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Abstract: -We describe VisPar - a new visual tool intended to support the programmer in the process
of designing complex parallel applications. The novel features of the tool are as follows: support of both
task and data parallelism and mixture thereof, use of analytical cost models for performance prediction,
systematic program design by optimizing transformations, and visualization of the design process. We
demonstrate the usage of VisPar on a relevant case study - the practically used Jpeg compression
algorithm - and report on the current status of the tool implementation.
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INTRODUCTION

Recent advances in hardware make it possible
to solve large application problems potentially
much faster than before by exploiting several pro-
cessors in parallel within one computer or by har-
nessing the power of many computers in a local
network or over the Internet.

Many parallel applications have been designed
with a specific target architecture mind. Unfortu-
nately, this often leads to the situation that the wheel
has to be reinvented for every new kind of parallel
system. Especially the optimization of parallel per-
formance by tuning the program to a particular
machine is a complicated process that demands
special knowledge ofthe user. Typical applications
do not use parallel concepts

from the outset but are rather transformed step
by step to fitinto a parallel environment. This trans-
formation process, when done ad hoc, is both er-
ror-prone and time-consuming,

Our approach is to support the design of paral-
lel software using a visual tool that assists the user
in systematically choosing the parallel software
structure and estimating its quality. The approach
is implemented in the new tool VisPar (Visual
Parallelism), whose current implementation sta-
tus is described in this paper.

The rest of the paper is structured as follows.
In the next Section we discuss the VisPar model of
parallelism and the supported optimization algo-
rithms. Section three describes our case study - the
Jpeg compression algorithm - which is being
parallelized using the VisPar tool. We proceed in

Section four with the implementation status report
and future plans for VisPar,and conclude in the last
Section with a brief discussion of the novelty of
our approach.

MODELLING AND OPTIMIZING
PARALLELISM IN VISPAR

The VisPar tool is designed to support two
major kinds of parallelism:

* data parallelism - applying one operation
(function, subroutine, etc.) simultaneously on dif-
ferent elements of a partitioned data structure;

* task parallelism - performing different opera-
tions (functions, subroutines, etc.) simultaneously.

The vast majority of parallel applications ex-
hibit either one of these two kinds of parallelism
or a mixed two-level structure, with task parallel-
ism at the higher level and data parallelism within
individual tasks.

Parallel algorithms are modelled in VisPar us-
ing the DAG (directed acyclic graph) model which
is quite popular inthe literature, see e.g.[ 1]. There
are two levels of potential parallelism available in
the graph: (1) every node of a graph represents a
task that might be executed in parallel with some
other tasks; (2) every task may have inherent data
parallelism.

The ultimate goal of the design process is find-
ing the optimal target program, and some cost
model should be used to compare various design
options with each other. We do not restrict our-
selves to a particular cost model; similarly to [1],
we only require the monotonicity in the maschine
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Fig. 1. The idea of optimizing data parallelism via composition in VisPar: Two collective
operations on p processors are fused into one collective operation, thus saving synchronization
costs and the total execution time

parameters and the convexity in algorithm param-
eters. These, arguably rather reasonable constraints
demand that, firstly, on a faster maschine the same
algorithm will always require less time and, sec-
ondly, decreasing the costs of some part of an al-
gorithm leads to decreasing total costs.

The VisPar tool expects the user to provide the
cost annotations for particular parts of the program,
which are then used by the optimization algorithms.
Individual tasks are annotated with their maximal
inherent parallelism and runtime costs. Potential
parallelism among tasks, i.e. task parallelism, is
expressed by means of the graph edges: they are
the consequence of data dependencies and repre-
sent the data transfers between tasks. The edges
may be labelled with the corresponding communi-
cation costs or the amount of transferred data.

We outline here the optimization algorithms that
are being implemented in VisPar and can be called
by the user during the design process. According
to the structure of relevant parallel applications,
these algorithms are divided in two groups: for
optimizing data and for task parallelism, respec-
tively.

Optimizing data parallelism. For the data-
parallel part, we are going to use our own approach
presented in [2]. Data-parallel tasks are described
as sequences of parallel collective operations on
groups of processors, which express either com-
putations or communications or a mixture of both.
Examples of operations that involve communica-
tions are scatter, reduction (involves also compu-
tations) and other collective operations of the cur-
rent MPI (Message Passing Interface) standard.

It has been proved [2] that particular combina-
tions of collective operations can be transformed
into semantically equivalent but more efficient
collective operations. An example of a composi-
tion transformation, which fuses two collective
operations into one, is illustrated in Fig.1. Such
transformations are formally proven to be seman-

tics preserving, They are parameterized with re-
spect to the basic operations performed on data,
which enables their use in various applications. All
available collective operations and their transfor-
mations with cost estimates are kept in an extend-
able library as part of VisPar.

Optimizing task parallelism. The transforma-
tion of task parallelism is usually based on graph-
oriented models. We will briefly present two re-
cent heuristic approaches, which are implemented
in VisPar.

One of recent advances is the NoT (Network of
Tasks) model [1]. It aims at optimizing the parti-
tioning of the application into tasks and finding an
optimal allocation of available processors to par-
ticular tasks, to minimize the total run time. The
optimization makes use of two characteristics pro-
vided by the user - m.a.p. (maximal available par-
allelism) and the run time costs of a task. The NoT-
graph has to be partitioned into layers, which is
accomplished automatically. All tasks within a
layer can be executed in parallel, therefore the
available processors have to be partitioned among
them. Intuitively, the idea is to reduce the number
of processors allocated to the tasks with smaller
costs, thereby slowing them down, and to increase
the number processors of tasks with greater costs,
thereby speeding them up. The allocation is obvi-
ously constrained by m.a.p. of a task. The described
allocation adjustment will create a layer that con-
sists of task that will have almost even runtime and
will be work-balanced nearly optimally.

In the related approach from [3], the task graph
is also layered, and the allocation and scheduling
of each layer are optimized separately. This hap-
pens in two phases, bottom-up and top-down.
Firstly, a layer is partitioned into sets, each con-
sisting of two tasks.

For every pair of tasks, a decision is made
whether the tasks should be executed after each
other or rather simultaneously. When done for all
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Fig. 2: Case Study: The initial representation of the Jpeg compression using DCT (Discrete
Cosinus Transformation) on an RGB-coded (Red-Green-Blue) image. % consisting of the R,G,B
8x8 matrices with VisPar. The R, G and B matrices are sent to three different tasks that
elementwise substract 128 and pass the result matrices to the next tasks. These multiply them with
the transposed DCT-matrix (tDCT). After that the result matrices are multplied by the DCT-matrix.
Matrix Q is built to reduce the resulting matrices to zero elements. The DCT-graph has been
annotated with the maximal available parallelism m.a.p. and runtime TM.

possible partitions into two-task sets, this creates
a table showing sequential and parallel run times
for every possible processor partition sizes. For
every processor allocation, the minimal run time
can be found and the respective pairs of tasks form
new, combined tasks, whose number is a half of
the initial task number. This procedure is repeated
until we come to a task that combines all original
tasks of the graph and for which the minimal run
time is found. In the second, top-down phase, the
processor allocation will be chosen using the in-
formation collected in the bottom-up phase. Start-
ing with the root node of the combination tree, the
available processors will be partitioned by search-
ing for the minimal execution time. For every layer,
the optimal scheduling and allocation are thus de-
termined for the given number of available pro-
cessors. It can be seen that the optimization algo-

rithm of [3] can be rather time consuming for big
applications.
TMatrix is a substitute for the runtime function

JnJ n
+4*p*t +4*t *F—
p v Jp

CASE STUDY: PARALLELIZING THE
JPEG ALGORITHM

Our case study is the Jpeg algorithm for data
compression. The essential part of the algorithm is
the Dicrete Cosinus Transformation (DCT), which
is a time-consuming operation amenable to
parallelization. We take a version of Jpeg from [4].

The idea of using VisPar is that the user pro-
vides some initial version of the application struc-
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Fig. 3: The VisPar window with the canvas for the DCT-graph has been created with the maximal
available parallelism m.a.p. and runtime TM . At this stage, no communication costs have still
been added to the NoT-graph.

ture in form of a task graph. The potential parallel-
ism of the application is characterized by the m.a.p.
and the run time costs of the tasks, and task inter-
dependencies are specified by the graph edges. The
VisPar tool supports the user in mapping these
parallelism opportunities and parallelism con-
straints onto available processors.

The task graph in Fig.2 illustrates the overall
structure of the case study. The DCT-compression
algorithm works ona block of an RGB (Red-Green-
Blue) colour picture consisting of the channel pic-
tures: R,G and B each sized usually §x § pixels.
So the typical matrix size of a channel picture is
64 Bytes, but in general case we will use param-
eter n. After generating the DCT and tDCT matri-
ces and reading the chanel pictures, they have to
be subtracted by 128 to gain colour values between
-128 and +127. Then we use the transposed DCT

matrix of size 1[5 x \/n to transform the colour

values of the three channel pictures from the space
domain to the frequency domain by performing the
matrix multiplication with each channel picture
matrix.

It remains to multiply the result matrices with
the DCT matrix and divide them pointwise by
matrix Q, so that after rounding most of the matrix
values are zero and can be easily compressed by a
Huffman-like algorithm.

The user of VisPar works with mouse-driven
visual components, which enable to specify the
described application structure graphically, see
Fig.3. For each node of the graph, the estimates of
the parallelism degree and of the run time are pro-
vided. Reading the three channel matrices with size
n can be done in time 3*n. We assume that the chan-
nel matrices can be read in parallel, so that the
m.a.p. is 3. Setting up the DCT and transposed DCT
matrix will need 2*n steps and in both matrices
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the value can be generated independently, so the
m.a.p. is n. Subtracting 128 from all matrix values
costs n steps and can be done in parallel. The fol-
lowing matrix multiplications using the Cannon/
Gentleman algorithm on p processors requires time

3
£\/—Zl+4"‘\/;”‘ts +4%g ¥ L
p

~— where t, is the
Jr

startup time and t ist the time needed to transfer a
data word between two processors.

There may exist several graph windows, each
being an implementation of the application or its
parts; the user can merge and divide the graphs to
improve the design. Besides annotation each task
with a runtime function 7M and the m.a.p. , the user
can also open the second editor level to compose a
task as a sequence of collective operations. In this
case, the runtime costs can be computed
automaticly fromthe costs of the single operations.

After creating the NoT-graph, the user can re-
fine the application by modifying the graph or by

adding alternative, semantically equivalent imple-
mentations of tasks. In particular, different data
partitioning and communication pattern leads to
bunch of possible implementations of one algo-
rithm. After applying the optimization algorithms
for both data and task parallelism

mentioned in first section , the automatic selec-
tion algorithm performed by VisPar chooses the
best alternative, which may be nearly optimal be-
cause of rounding towards an integer value for the
number of processors.

For illustration purposes, we demonstrate the
task parallel optimization for the DCT example of
Fig.2. To compute the processor allocation, equa-
tion (1) is used, where p, is the number of allo-
cated processors for task i, TM_ _is the runtime of
the slowest task of the layer and TM, is the runtime
of task i of the layer:
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Fig. 4: Optimized, layered graph of the Jpeg-algorithm, with nearly-optimal processor allocation
(in bold font). All allocations are rounded to get an integer number of processors, which makes the
numbers only nearly optimal.
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The resulting graph is presented in Fig.4, where

2
n

3
4 @+4*\/;*ts +axg w1
P Jp

p

A0 =

2

The optimization algorithm thus generates the
allocation of processors, such that no task has to
wait for other tasks of the same layer. Due to the
rounding in (1), the allocation is only nearly opti-
mal.

IMPLEMENTATION STAT US AND
FUTURE WORK

The implementation of VisPar is being accom-
plished in Java 1.3. Java was our language of choice
because of its portability and the extensive capa-
bilities of the graphical components of

its Swing class library. The design of the inter-
nal graph representation is based on the Model-
Controller-View concept of Java that comprises
two kinds of objects: the data model object which
contains the user data and the visual object that
provides the access to the information.

The class hierarchy of the current implementa-
tion is shown in Fig.5. The central class, VisPanel,
is derived fromthe standard JPanel Javaclass. The
editor functionality to manipulate the editor ob-
jects is realized as member methods of this class.
The editor objects themselves are stored in the
VisPanelModel class which provides methods to
manipulate them, too. It holds the collection of
VisTask and VisEdge objects that form the NoT-
graph on the display and store parts of the graph
data in the VisTaskModel and VisEdgeModel ob-
jects.

The innermost component of the editor is a spe-
cial Java user class EvalFunction, responsible for
parsing and evaluating cost functions; these are
provided by the user as closed mathematical ex-
pressions. The tool detects input errors and pro-
duces a representation of a function as encapsu-
lated postscript. Currently, all variables used in a
cost function must be given a concrete value or
value range before the function can be evaluated.
The EvalFunction class contains LRParser and
LRGrammar, which specify the parser and the
grammar of mathematical expressions. These
classes can be reused if a different grammar is de-
sirable. The LRParser class contains an LR-Parser
and is able to evaluate the values of the input string.
If the cost function is not changed, it is possible to

speed up the evaluation process by memorizing
some values of the function. For the most impor-
tant variables like problem size n and number of
processors p, some often occuring values can be
used to evaluate the cost function apriori.

The editor objects of VisPar export their
data models as structured XML files for reusabil-
ity purposes. Ultimately, the whole graph can be
translated and exported in the XML format and then
used by other software components of VisPar. In
particular, the XML representation of the graph can
be translated into parallel source code and com-
piled for a particular machine. Also a more detailed
structure of the application can be inserted into an
existing XML representation.

We try to keep our implementation as flexible
as possible. All components are built as fully imple-
mented Java objects, so that every further exten-
sion can be added by creating a derived class and
adding further functionality. Especially graph lay-
out functions can easily be added by subclassing
the existing abstract objects of the editor.
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Fig. 5: Internal sofiware structure of the
VisPanel class that is the canvas for drawing
NoT-graphs in the NoT-graph windows of the
VisPar application.

The mainaspects that remain to be implemented
are the optimization and selection procedures. For
the latter, a simple method based on Dijkstra’s
shortest-path algorithm has been suggested else-
where [1]. The next step will be the optimization
on the data-parallel level. This will add a second
layer of representation to the visual programming
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concept of VisPar. It will enable the user to con-
struct a parallel program using exclusively visual
components and obtain optimized intermediate
parallel code that can be translated into different
target parallel languages. Furthermore, this relieves
the user of estimating the costs of tasks: these are
supplied automatically by the data-parallel opti-
mization methods.

We envisage the VisPar toolbar as having but-
tons to start the optimization and selection proce-
dures. Every procedure will open a additional dia-
log that displays information referring to the opti-
mization process. The results of optimization are
displayed in a new graph-window showing the
optimized NoT-graph. The optimization procedures
can be performed on several NoT-graphs
simultaniously. We also intend to add buttons for
particular combinations of optimization algorithms.

Several usefull GUI enhancements are planned
for the future work, like a batch processing mode
to accommodate lengthy optimization processes
like the algorithm from [3]. The next phase of ex-
tension could include adding pipelining and itera-
tioninto application graphs. Finally, additional Java
modules should translate the DAG of a parallel
program into a target language, e.g. MPL

CONCLUSION

In our view, both the novelty and advantage of
the VisPar tool is that it combines the sound foun-
dation of parallelism modelling and optimization
withthe easy-to-use visual support for performance
prediction and optimization in the design process.

The user starts with an intuitive description of
potential parallelism and data dependencies in the
application. Using the VisPar tool, optimization
algorithms for data and task parallelismare applied,
leading to an efficient implementation with a pre-
dictable performance on various configurations of
an available parallel machine.
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