AP interface has been connected to a 
VDE switch to enable MAC forwarding similar to a 
physical AP.  

For testing our approach, three virtual wireless 
routers have been hosted on the PC with a shared 
Internet connection. We created three virtual APs in 
IEEE 802.11g operation mode, and three virtual 
routers running Vyatta OS. Each virtual router had 
two virtual Ethernet interfaces. One of them was 
connected to the virtual AP interface and the other to 
the physical Ethernet interface using the Linux 
interface bridging feature. Each virtual router acted 
as a DHCP server and DNS forwarder for the virtual 
wireless LAN and each virtual AP broadcasted 
different SSIDs to distinguish the wireless networks. 
NAT functionality was also added to the virtual 
routers to maintain public IP addresses and to 
enhance wireless network security. Using these 
virtual routers, different wireless LAN clients could 
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access the Internet with different wireless LAN 
security mechanisms. 

 
6. PERFORMANCE AND RESULTS 

We have conducted some tests to understand the 
impact of the virtual software layer on wireless 
LANs. The objective of the tests was to compare and 
quantify the performance of both conventional and 
virtualized wireless networks. Testing WLAN 
performance primarily included two test metrics: 
throughput and response time. These performance 
metrics were used to evaluate the applicability of our 
approach for WLAN infrastructure virtualization 
since the virtual networks had to handle the same 
kind of traffic as conventional networks. 

The throughput of WLAN is defined as the speed 
with which a user can send and receive data between 
the client and the AP. Throughput varies across the 
WLAN’s coverage area. For this reason, we placed 
the test machines at close range to operate on the 
maximum available channel bandwidth. 
Theoretically, the maximum TCP rate of 802.11g 
network is 24.4 Mbps and the maximum UDP rate is 
30.5 Mbps. The UDP throughput is higher than TCP 
throughput because there is less protocol overhead 
associated with UDP. Therefore, TCP throughput is 
the most relevant metric in our performance 
measurements. 

To measure the throughput, we used IPerf and 
JPerf as the graphical interface. IPerf tool was used 
to measure TCP and UDP throughput in two 
directions: uplink direction (from the client to the 
virtual AP) and downlink direction (from the virtual 
AP to the client). To measure response times or 
latencies, we used ping. Ping is used to measure the 
round-trip time between the client and the virtual 
AP. In our test setup, IPerf was installed on two 
machines; the machine which hosts the virtual 
wireless routers functioned as IPerf server and the 
wireless client machine as IPerf client. IPerf was 
configured on the wireless client to run tests for 60 
seconds in both directions and provided values in 
Mbps. 

We performed the same test in both native and 
virtual environments. In the native hardware 
environment, the tests were performed between a 
remote client and host machine running three virtual 
APs without virtualization. In the virtual 
environment, the tests are performed between a 
remote client and a VM directly attached to the 
virtual routers. In this case, the wireless traffic 
passing through the virtual routers. 

Fig. 6 depicts the throughput test results where 
all throughput results have been averaged over three 
measurements. The average downlink/uplink TCP 
throughput is 21.8/18.6 Mbps in the native hardware 

environment and 21.4/18.2 Mbps in a virtual 
environment. Latency test results show that the 
average round-trip time in native hardware 
environment is 1.1 msec and 2.1 msec in the virtual 
case. This latency overhead comes from the 
virtualization layer. The results show that our 
proposed solution achieves performance metrics 
comparable to the native hardware environment. 

 
Fig. 6 – Throughput test results 

 
7. CONCLUSION 

In this paper, we introduced a virtual networking 
infrastructure using different virtualization 
techniques. Also, we proposed a viable approach to 
realize virtual WLANs by combining wireless LAN 
virtualization technique with open source 
virtualization platform. 

Our approach adds wireless LAN functionally to 
virtualization environments. Summarizing some of 
the benefits, we can conclude that our proposed 
solution: 
• Enables virtualized wireless LAN architectures. 
• Builds wired and wireless networks without 

deploying physical infrastructure. 
• Adds the wireless LAN management and control 

functions to virtualization environments. 
For the future, it is planned to investigate 

performance measurement and optimization with the 
Xen open source hypervisor. Also, we will design a 
platform for virtual WLAN approach with different 
security infrastructures. 
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