
S. Poomagal, T. Hamsapriya / Computing, 2011, Vol. 10, Issue 3, 249-258

 249

SBLWPR – SIMILARITY BASED LINK WEIGHT FOR PAGERANK
CALCULATION

S. Poomagal, T. Hamsapriya

PSG College of Technology,

Coimbatore, India
e-mail: poomagal_sam@yahoo.co.in

Abstract: Search engine retrieves list of web pages which are relevant to the given query from the index and sorts the
list based on the page importance score. There are different ranking algorithms available in the literature to calculate
the importance score of web pages. The basis of all ranking algorithms is the link structure of the web. In existing
ranking algorithms, no weight is assigned to the links by considering the similarity among the linked documents. Since
links from similar documents are more important than the links from other dissimilar documents, a new method is
introduced to assign weight to each link based on the similarity among the linked documents. Calculated link weight is
added with existing PageRank value to calculate final PageRank. Proposed technique is compared with existing
ranking algorithms using the measures precision, recall and F-measure.

Keywords: Authority Score, Hub Score, Link structure, PageRank, Similarity, Stemming.

1. INTRODUCTION
Web mining is used to search the content of the

Web, to perform link analysis and to identify the
users’ behavior in the past to predict the future
usage of the web. Based on the above, web mining
is divided into three categories such as Web
Content Mining (WCM), Web Structure Mining
(WSM), and Web Usage Mining (WUM) [1, 2, 3].

WCM discovers useful information from the
web document content by applying some
traditional data mining techniques. WSM deals
with the discovery of relationships between web
pages by analyzing web hyperlink structure.
WUM mines user log files to identify the users’
behavior in viewing the web pages. This
information is helpful to make future decisions.

All existing search engines perform Web
Structure Mining using inlinks and outlinks of the
web pages to identify the popularity of a page.
Based on the popularity, ranks are assigned to the
web documents. A page is more popular if it is
pointed by many pages. Using this concept as a
base, many algorithms were devised to rank the
pages according to its importance.

One such technique is PageRank [4] used by
Google search engine and it has proved to be a
very effective algorithm for finding the rank of the
search results.

Improvement in the PageRank algorithm is
done by HITS (Hypertext Induced Topic
Selection)[5] using the concept of authorities and
hubs. Authoritative pages have more number of
incoming links and hub pages have more number
of outgoing links. [6, 7, 8, 9] first identifies pages
of interest through term-based techniques and then
performs an analysis of only the graph
neighborhood of these pages. Major problems
with HITS algorithm is link spamming and topic
drift [10].

Another method called SALSA (Stochastic
Approach for Link Structure Analysis) introduced
by [11] combines the random walk method of
PageRank with hub and authority technique of
HITS. It eliminates the drawbacks of HITS such
as link spamming and topic drift [10].

Wenpu Xing and Ali Ghorbani have introduced
Weighted PageRank algorithm [12] which assigns
larger rank values to more popular pages instead
of dividing the rank value of a page evenly among
its outlink pages. Each outlink page gets a value
proportional to its popularity.

In all the above ranking algorithms, links are
not assigned with a weight value according to the
similarity among the documents that are linked. In
this paper, each link is assigned with a weight
based on the level of similarity among the linked
documents. Calculated link weight is added with
the existing PageRank value.

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

S. Poomagal, T. Hamsapriya / Computing, 2011, Vol. 10, Issue 3, 249-258

 250

First step of the proposed method is to extract
terms from the documents. After extracting the
terms, stop words are removed. Stop words are the
terms that do not have any meaningful information
to find the similarity among the documents.
Resultant terms after stop word removal will
undergo the process called stemming. Stemming is
the process of converting the terms into their base
forms. Stemmed terms are collected and TFIDF
(Term Frequency / Inverse Document Frequency)
value of the terms in every document is calculated
and filled in the vector space. Vector space includes
set of documents (D1 to DM) as rows and the
collection of terms (T1 to TN) as columns. Distance
matrix is formed from the TFIDF matrix using
Euclidean distance function. Using the distance
matrix, weight of each link is calculated and added
with the initial PageRank.

The remainder of this paper is organized as
follows: Section 2 discusses the ranking algorithms
available in the literature. Section 3 explains the
proposed method. Section 4 discusses the results
obtained. Section 5 concludes the paper and Section
6 mentions the future work.

2. EXISTING RANKING ALGORITHMS
One of the major challenges in information

retrieval is the ranking of search results. In the
context of web search, where the data is massive and
queries rarely contain more than three terms, most
searches produce large collection of results. Since
the majority of search engine users examine only
first few pages of search results [13], effective
ranking algorithms are necessary for satisfying
users’ needs by bringing more relevant documents to
first few pages. Many research works were done in
link based ranking algorithms. Most of the research
works has centered on proposing new link based
ranking algorithms or improving the efficiency of
existing ones.

The following are the popular ranking algorithms
in the literature:
 i. PageRank
 ii. HITS
 iii. SALSA
 iv. Weighted PageRank

2.1. PAGERANK

PageRank algorithm [4] is a commonly used
algorithm which does Web Structure Mining.
PageRank is used to sort the results so that more
relevant pages are likely to be displayed at the
beginning of the list of search results. It measures
the importance of the pages by analyzing the links
through markov chain model [14].

The fundamental principle of PageRank is that “a

page is important, if it being pointed by many other
pages”. Hence, to quantify the PageRank value of a
page A, the sum of the PageRank of other pages
pointing to page A is computed. It is described
mathematically as,

∑=
jp

j

i
i p

)r(P)r(P (1)

where Pj denotes the set of all pages in the web
hyperlink structure that points to the page Pi. |Pj| is
the number of outlinks of Pi. This equation computes
the PageRank of the pages one at a time. However, a
careful analysis will reveal that matrix multiplication
can be used to compute the entire PageRank vector
at a time. To avoid a page dominating the PageRank
values of other pages and to suppress bogus pages,
the rows of the matrix are normalized by dividing
the entries with the total number of outlinks of the
page. Mathematically, the iteration is defined as

HPP
p

)r(P)r(P (k)1)(k

j

TT
p

j

i
i == +∑ (2)

where k denotes the number of iterations, P is the
PageRank vector and H is the matrix obtained after
normalizing the rows. After normalizing, the matrix
becomes substochastic and we know the matrix thus
obtained is the power method for left hand
eigenvector computation and we also know that a
stochastic matrix will have a stationary eigenvector.
Hence the normalized hyperlink matrix is converted
to a stochastic matrix by replacing the row entries,
of the pages with no outlinks, with 1/n, where n is
the number of pages. Mathematically, it is given as,

⎟
⎠
⎞

⎜
⎝
⎛+=+ TT c

n
1aHSP 1)(k (3)

where ‘c’ is a column vector of all 1’s and is of
order nx1, ‘a’ is a column vector which has ‘1’ entry
for the dangling nodes (pages with no outlinks) and
S is the stochastic matrix. However, the problem that
still persists is the rank sink problem which is
characterized by a single page or a set of pages
dominating the PageRank values of other pages.
Some pages may obtain a rank of zero in the process
of convergence which is not conceptually possible.
To overcome this problem, a teleportation matrix is
used in the computation of the rank vector which
also preserves the nature of the original input. The
computations in creating the teleportation matrix can
be mathematically modeled as

S. Poomagal, T. Hamsapriya / Computing, 2011, Vol. 10, Issue 3, 249-258

 251

Tcc
n
1α)(1αSG −+= (4)

For an optimum mixture of the original values, α

value is taken as 0.85. The iterations with the G
matrix will provide a converged, unique PageRank
vector for all the pages irrespective of the initial
vector. Based on the PageRank vector, the pages are
ranked and sorted.

2.2. HITS

HITS (Hypertext Induced Topic Selection) [5]
algorithm calculates two different scores namely hub
score and authority score. It collects pages and forms
a graph with authorities and hubs. Web pages
pointed by many hyperlinks are called authorities.
Web pages that point to many other pages are called
hubs. Strong authority is the page which has links
from many highly scored hubs. Popular hub is the
page which points or links to highly scored
authorities.

Authority score of a page is a function of the sum
of the hub scores of the pages pointing to it while the
hub score of a page is given by the sum of authority
scores of the pages that points to it. These
calculations can be performed through matrix
multiplications using the adjacency matrix.

Steps
1. Construct an adjacency matrix by using

the neighborhood graph N which
indicates the connectivity of all the nodes.

2. Calculate the authority vector from the

adjacency matrix formed using the
formula

()AAV T
k = (5)

3. Calculate the hub vector from the

adjacency matrix using the formula
() k

T
k V AAU = (6)

4. Rank the pages using the hub and
authority vectors formed.

The equations 5 & 6 also define the iterative

power method for computing the dominant
eigenvector as in the PageRank algorithm. However,
the implementation of HITS differs from the method
used in the PageRank algorithm. HITS algorithm is
query dependent and it processes only the pages that
correspond to the given query either directly or
indirectly.

Initially, the base set is constructed by using the
pages that directly correspond to the query and then
it is expanded by adding the inlinks and outlinks of

the pages in the base set. The set of pages thus
obtained is visualized in the form of a web hyperlink
graph and the adjacency matrix is constructed. The
authority score and the hub score of a page is
calculated as given in equations 5 and 6. The score
vector is normalized by dividing the score of each
page with the maximum score in that iteration. The
matrices used are symmetric, positive semi definite,
nonnegative and hence ensure convergence.

Major advantage of HITS algorithm is its dual
rankings. HITS presents two ranked lists to the user.
One with more authoritative documents and the
other one with most hubby documents. Authority
score can be used when the search is oriented
towards research. Hub score can be used when the
search is broad. Another advantage of HITS is the
size of the problem. It casts the ranking problem as a
small problem, finding the dominant eigenvectors of
small matrices. The size of these matrices is very
small relative to the total number of pages on the
web.

Major disadvantage of HITS algorithm is
susceptibility to link spamming [10]. By adding
links to and from any web page, it is possible to
change the hub and authority scores. Since hub score
and authority score are interdependent, when hub
score is increased by introducing more outlinks on a
page, automatically the authority score of a page
increases. Another problem with HITS is topic drift
[10]. In building neighborhood graph N for a query
it is possible that a very authoritative yet off-topic
page be linked to a page containing the query terms.
This very authoritative page can carry so much
weight and its neighboring documents dominate the
relevant ranked list returned to the user, skewing the
results toward off-topic documents. Another
drawback of original HITS algorithm is that it is
query dependent. At query time, a neighborhood
graph must be constructed and at least one
eigenvector problem must be solved. This problem
can be rectified by making HITS query-independent.
It can be done by dropping the neighborhood graph
step and computing the authority and hub vectors
using the adjacency matrix of the entire web graph.

2.3. SALSA

SALSA, the Stochastic Approach for Link-
Structure Analysis [11] is based on the theory of
Markov chains, and uses the stochastic properties of
random walks done on a collection of pages along
with hub and authority technique of HITS. The meta
algorithm used by both HITS and SALSA is similar
but the basic difference between two methods is the
formation of an adjacency matrix. HITS algorithm
considers the tight connection between the nodes of
the graph but SALSA considers light connection by

S. Poomagal, T. Hamsapriya / Computing, 2011, Vol. 10, Issue 3, 249-258

 252

performing random walk in the graph.
Initially the neighborhood graph N associated

with a particular query is formed. SALSA differs
from HITS in the next step. Rather than forming an
adjacency matrix L for the neighborhood graph N, a
bipartite undirected graph G is built. G is defined by
three sets: Vh, Va and E, where Vh is a set of hub
nodes and Va is a set of authority nodes and E is a
set of directed edges in N. Next, two Markov chains
are formed from G, a hub Markov chain with
transition probability matrix H, and an authority
Markov chain with matrix A.

HITS used the adjacency matrix L of N to
compute authority and hub scores. On the other
hand, PageRank computes a measure analogous to
an authority score using a row-normalized weighted
matrix G. SALSA uses both row and column
weighting to compute its hub and authority scores.
Let Lr be L with each nonzero row divided by its
row sum and Lc be L with each nonzero column
divided by its column sum.

Steps
1. A bipartite graph is drawn with hubs in

one side of the graph and authorities in
another of the graph.

 i. Hub includes the nodes (Vh) with
 outdegree greater than zero
 and
 ii. Authority side includes nodes (Va)
 with indegree greater than zero

2. Column and row weighted matrices Lc

and Lr are formed.

3. Hub and authority matrices are formed

by
T
crLLA = (7)

r
T
cLLA = (8)

 where Lr – Non-zero rows of L divided
 by its row sum
 Lc – Non-zero rows of L divided
 by its column sum
4. Eigenvectors are formed from the hub

and authority matrices.

5. Based on the hub and authority vectors,

the pages are ranked.

SALSA is less susceptible to link spamming [10]

since the interdependence between hub and authority
scores is much less. Unlike HITS, SALSA is
victimized by the topic drift [10] problem. Serious

drawback of SALSA is its query dependence. At
query time, the neighborhood graph N for the query
must be formed and the stationary vectors for two
Markov chains must be computed. Another problem
with SALSA is convergence. Since SALSA does not
force irreducibility onto the graph, the resulting
vectors produced by the algorithm may not be
unique if the neighborhood graph is reducible.

2.4. WEIGHTED PAGERANK

It assigns larger rank values to more important
(popular) pages instead of dividing the rank value of
a page evenly among its outlink pages. Each outlink
page gets a value proportional to its popularity (its
number of inlinks and outlinks). The popularity from
the number of inlinks and outlinks is recorded as

in
u)(v,W and out

u)(v,W , respectively.
in

u)(v,W is the weight of link (v, u) calculated
based on the number of inlinks of page u and the
number of inlinks of all reference pages of page v.

∑ ∈

=
R(v)p p

uin
u)(v, I

IW (9)

where Iu and Ip represent the number of inlinks of
page u and page p, respectively. R(v) denotes the
reference page list of page v.

out
uvW),(is the weight of link(v, u) calculated based

on the number of outlinks of page u and the number
of outlinks of all reference pages of page v.

∑ ∈

=
R(v)p p

uout
u)(v, o

oW (10)

where Ou and Op represent the number of outlinks of
page u and page p, respectively. R(v) denotes the
reference page list of page v.

PageRank formula is modified as

out
u)(v,

in
u)(v,

B(u)v
W WPR(v)d)(1PR(u) ∑

∈
+−= (11)

3. PROPOSED METHOD

Proposed method assigns ranks to the pages by
calculating the weight of each link based on the
similarity among the documents connected by that
link. Weight is added with the existing PageRank
formula to produce final PageRank.

Steps in the Proposed Method

1. Term Extraction

S. Poomagal, T. Hamsapriya / Computing, 2011, Vol. 10, Issue 3, 249-258

 253

2. Pre-Processing (Stop word removal

 and Stemming)

3. TFIDF Matrix formation

4. Distance Calculation

5. Weight Calculation

 6. Final PageRank Calculation

3.1. TERM EXTRACTION

Text documents are different from web
documents. Web documents are unstructured. In
addition to text contents it also contains tag
information. This tag information and the
punctuations should be removed from the document
to extract meaningful terms. Tokenization is used to
perform this operation.

Given a document, tokenization is the task of
breaking it into pieces, called tokens, perhaps at the
same time throwing away certain characters, such as
punctuation. Here is an example of tokenization:

Input: Friends, Romans, Country men, lend me
your ears;

Output: Friends Romans Country men lend me
your ears

Contents from the documents are extracted by
removing the tags and special symbols with the use
of tokenization. Extracted terms are given as an
input to the next step.

3.2. PREPROCESSING (STOP WORD
REMOVAL AND STEMMING)

Stop words does not provide any useful
information to identify the similarity among the
pages. So they can be removed to avoid confusions.
Some common stop words are is, was, are, were,
what etc., For stop word removal, initially the
database of stop words is created and the terms
extracted from the web pages are compared with the
database of stop words. Stop words found in the
extracted collection of terms are removed.

The goal of stemming is to reduce inflectional
forms and sometimes derivationally related forms of
a word to a common base form. For instance:

am, are, is be
car, cars, car's, cars' car
the boy's cars are different colors the boy
car be differ color

Stemming usually refers to a crude heuristic

process that chops off the ends of words and often
includes the removal of derivational affixes.

Usually the stemmed words are not meaningful.

For example, the stemmed word of “computation” is
“comput”. While stemming the words, two things
have to be considered.

i. Different words with the same base meaning
are converted to the same form

and
ii. Words with distinct meanings are kept

separate.
For stemming, Porter’s algorithm is used in this

paper. It is a simple utility that reduces English
words to their word stems – without the “ing”,
“ings”; “s” etc.,

Following table shows the sample stemmed
words:

Table 1. Words and their equivalent base words

Word Base
Word

Word Base
Word

Consigned
Consigning
Consignment
Consisted
Consistency
Consistently
Consisting
Consists

Consign
Consign
Consign
Consist
Consist
Consist
Consist
Consist

Consolation
Consolations
Console
Consoled
Consoles
Consonant
Consorted
Conspirator

Consol
Consol
Consol
Consol
Consol
Conson
Consort
Conspir

3.3. TFIDF CALCULATION
TFIDF is frequently used to construct a term

vector space model. It evaluates the importance of a
word in a document. The importance score increases
proportionally with the number of times a word
appears in the document but is offset by the
frequency of a word in the entire collection of
documents. Suppose there are set of documents,
each with collection of terms. A simple way to find
the similarity among those documents using terms is
to count the number of times a term occurs in a
document. Calculated count is called as a term
frequency. However, some terms are more common
such as “contain” and these terms get more weight
when term frequency is used. Also the terms like
“contain” are not good keywords to identify the
similarity among the documents. On the other side,
the keywords that occur rarely are good to find the
relevancy among the documents. Hence an inverse
document frequency factor is incorporated which
diminishes the weight of terms that occur very
frequently in the collection and increases the weight
of the terms that occur rarely.

This assigns to term i a weight in document j
given by

iji,ji, XIDFTFTFIDF = (12)

S. Poomagal, T. Hamsapriya / Computing, 2011, Vol. 10, Issue 3, 249-258

 254

TFi,j is calculated as:

j

ji,
ji, NT

N
TF = (13)

Ni,j is the number of times the term i appears in

the document j and NTj is the total number of terms
in the document j.

The inverse document frequency (IDFi) is
calculated as:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∈
=

ddt
D

logIDF
i

i (14)

where |D| is the total number of documents and |d : ti
∈ d| is the number of documents in which the term ti
appears. These TFIDF values and the list of
documents are then formed as a vector space.

Term / Document matrix is as follows,
 Docs / Terms T1 T2 ……. TN

 D1 TFIDF11 TFIDF12 ……. TFIDF1N

 D2 TFIDF21 TFIDF22 ……. TFIDF2N

 .

 DM TFIDFM1 TFIDFM2 …. TFIDFMN

where N denotes the number of terms and M denotes
the number of documents.

3.4. DISTANCE CALCULATION

From the TFIDF matrix, distance from every
document to every other document in the collection
is calculated using the Euclidean distance function
and distance matrix is formed. Euclidean distance
formula is,

()∑ = −= n
1i

2
iiji, yxDist (15)

where i changes from 1 to N. N is the number of
terms in the vector space.

Following shows the Distance matrix.

Documents D1 D2 ……. DM

 D1 DIST11 DIST12 ……. DIST1M

 D2 DIST21 DIST22 .……. DIST2M

 .

 DM DISTM1 DISTM2 ……...DISTMM

3.5. WEIGHT CALCULATION
Weight for each link is calculated using the

distances from the distance matrix. Weight is
calculated using the following formula,

ij
ij Dist

MW = (16)

where M is the number of documents, Distij is the
distance between the documents i and j and the
values of i and j varies from 1 to M.

After calculating the weight of each link, weight
matrix is formed as follows,
Documents D1 D2 ……. DM

 D1 W11 W12 ……. W1M

 D2 W21 W22 ……. W2M

 .

 DM WM1 WM2 ……. WMM

3.6. PAGERANK CALCULATION

Existing PageRank formula is modified to
include the calculated weight as,

ijLj ji W)PR(Ddd)(1)PR(D ++−= ∑ ∈ (17)

where Di represents the document for which the
PageRank is to be calculated, Dj represents the
document which has out-link to Di and L represents
the numbers of the documents which has out-link to
Di. Wij represents the weight of a link between the
documents i and j.

4. EXPERIMENTAL RESULTS

For our experiment, 200 queries are considered.
For all 200 queries, first 200 results from yahoo,
google and bing are retrieved. Code is written using
JAVA and SQL Server is used to store the collected
web documents. The measures such as precision,
recall and F-measure are used to compare the
proposed method with the existing methods.

Initially, the words are extracted from the web
documents and stop words are removed. Table 2
shows the stop words considered in this paper.

Table 2. List of Stop words

a a, able, about, above, according, accordingly,
across, actually, after, afterwards, again, against,
ain’t, all, allow, allows, almost, alone, along,
already, also, although, always, am, among,
amongst, an, and, another, any, anybody,
anyhow, anyone, anything, anyway, anyways,

S. Poomagal, T. Hamsapriya / Computing, 2011, Vol. 10, Issue 3, 249-258

 255

anywhere, apart, appear, appreciate, appropriate,
are, aren’t, around, as, aside, ask, asking,
associated, at, available, away, awfully

b be, became, because, become, becomes,
becoming, been, before, beforehand, behind,
being, believe, below, beside, besides, best,
better, between, beyond, both, brief, but, by

c common, came, can, can’t, cannot, cant, cause,
causes, certain, certainly, changes, clearly, co,
com, come, comes, concerning, consequently,
consider, considering, contain, containing,
contains, corresponding, could, couldn’t, course,
currently

d definitely, described, despite, did, didn’t,
different, do, does, doesn’t, doing, don’t, done,
down, downwards, during,

e each, edu, eg, eight, either, else, elsewhere,
enough, entirely, especially, et, etc, even, ever,
every, everybody, everyone, everything,
everywhere, ex, exactly, example, except

f far, few, fifth, first, five, followed, following,
follows, for, former, formerly, forth, four, from,
further, furthermore

g get, gets, getting, given, gives, go, goes, going,
gone, got, gotten, greetings

h had, hadn’t, happens, hardly, has, hasn’t, have,
haven’t, having, he, he’s, hello, help, hence, her,
here, here’s, hereafter, hereby, herein, hereupon,
hers, herself, hi, him, himself, his, hither,
hopefully, how, howbeit, however

i i’d, i’ll, i’m, i’ve, ie, if, ignored, immediate, in,
inasmuch, inc, indeed, indicate, indicated,
indicates, inner, insofar, instead, into, inward, is,
isn’t, it, it’d, it’ll, it’s, its, itself

j Just
k keep, keeps, kept, know, knows, known
l last, lately, later, latter, latterly, least, less, lest,

let, let’s, like, liked, likely, little, look, looking,
looks, ltd

m mainly, many, may, maybe, me, mean,
meanwhile, merely, might, more, moreover,
most, mostly, much, must, my, myself

n name, namely, nd, near, nearly, necessary, need,
needs, neither, never, nevertheless, new, next,
nine, no, nobody, none, nor, normally, not,
nothing, novel, now, nowhere

o obviously, of, off, often, oh, ok, okay, old, on,
once, one, ones, only, onto, or, other, others,
otherwise, ought, our, ours, ourselves, out,
outside, over, overall, own

p particular, particularly, per, perhaps, placed,
please, plus, possible, presumably, probably,
provides

q que, quite, qv
r rather, rd, re, really, reasonably, regarding,

regardless, regards, relatively, respectively, right
s said, same, saw, say, saying, says, second,

secondly, see, seeing, seem, seemed, seeming,
seems, seen, self, selves, sensible, sent, serious,
seriously, seven, several, shall, she, should,
shouldn’t, since, six, so, some, somebody,
somehow, someone, something, sometime,

sometimes, somewhat, somewhere, soon, sorry,
specified, specify, specifying, still, sub, such,
sup, sure

t t’s, take, taken, tell, tends, th, than, thank, thanks,
thanx, that, that’s, thats, the, their, theirs, them,
themselves, then, thence, there, there’s,
thereafter, thereby, therefore, therein, theres,
thereupon, these, they, they’d, they’ll, they’re,
they’ve, think, third, this, thorough, thoroughly,
those, though, three, through, throughout, thru,
thus, to, together, too, took, toward, towards,
tried, tries, truly, try, trying, twice, two

u un, under, unfortunately, unless, unlikely, until,
unto, up, upon, us, use, used, useful, uses, using,
usually

v value, various, very, via, viz, vs
w want, wants, was, wasn’t, way, we, we’d, we’ll,

we’re, we’ve, welcome, well, went, were,
weren’t, what, what’s, whatever, when, whence,
whenever, where, where’s, whereas, whereby,
wherein, whereupon, wherever, whether, which,
while, whither, who, who’s, whoever, whole,
whom, whose, why, will, willing, wish, with,
within, without, won’t, wonder, would, would,
wouldn’t

y yes, yet, you, you’d, you’ll, you’re, you’ve, your,
yours, yourself, yourselves

z Zero
Table 3 shows the number of terms before stop

word removal and after stop word removal.

Table 3. Number of Terms before and after Stop word
removal

KEYWORDS /
NUMBER OF
DOCUMENTS

NUMBER OF
TERMS

EXTRACTED

NUMBER OF
TERMS AFTER

STOPWORD
REMOVAL

50 100 200 50 100 200
APPLE 905 1787 2626 756 1338 1997
MYSQL 452 854 1565 377 688 1233

FREE
ANTIVIRUS 492 763 1291 408 613 1024

BRIDGE 470 921 1951 397 790 1670
CLUSTER 803 1233 2272 679 1017 1780

DICTIONARY 1134 1469 2229 982 1232 1833
PROCESSOR 483 979 2257 407 809 1760

NIMCET 532 819 1451 423 642 1142
MOUSE 921 1515 2445 766 1237 1973

TAMIL MP3 948 1407 2137 843 1234 1847
MOBILE 630 875 1392 461 646 1088
CAMERA 457 847 1828 358 673 1448

HARDWARE 397 684 1303 346 578 1701
GRID

COMPUTING 433 653 1394 344 513 1106

NETWORKING 581 929 1780 487 767 1404
ORANGE 653 1490 3019 566 1266 2434

DATASTRUCT
URES 363 763 1349 288 592 1028

DOCOMO 553 1089 1940 460 879 1525
CLOUD

COMPUTING 381 613 1145 312 516 927

CAT 645 1298 2274 533 1063 1865

S. Poomagal, T. Hamsapriya / Computing, 2011, Vol. 10, Issue 3, 249-258

 256

Once the stop words are removed from the
collection of extracted terms, stemming is performed
to convert the terms into their base forms. Table 4
shows the stemmed terms produced.

Table 4. Stemmed terms

comput, jobs, wholesal, latest, processors, cen, person,
wikipedia, free, encyclopediamediawiki, alpha, wmf,
tom, new, test, reviewsen, index, follow,
tomshardwar, review, internet, premier, resourc, imag,
result, hardware, googl, comprehens, search, web,
network, cisco, hp, force, f, equip, support, vtqgxb,
yokbeisw, zppvmeiocllu, alru, indian, brass, export,
door, india, wrought, kavali, manufactur, builder,
artwar, iron, knocker, stopper, knob, letter, plate, pull,
handl, cabinet, fit, casement, stay, hook, bathroom,
mongery, window, fasten, hing, cabin, lifter, security,
lock, distributor, hardwar, numer, shutter, solid, centr,
chain, bell, push, finger, indiamart, amp, diy, supplier,
build, luxuwhviwbfotmiarv, xnx, njttrh, rbakxcva,
trader, produc, construct, materi, tool, home, suppli,
compon, peripher, electr, electro, mechan, trade,
directory, product, global, marketplac, choos, verifi,
light, nehru, place, hub, delhi, price, azad, singh,
onlin, dealer, community, asia, biggest, market,
directly, updat, e, shop, nehruplac, best, cheapest,
bazaar, ithub, bb, bc, pc, lcd, monitor, memory, card,
ram, hard, disk, drive, pen, dvd, combo, writer,
webcam, digit, camera, mp, player, usb, devic, laptop,
spare, accessori, batteri, extern, case, printer, classifi,
import, adaptor, bluetooth, busi, reader, cabl, cd,
duplic, server, replic, servic, cdrw, cpu, fan, dat,
tablet, agp, pci, vga, dot, matix, encod, firewir, gpr,
modem, hdd, id, laser, mobil, ribbon, scanner,
webhost, wireless, lan, zip, intern, hous, exterior,
interior, set, signag, switch, plug, cover, coat, hat,
curtain, tie, electrophorat, plant, aluminum, forg,
stoper, victorian, georgian, item, quality, microsoft,
page, open, ccna, certification, job, technic, thousand,
industry, naukri, apply, bangalor, mumbai, hyderabad,
kolkata, chennai, pune, citi, career, site, softwar,
account, time, bank, financ, center, document, day,
gener, cach, creer, post, resum, develop, direct,
richard, stanley, dylan, mcdermott, stacey, travi, john,
lynch, visit, imdb, photo, showtim, cast, crew, plot,
summary, comment, discuss, taglin, trailer, poster,
messag, board, user, rate, synopsi, credit, book,
hwbindex, mediawiki, main, adapt, circuit, connector,
consol, inform, yahoo, directorylist, devot, includ,
articl, tutori, overclock, idc, compatibility, list, googl,
gt, slashdot, nerd, stuff, matter, specif, olpcmediawiki,
olpc, translat, w, battery, power, dcon, display, ec,
especificacion, etoy, pcquest, hardwarethi, entir,
gamut, cut, edg, technolog, launch, applic, stori, focu,
fast, pace, track, evolut, linux, os, code, program, pcq,
annual, magazin, uncompl, complic, secret,

Once the useful terms are extracted, TFIDF

matrix is formed. Table 5 shows the sample TFIDF
matrix.

Table 5. TFIDF Matrix

Docs/ T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
Terms
D1 0.2 0 0.8 0.3 0.1 0.1 0.4 0 0.1 0.1
D2 0.5 0 0 0 0 0 0 0.1 0.1 0.1
D3 0.2 0 0 0 0 0 0 0 0 0
D4 0.1 0 0 0 0.5 0 0.3 0 0 0
D5 0.8 0 0 0 0 0 0 0 0 0
D6 0.6 0 0.7 0.3 0 0 0 0 0 0

From the resultant TFIDF matrix, distance

between every two document is identified using
Euclidean function and filled in the distance matrix.
Table 6 shows the distance matrix formed.

Table 6. Distance Matrix

Docs D1 D2 D3 D4 D5 D6
D1 0.0 5.42 1.2 4.3 4.3 16.0
D2 5.42 0.0 4.96 1.8 1.4 21.3
D3 1.2 4.96 0.0 3.49 3.6 17.5
D4 4.3 1.8 3.49 0.0 20.0 34.8
D5 4.3 1.4 3.6 20.0 0.0 20.58
D6 16.0 21.3 17.5 34.8 20.58 0.0

Using the distance matrix, weight of each link is

identified and filled in the weight matrix. Table 7
shows the weight matrix formed.

Table 7. Weight Matrix

Docs D1 D2 D3 D4 D5 D6
D1 1.0 35.29 179.8 44.5 44.5 11.35
D2 35.29 1.0 44.0 177.0 177.56 8.53
D3 179.8 44.0 1.0 59.73 59.46 10. 63
D4 44.5 177 0 59.73 1.0 8.95 5. 64
D5 44.5 177.56 59.46 8.95 1.0 8.62
D6 11.35 8.53 10.63 5.64 8.62 1.0

Using the weight values, the rank of a page is

calculated by adding these weights with the existing
PageRank formula.

Relevancy of the proposed method is evaluated
using the measures precision, recall and F-Measure.
Precision and Recall are defined in terms of a set of
retrieved documents and a set of relevant
documents. Precision is defined as the number of
relevant documents retrieved by a search divided by
the total number of documents retrieved by that
search, and recall is defined as the number of
relevant documents retrieved by a search divided by
the total number of existing relevant documents.
Every result retrieved by a search was relevant if a
precision is 1 and all relevant documents are
retrieved by the search if a recall is 1. F-measure is
computed by combining the values of precision and
recall.

S. Poomagal, T. Hamsapriya / Computing, 2011, Vol. 10, Issue 3, 249-258

 257

Precision is calculated as,

Documents} {Retrieved
Documents} {RetrievedDocuments}{Relevant

Precision
I

=
 (18)

Recall is calculated as,

Documents}{Relevant
Documents} {RetrievedDocuments}{Relevant

Recall
I

=
 (19)

F-Measure is calculated as,

RecallPrecisio
Recall XPrecision 2XMeasure-F

+
= (20)

Proposed technique is compared with existing

algorithms by considering different page sizes and
observed that the proposed work is producing more
f-measure when compared to existing ranking
algorithms.

Figure 1 and Figure 2 show that the precision and
recall of the proposed method are better than the
existing methods.

Precision vs Number of Documents

0
0.1
0.2
0.3
0.4

25 50 75 100 125 150

Number of Documents

Pr
ec

is
io

n PR
HITS
SALSA
WPR
SBLWPR

Fig. 1 – Precision Vs Number of Documents

Recall vs Number of Documents

0

0.2
0.4

0.6
0.8

1

25 50 75 100 125 150

Number of Documents

R
ec

al
l

PR
HITS
SALSA
WPR
SBLWPR

Fig. 2 – Recall Vs Number of Documents

Figure 3 show that the proposed method is
gaining more F-Measure than other ranking
algorithms such as PageRank, HITS, SALSA and
Weighted PageRank at different page sizes.

F-Measure vs Number of Documents

0
0.1
0.2
0.3
0.4
0.5

25 50 75 100 125 150

Number of Documents

F-
M

ea
su

re PR
HITS
SALSA
WPR
SBLWPR

Fig. 3 – F-measure Vs Number of Documents

5. CONCLUSION

In this paper, a new method is proposed to order
the search results based on the similarity among the
linked documents. In the existing ranking
algorithms, rank of a page is equally distributed to
the pages to which it has a link and no weight is
assigned to the links by looking at the similarity
among the linked documents. Normally, a page is
more important if it has more number of inlinks
from the documents which are similar to it. Using
this concept as a base, we introduced a method to
assign weight to each link. Results show that the
proposed method makes more relevant documents to
appear at the beginning of a list of returned results
when compared to other existing methods.

6. FUTURE WORK

This algorithm calculates similarity among the
linked documents in addition to PageRank value.
Due to this, it takes much time to compute the rank
of the pages. This computational time can be
reduced by optimizing the algorithm. Avoiding web
content spamming can be taken as a future work
since the performance of the proposed method may
be affected by introducing identical documents.

7. REFERENCES

[1] R. Kosala and H. Blockeel, Web mining
research, A survey, ACM SIGKDD
Explorations, 2 (1) (2000). pp. 1-15.

[2] S. Madria, S. S. Bhowmick, W. K. Ng, and E.-
P. Lim, Research issues in web data mining,
Proceedings of the Conference on Data
Warehousing and Knowledge Discovery,
(1999). – pp. 303-319.

[3] S. Pal, V. Talwar, and P. Mitra, Web mining in
soft computing framework: relevance, state of
the art and future directions, IEEE Transactions
on Neural Networks, 13 (5) (2002). – pp. 1163-
1177.

[4] S. Brin and L. Page, The anatomy of a large-
scale hypertextual web search engine,
Computer Networks and ISDN Systems, 30 (1-
7) (1998). – pp. 107-117.

S. Poomagal, T. Hamsapriya / Computing, 2011, Vol. 10, Issue 3, 249-258

 258

[5] J. Kleinberg, Authoritative sources in a
hyperlinked environment, Proceedings of the
9th ACM-SIAM Symposium on Discrete
Algorithms, (1998). – pp. 668-677.

[6] Ask Jeeves, Inc., Teoma search engine,
http://www.teoma.com.

[7] S. Chakrabarti, B. Dom, D. Gibson, J. Klein–
berg, P. Raghavan, and S. Rajagopalan,
Automatic resource list compilation by
analyzing hyperlink structure and associated
text, Proceedings of the 7th International World
Wide Web Conference, (1998). – pp. 65-74.

[8] R. Lempel and S. Moran, The stochastic
approach for link-structure analysis (SALSA)
and the TKC effect, ACM Transactions on
Information Systems, 19 (2000). – pp. 387-401.

[9] D. Zhang and Y. Dong, An efficient algorithm
to rank web resources, Computer Networks:
The International Journal of Computer and
Telecommunications networking, 33 (1-6)
(2000). – pp. 449-455.

[10] A. N. Langville and Carl D. Meyer, Google’s
PageRank and Beyond: The Science of Search
Engine Rankings, Princeton University Press,
2006.

[11] R. Lempel and S. Moran, SALSA: The
Stochastic Approach for Link-Structure
analysis, ACM Transactions on Information
Systems, 19(2) (2001). pp. 131-160.

[12] Wenpu Xing and Ali Ghorbani, Weighted
PageRank algorithm, Second Annual
Conference on Communication Networks and
Services Research (CNSR’04), (2004). –
pp. 305-314.

[13] S. Chakrabarti, B. Dom, and P. Indyk,
Enhanced hypertext categorization using
hyperlinks, Proceedings of the ACM SIGMOD
International Conference on Management of
Data, (1998). – pp. 307-318.

[14] L. Page, S. Brin, R. Motwani, and
T. Winograd, The PageRank Citation Ranking:
Bringing Order to the Web, Technical report
Stanford Digital Libraries, SIDL-WP-1999-
0120, 1999.

Ms S. Poomagal, obtained
her B.Sc (Applied Science –
Computer Technology) from
Bharathiar University, Coimba-
tore in the year 2001. She
completed her M.Sc (Applied
Science – Computer Techno-
logy) from Bharathiar
University, Coimbatore in the
year 2003. She completed her
M.Phil (Computer Science)

from Bharathiar University in the year 2004. She is
pursuing her Ph.D (Information Technology) in Anna
University, Coimbatore. She worked as a lecturer in
Dr. SNS Rajalakshmi College of Arts & Science,
Coimbatore from Jan 2005 to April 2007. She is
working as an assistant professor in the Department
of Computer and Information Sciences, PSG
College of Technology, Coimbatore since June
2007. She has published 5 papers in various
national conferences and international journals. Her
research interests include Data mining, Compiler
design and Programming Languages.

Dr. T. Hamsapriya, obtained
her BE (Electronics and
Communication Engineering)
from Bharathiar University,
Coimbatore in the year 1988.
She completed her ME
(Communication systems)
from Bharathiar University,
Coimbatore in the year 1992.
She completed her Ph.D
(Parallel Computing) from

Anna University, Chennai in the year 2008. She
worked in Kumaraguru College of Technology,
Coimbatore as an associate lecturer from 1993-94.
She worked in BPL Electronics as a consultant
engineer from 1994-96. She was acting as a
managing partner in Computer Software College fro
1996-99. She is working as a professor in PSG
College of Technology, Coimbatore since 1999. She
is the head of the Department of Information
Technology, PSG College of Technology,
Coimbatore. She is also a research cordinator in
PSG College of Technology. She has published
more than 25 papers in various international
conferences and journals.

