
Raj Gaurang Tiwari, Mohd. Husain, Anil Agrawal / Computing, 2011, Vol. 10, Issue 2, 153-161

 153

A METHODOLOGY FOR DATABASE
AND DOCUMENT SELECTION

Raj Gaurang Tiwari 1), Mohd. Husain 1), Anil Agrawal 2)

1) Azad Institute of Engineering and Technology Lucknow (UP), India

rajgaurang@gmail.com, mohd.husain90@gmail.com
2) Ambalika Institute of Management and Technology, Lucknow (UP), India

anil19974@gmail.com

Abstract: As web users are facing the problems of information overload and drowning due to the significant and rapid
growth in the amount of information and the number of users so there is need to provide Web users the more exactly
needed information which is becoming a critical issue in web-based information retrieval and Web applications. In this
work, we aspire to improve the performance of Web information retrieval and Web presentation through developing
and employing Web data mining paradigms.

Every search engine has a corresponding database that defines the set of documents that can be searched by the
search engine. Generally, an index for all documents in the database is created and stored in the search engine. Text
data in the Internet can be partitioned into several databases naturally. Proficient retrieval of preferred data can be
attained if we can exactly predict the usefulness of each database, because with such information, we only need to
retrieve potentially useful documents from useful databases. For a given query ‘q’ the usefulness of a text database is
defined to be the no. of documents in the database that are sufficiently relevant to the query ‘q’.

In this paper, we propose new approaches for database selection and documents selection. We also implement these
algorithms using .net framework. Our experimental results indicate that these methods can yield substantial
improvements over existing techniques.

Keywords: Metasearch Engine, Distributed query processing, Document selection.

1. INTRODUCTION
Internet has grown as a vast information source

in recent years. To help ordinary users in finding
desired data in the Internet, several search engines
have been created. Every search engine has a
corresponding database that defines the set of
documents that can be searched by the search
engine. Usually, an index for all documents in the
database is created and stored in the search engeine.
For each term which represents a content word or a
combination of several content words, this index can
identify the documents that contain the term quickly.
The pre-existence of this is critical for the search
engine to answer user queries efficiently.

Two types or search engines exist. General-
purpose search engines attempt to provide searching
capabilities for all documents in the Internet or on
the Web. WebCrawler, HotBot, Lycos as well as
Alta Vista are some well-known search engines.
Special-purpose search engines, on the hand, focus
on documents in confined domains such as
documents in an organization or of a specific
interest. Tens of thousands of special-purpose search

engines are currently running in the Internet.
The amount of data in the Internet is huge (it is

believed that by the end of 2010, there were more
than 30000 million web pages and is increasing at a
very high rate. Many believe that employing a single
general-purpose search engine for all data in the
Internet is unrealistic. First, its processing power and
storage capability may not scale to the fast
increasing and virtually unlimited amount of data.
Second, gathering all data in the Internet and
keeping them reasonably up-to-data are extremely
difficult if not impossible. Programs (i.e. Robots)
used by search engines to gather data automatically
may slow down local servers and are increasingly
unpopular.

A more practical approach to providing search
services to the entire Internet is the following multi-
level approach. At the bottom level are the local
search engines. These search engines can be
grouped, say based on the relatedness of their
database, to form next level search engines (called
metasearch engines). Lower, level metasearch
engines can themselves be grouped to form higher

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Raj Gaurang Tiwari, Mohd. Husain, Anil Agrawal / Computing, 2011, Vol. 10, Issue 2, 153-161

 154

level metasearch engines. This process can be
repeated until there is only one metasearch engine at
the top. A metasearch engine is essentially an
interface and it does not maintain its own index on
documents. However, a sophisticated metasearch
engine may maintain information about the contents
of the (meta) search engines at a lower level to
provide better service. When a metasearch engine
receives a user query, it first passes to the
appropriate (meta) search engines at the next level
recursively until real search engines are encountered,
and then collects (sometimes, reorganizes) the
results from real search engines, possible going
through metasearch engines at lower levels. A two-
level search engine organization is illustrated in
Figure 2.

Fig. 1 – Two-Level Search Engine Organization

The advantages of this approach are

(a) User queries can (eventually) be evaluated
against smaller databases in parallel, resulting in
reduced response time;

(b) updates to indexes can be localized, i.e., the
index of a local search engine is updated only
when documents in its database are modified;
(Although local updates may need to be
propagated to upper level metadata that represent
the contents of local databases, the propagation
can be done infrequently as the metadata are
typically statistical in nature and can tolerate
certain degree of inaccuracy.)

(c) Local information can be gathered more easily
and in amore timely manner;

(d) The demand on storage space and processing
power at each local search engine is more
manageable. In other words, many problems
associated with employing a single super search
engine can be overcome or greatly alleviated
when this multi-level approach is used.

When the number of search engines that cane be
invoked by a metasearch engine is large, a serious
inefficiency may arise. Typically, for a given query,
only a small fraction of all search engines may
contain useful documents to the query. As a result, if
every search engine is blindly invoked for each user
query, then substantial unnecessary network traffic
will be created when the query is sent to useless
search engines. In addition, local resources will be
wasted when useless database are searched. A better
approach is to first identify those search engines that
are most likely to provide useful results to a given
query and then pass the query to only these search
engines for desired documents. A challenging
problem with this approach is how to identify
potentially useful search engines. The current
solution to this problem is to rank all underlying
databases in decreasing order of usefulness for each
query using some metadata that describe the
contents of each database. Often, the ranking is
based on some measure which ordinary users may
not be able to utilize to fit their needs. For a given
query, the current approach can tell the user, to some
degree of accuracy, which search engine is likely to
be the most useful, the second most useful, etc.
While such a ranking can be helpful, it cannot tell
the user how useful any particular search engine is.

2. RELATED WORK

Learning-based retrival approaches determine the
number of documents to retrieve from a local
database based on past retrieval experiences with the
database. Several learning-based algorithms in [12,
13] are based on the use of training queries.

The guaranteed retrieval approach aims at
guaranteeing such a property. The algorithm in [11]
while guaranteeing that all potentially useful
documents are retrieved may unnecessarily retrieve
many non-similar documents. The approach in [14]
is also a guaranteed retrieval approach but has a
second goal of minimizing the retrieval of non
similar documents. The document retrieval
algorithm we propose in this thesis has the property
that, when it is used together with any of our
database selection methods, all the n most relevant
documents for any query will be retrieved. Two
solutions were proposed by W. Meng [14] for
document selection. The first solution is to transform
the threshold T0 for the global database (i.e., the
global threshold) to a tight local threshold Ti for
each local database Di so that all documents in Di
having global similarities ≥ T0 are contained in the
set of documents in Di having local similarities ≥ Ti.
This ensures that the former set of documents is
retrieved. The second solution is that the metasearch
engine modifies the user query before submitting it

query r

rnq

r2

r1

q

q

Search
Engine 1

Search
Engine 2

Search
Engine n ……

…

Metasearch Engine

result r

Raj Gaurang Tiwari, Mohd. Husain, Anil Agrawal / Computing, 2011, Vol. 10, Issue 2, 153-161

 155

to a local search engine such that the local similarity
of a document in that local database with the
modified query is the same as the global similarity
of that document with the original user query.

3. DISTRIBUTED INFORMATION

SYSTEM
Information is the critical ingredient for the

operation and management of any organization.
Information system (IS) is a coordinated collection
of information subsystems that are rationally
integrated to collect, store, process, retrieve,
disseminate, and communicate information for the
support of operations, management, and decision-
making functions in business and other
organizations. The objective of IS is to enhance
productivity by improving the efficiency and
effectiveness of business processes.

The field of information systems is unique in that
it blends organizational and managerial concerns
with the study of information technologies. The IS
program is designed to provide students with (1) the
technical background required to be able to function
credibly in business and industry, and (2)
organizational and managerial skills necessary to
plan for and manage organizational information
systems and to advance into leadership positions,
particularly within the IS functional area of the firm.

Information system may be of distributed type. A
distributed information system has been defined as
"a combination of information processing facilities,
data communication facilities, and endpoint
facilities. Together, these support the movement and
processing of files, programs, data, messages, and
transactions".

Due to the advances in computer network
technology and the steadily decreasing cost of
hardware, distributed information systems have
become an attractive alternative to centralized
information systems. While many organizations still
prefer the services of centralized systems, we are
witnessing an increasing number of systems in
which information processing and storage functions
are distributed among several computers.

A distributed system is a collection of
autonomous computers which cooperate in order to
achieve a common goal. They do so without sharing
memory or clock, and communicate by passing
messages over a communication network. Ideally,
the person using such a system is not aware of the
different computers, their location, storage
replication, load balancing, reliability or
functionality. Instead the system should appear as
though it runs on a single computer.

Documents may be full-text, bibliographic,
sound, image, video or mixed-media records. A

document server is set up by some individual or
organisation wishing to publish a set of electronic
documents. The publisher is referred to loosely as a
document source. A person views such documents
using a document client, for example a simple Web
browser. To view a document the client sends a
request containing a document identifier, such as an
Internet URL, and the document server returns the
document in question if available. This document-
pull process is familiar to any person who has used
the Web (Fig 2). In this figure the client request
contains a document identifier and the server’s
response contains the full text of the document in
question, if available. In this case the Netscape
Navigator client is requesting the document with
http://pastime.anu.edu.au/nick/work.shtml as its
Uniform Resource Locator (URL). The client sends
an HTTP request to http://pastime.anu.edu.au for the
document identified (within the server). The server’s
response contains the full text of the document in
question (which is in the HyperText Markup
Language (HTML).

Fig. 2 – Document Request

An information retrieval problem arises when a
person has access to many documents and requires
some systematic organisation or search facility to find
relevant information. A common form of information
retrieval system is one which takes a query from the
person who wishes to find information, and returns a
list of documents which are estimated likely to be
relevant. Retrieval of relevant information may also
be aided by browsing amongst document hyper-links
or some category/directory hierarchy.

A distributed information retrieval problem arises
when the documents are spread across many
document servers. In such a situation it may be
possible for a single information retrieval system to
request every document from every document server,
and perform its search task over the combined
document set. Alternatively, various search servers

Response: Document full
text
<HTML><HEAD><STY
LE TYPE=….

Request:
Document
identifier

pastime.anu.edu

Netscape

Document client

Document server

Raj Gaurang Tiwari, Mohd. Husain, Anil Agrawal / Computing, 2011, Vol. 10, Issue 2, 153-161

 156

may be set up on the network each covering
documents from one or more document servers. In
any case such networked information retrieval
systems usually provide their search service to clients
across the network (as opposed to restricting their
service to a single machine). An information retrieval
system available across the network is called a search
server (Figure 3), and it is accessed sing a search
client.

Systems which return search results, such as
search servers and other information retrieval
systems, usually return to the user a ranked results list
R. The minimal content of R = <D, O> is a set of
document identifiers D and some ordering O over D.
A system is more effective if its results document set
D contains more relevant documents, or the same
number of relevant documents ranked more highly
(O). A system is more efficient if it has reduced the
costs involved in finding R. The cost of search
includes several factors. Computation or storage
resources may be expended at client or server.
Network resources such as bandwidth may be
expended in their communication. Monetary network
usage or per-search charges might also apply. Users
want a system which is both effective and efficient, in
the latter case particularly minimizing the costs which
apply to the user.

If the system is a search server, its effectiveness
depends on the documents it indexes and its retrieval
system. A retrieval system implements several
retrieval algorithms, for ranking, stemming, case
folding, relevance feedback and other functions. One
type of search client is a simple client, such as
Netscape Navigator in Figure 3. Users of a simple
client face a number of problems. First, they may be
have difficulty finding new servers and selecting
which to search, particularly in an environment such
as theWeb where there is no exhaustive list of servers
and servers do not export descriptions of their
documents. Further, if useful results are spread across
multiple search servers, the user must query each in
turn after learning the query language and interface
conventions of each. This process of learning and
querying sequentially is time consuming. The simple
client also fails in terms of transparency, because the
user is aware of search server heterogeneity, delays
and down time. Finally, a simple client does not
provide a unified view of results from different
servers. The user has no indication of how results
from one list compare to those of another, or even
how each document matches their query. For
example, one server given the query “david hawking”
might return only documents containing the phrase,
while others might return documents containing one
word or the other, or even documents containing
words with the same stem such as “hawk” and
“hawker”.

Fig. 3 – Simple Search

A search broker is a more sophisticated search
client. Given a query and a set of search servers, it
selects a set of servers likely to return relevant
documents, queries them concurrently and produces
a single ranked results list (Figures 4 and 5)

<S, q> <S’, q> <(R1, ….. , R|S’|), q> RM

S’1 S’2 S’n

Fig. 4 – Search Broker Network Communication

The broker’s task begins with a set of search

servers S and a query q. A broker is set up to address
servers S, analogously to a search server set up to
search some document set. Identification of servers
S is usually performed manually, as noted by
Hawking and Thistlewaite [15] who calls it the
problem of database detection.

Netscape

Search client

query: “internet” Response: R=<D, O>

Search server

SCALEplus

Selection Retrieval

User

Selected
search
Severs

R R

R

q

q q

Search
Broker

q

Merging

Raj Gaurang Tiwari, Mohd. Husain, Anil Agrawal / Computing, 2011, Vol. 10, Issue 2, 153-161

 157

<S, q> <S’, q> <(R1, R2, R3), q> RM

Fig. 5 – Search broker information flow

During server selection the broker selects a
subset S’of servers S which are best for answering
the user’s query q. Choice of best servers might
depend on both effectiveness and efficiency
considerations.

During retrieval the broker applies the query q at
servers S’ to obtain results lists R1, ... , R|S’|. As
described previously, each results list Ri = <Di, Oi>
consists of a document set Di and an ordering Oi.
The broker must employ the appropriate retrieval
methods – communication protocol, query language
and results parser – to retrieve each list Ri. However,
for a given set of servers S`, these methods have
little influence over final broker effectiveness.
Rather, the retrieval system and document set at
server s’i determines the quality of Ri. In an
environment such as theWeb the broker designer
usually has no control over server effectiveness.
Instead the broker’s retrieval methods either succeed
or fail in retrieving Ri.

During results merging the broker combines
results R1, ... , R|S’| into a merged results list RM =
<DM, OM>, such that DM = D1 ∪ · · ·∪D|S’| and OM
is an effective ranking. Merging may be based on
properties of R1, ... ,R|S’|, downloaded documents DM
or information provided by cooperating servers.

A broker may apply very simple methods for
selection and merging. For example, it may select S’
= S for every query as does MetaCrawler [9]. It may
also merge results lists by simply concatenating the
incoming lists. Such selection and merging is likely

to be ineffective in an environment of many search
servers, some of which return no relevant
documents. Selecting all servers is also inefficient,
again because it may lead to querying servers which
contribute no useful information.

4. DATABASE SELECTION AND

DOCUMENT SELECTION PROBLEM
To help ordinary users find desired data from the

Web, many search engines have been created. Each
search engine has a text database that is defined by
the set of documents that can be searched by the
search engine. In this paper, search engine and
database will be used interchangeably. Usually, an
inverted file index for all documents in the database
is created and stored in the search engine. For each
term which can represent a significant word or a
combination of several (usually adjacent) significant
words, this index can identify the documents that
contain the term quickly.

Frequently, the information needed by a user is
stored in multiple databases. As an example,
consider the case when a user wants to find research
papers in some subject area. It is likely that the
desired papers are scattered in a number of
publishers’ databases. Substantial effort would be
needed for the user to search each database and
identify useful papers from the retrieved papers. A
solution to this problem is to implement a
metasearch engine on top of many local search
engines. A metasearch engine is a system that
supports unified access to multiple existing search
engines. It does not maintain its own index on
documents. However, a sophisticated metasearch
engine may maintain information about the contents
of its underlying search engines to provide better
service. When a metasearch engine receives a user
query, it first passes the query to the appropriate
local search engines, and then collects (sometimes
reorganizes) the results from its local search engines.
With such a metasearch engine, only one query is
needed from the above user to invoke multiple
search engines.

Building a metasearch engine is also an effective
way to increase the search coverage of the Web. As
more and more data are put on the Web at faster
paces, the coverage of the Web by individual search
engines has been steadily decreasing. By combining
the coverages of multiple search engines, a
metasearch engine can have a much larger coverage
of the Web.

A closer examination of the metasearch approach
reveals the following problems.
1. If the number of local search engines in a

metasearch engine is large, then, it is likely that
for a given query, only a small percentage of all

Retrieval Selection

R3

R2

R1

S’3

S’2

S’1 S1

S2

S3

S4

S5

S6

RM

.

.

.

.

.

.

.

.

.

.

.

.

Merging

Raj Gaurang Tiwari, Mohd. Husain, Anil Agrawal / Computing, 2011, Vol. 10, Issue 2, 153-161

 158

search engines may contain sufficiently useful
documents to the query. In order to avoid or
reduce the possibility of invoking useless search
engines for a query, we should first identify
those search engines that are most likely to
provide useful results to the query and then pass
the query to only the identified search engines.
Examples of systems that employ this approach
include gGlOSS [1], Savvy Search [2], D-WISE
[3], CORI Net [4]. The problem of identifying
potentially useful databases to search is known
as the database selection problem.

2. If a user only wants the n most similar
documents across all local databases, for some
positive integer n, then the n documents to be
retrieved from the identified databases need to
be carefully specified and retrieved. This is the
document selection problem.

Both the problems are described in figure 6.
The methodology that we propose to retrieve the

n most relevant documents across multiple databases
for a given query consists of the following two steps:
1. By using algorithm DBSEL we select those

databases from number of databases which
contain our query ‘q’.

2. After databases selection we retrieve ‘n’ most
relevant documents from the selected databases
by using algorithm HighRelDoc.

Database Selection Document Selection

Fig. 6 – Database and document selection

4.1. AN ALGORITHM FOR DATABASE
SELECTION

We want to select those databases from number
of databases which contain our query ‘q’. For this
we proposed an Algorithm DBSEL. The Basic idea
of this algorithm is that we test databases in the
order DB1, DB2, DB3, DB4, DB5,………., DBN, until

we get the databases which contain the query ‘q’.
This algorithm works as follows:
1. Test each database with its documents stored in

it. If any document of database contains the query
‘q’ at least one time then we select that database.

2. If all the documents of database does not contains
the query ‘q’ then that database will not be
selected.

DBSEL Algorithm

1. Let the ‘qlen’ is the length of query ‘q’;
2. i = 1;
3. while (i < = No. of Databases)

{
 j=1, s=0;
 while (j < = No. of Documents in DBi)
 {

(a) Let no. of occurrences of query ‘q’ in jth
document noc = 0;
(b) k=1;
(c) Obtain the length ‘dlen’ of jth document;
 while (k < = dlen)
 {

i.Take the ‘qlen’ characters from jth
document starting from kth position;

ii.Compare the query ‘q’ with these
‘qlen’ characters;

iii.If both are equal then noc =noc + 1;
iv. k = k + 1;

}

(d) Take the no. of occurrences of query ‘q’
in jth document of ith database
dnoc [i, j] = noc;
s = s + noc;
j = j + 1;
}
 if (s > 0) then
 { Select ith database SD[i] = DBi;

}
 else
 { ith database will not be selected;
}
 i=i+1;
 }

4.2. AN ALGORITHM FOR DOCUMENTS
SELECTION

After database selection we retrieve documents
from the databases in the order DB1, DB2, DB3, DB4,
DB5, …, DBN, until ‘n’ most relevant documents
contained in the selected databases are obtained. For
this we proposed an algorithm HighRelDoc to
retrieve documents from the selected databases. This
algorithm works as follows:

.

.

DB1

DB2

DB3

DB4

DB5

DBn

DB1

DB3

DB5

d1

d2

d3

Result

Merger

Raj Gaurang Tiwari, Mohd. Husain, Anil Agrawal / Computing, 2011, Vol. 10, Issue 2, 153-161

 159

1. We search all the selected databases in the order
DB1, DB2, DB3, DB4, DB5,………., DBN. We
select only those documents from each database
in which the query ‘q’ occurs at least one time.

2. Rank all the selected documents according to
the no. of occurrence of query ‘q’ in descending
order.

3. Return the top ‘n’ most relevant documents
from the sorted list of documents for any
positive integer ‘n’.

HighRelDoc Algorithm

1. i = 1,
2. Let the total no. of selected documents t = 0;
3. while(i < = No. of selected Databases)

{
 j=1;
 while (j < = No. of documents in
selected DBi)

{
if (dnoc [i, j] > 0)
 {

(a) Select the jth document of ith
database
Sdoc[i , j] = DB[i , j];

(b) Take the no. of occurrences

of query ‘q’ in selected jth

document of ith database
 Sdnoc [i, j] = dnoc [i, j];

(c) t=t+1;

 }
 j = j + 1;
}
i = i + 1;

}
4. Rank all the selected documents according

to the no. of occurrence of query ‘q’ in
descending order.

5. Return the top ‘n’ most relevant documents
from the sorted list of documents for any
positive integer ‘n’.

5. EXPERIMENTAL EVALUATION

Here we compare previous high-correlation
method and OptDocRetrv algorithm with our
DBSEL and HighRelDoc algorithms. Here, we
compare the performance of the following
estimation methods in retrieving the n most
relevant documents for n = 5, 10 from the 9
databases.
1. The high-correlation method does not provide

any detail on how a cutoff in database selection

is chosen nor which documents are picked from
each chosen database.

2. The previous OptDocRetrv algorithm [10]
retrieves documents from the databases, after
the databases have been ranked.

3. Our DBSEL algorithm gives the cut off value
while selecting the databases. Thus overhead
incurred in processing the databases that are not
related to query is minimized.

4. Our HighRelDoc algorithm selects the
documents when all the documents of all
selected databases have been ranked. That gives
more correct results in comparison with the
OptDocRetrv algorithm [10] which retrieve
documents from the databases, after the
databases have been ranked.

5.1. EXPERIMENTAL RESULTS
Our DBSEL and HighRelDoc algorithms were

implemented in .Net Framework. The snapshots of
our work are given below.

According to experimental results when the
query word “INTEL” is searched in 9 databases
containing many files as shown in fig 7, the five
files having highest similarity with the query are
selected from the databases. (Shown in figure 8)

Fig. 7 – Input Page For Query ‘q’

Raj Gaurang Tiwari, Mohd. Husain, Anil Agrawal / Computing, 2011, Vol. 10, Issue 2, 153-161

 160

Fig. 8 – Result

6. CONCLUSION

With the increase of the number of search engines
on the World Wide Web, providing easy, efficient
and effective access to text information from multiple
sources has increasingly become necessary. In this
paper, we proposed two new methods for estimating
the number of potentially useful databases and
documents in selected databases. Our estimation
methods are based upon established statistical theory
and general database representation framework. Our
experimental results indicate that these methods can
yield substantial improvements over existing
techniques. Our contributions consist of:
a. An algorithm DBSEL for selecting those

databases from no. of databases which contain
given query ‘q’.

b. An algorithm HighRelDoc to return the top ‘n’
most relevant documents with respect to a given
query from a collection of selected databases for
any positive integer ‘n’.

7. REFERENCES

[1] L. Gravano and H. Garcia-Molina. Generalizing
GlOSS to Vector-Space databases and Broker
Hierarchies. Int’l Conf. Very Large Data Bases,
Sep. 1995, pp. 78-89.

[2] B. Jansen, A. Spink, J. Bateman, and
T. Saracevic. Real Life Information Retrieval: A
Study of User Queries on the Web. Proc. ACM
Special Interest Group on Information Retrieval
Forum, (32) 1 (1998).

[3] B. Yuwono and D. Lee. Server Ranking for
Distributed Text Resource Systems on the
Internet. Proc. Fifth Int’l Conf. Database
Systems for Advanced Applications, Apr. 1997,

pp. 391-400.
[4] J. Callan, Z. Lu, and W. Bruce Croft. Searching

Distributed Collections with Inference
Networks. Proc. ACM Special Interest Group on
Information Retrieval Conf. July 1995, pp. 21-
28.

[5] Patricia Correia Saraiva, Edleno Silva deMoura,
Nivio Ziviani,Wagner Meira, Rodrigo Fonseca,
and Berthier Ribeiro-Neto. Rank-Preserving
Two-Level Caching for Scalable Search
Engines. In ACM, editor, Proceedings of the
SIGIR2001 conference, New Orleans, LA,
September 2001. SIGIR.

[6] C. Badue, R. Baeza-Yates, B. Ribeiro-Neto, and
N. Ziviani. Distributed query processing using
partitioned inverted files. In Proc. of the 9th
String Processing and Information Retrieval
Symposium (SPIRE), September 2002.

[7] Paolo Boldi, Bruno Codenotti, Massimo Santini,
and Sebastiano Vigna. Trovatore: Towards a
Highly Scalable Distributed Web Crawler. In
WWW Posters 2001, 2001.

[8] N. Craswell, P. Bailey, and D. Hawking. Server
Selection on the World Wide Web. In
Proceedings of the Fifth ACM Conference on
Digital Libraries, 2000, pp. 37-46.

[9] E. Selberg, and O. Etzioni. The MetaCrawler
Architecture for Resource Aggregation on the
Web. IEEE Expert, 1997.

[10] Wensheng Wu, Clement Yu, Weiyi Meng.
Database Selection for Longer Queries, 2003.

[11] L. Gravano, and H. Garcia-Molina. Merging
Ranks from Heterogeneous Internet sources.
International Conferences on Very Large Data
Bases, 1997.

[12] G. Towell, E. Voorhees, N. Gupta, and
B. Johnson-Laird. Learning Collection Fusion
Strategies for Information Retrieval. 12th Int'l
Conf. on Machine Learning, 1995.

[13] E. Voorhees, N. Gupta, and B. Johnson-Laird.
Learning Collection Fusion Strategies. ACM SI-
GIR Conference, Seattle, 1995.

[14] W. Meng, K.-L. Liu, C. Yu, X. Wang,
Y. Chang, and N. Rishe. Determining Text
Databases to Search in the Internet. Proc. Int’l
Conf. Very Large Data Bases, Aug. 1998.
pp. 14-25.

Mr. Raj Gaurang Tiwari: is
pursuing Ph. D. in Computer
Science from Dravidian
University. He received his
Masters degree in Computer
Applications from Dr. B. R.
Ambedkar University, Agra in
2002 and Masters degree in
Computer Sc. and Engg. From
Gautam Buddh Technical
University, Lucknow in 2010.

Raj Gaurang Tiwari, Mohd. Husain, Anil Agrawal / Computing, 2011, Vol. 10, Issue 2, 153-161

 161

Currently he is working as Assistant Professor at
AZAD Institute of Engineering and Technology,
Lucknow, India. His research interests are
Knowledge-Based Engineering and Web
Engineering. He authored more than 35 International
and national journal and conference papers.

Prof.(Dr.) Mohd. Husain:
Presently working as Director,
AZAD Institute of Engineering
and Technology, Lucknow,
India. He Received Ph.D.
Degree from Integral
University, Lucknow in 2008
and Master Degree (M.Tech.)
from UP Technical University,
Lucknow.

He has about 21 years of experience in IT &
Academics and 07 years research experience in the
field of Data mining. He has published more than
110 International and National publications.

Mr. Anil Agrawal: received his
Masters degree in Computer
Science from Allahabad
Agricultural Institute- Deemed
University, Allahabad in 2007.
Currently he is working as
Assistant Professor at
Ambalika Institute of
Management and Technology,
Lucknow, India. His research
interest includes Data Mining.

