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Abstract. This paper presents the full-duplex architecture of the X-MatchPRO lossless data com-
pressor and its highly integrated implementation in a non-volatile reprogrammable ProASIC FPGA.
The X-MatchPRO architecture offers a data independent throughput of 100 Mbytes/s and simultaneous
compression/decompression for a combine full-duplex performance of 200 Mbytes/s clocking at 25
MH:z. Both compression and decompression channels fitinto a single A500K130 ProASIC FPGA with a
typical compression ratio that halves the original uncompressed data. This device is specifically tar-
geted to enhance the performance of Gbit/s data networks and storage applications where it can double

the performance of the original system.
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1.INTRODUCTION

Lossless data compression [ 1], where the origi-
nal data is reconstructed exactly after decompres-
sion is accepted as a tool that can bring important
benefits to an electronic system. Its applications
have been increasing over the past years thanks to
the arrival of compression standards and a combi-
nation of pressure for more bandwidth and storage
capacity while still reducing power consumption.
Lossless data compression has been successfully
applied to storage systems (tapes, hard disk drives,
solid state storage, file servers) and communica-
tion networks (LAN, WAN, wireless).

The remainder of this paper is organized as fol-
lows: Section 2 establishes the motivation of our
work. Section 3 describes the basic characteristics
of the X-MatchPRO algorithm. Section 4 depicts
the X-MatchPRO full-duplex architecture. Section
5 introduces our low-cost device verification meth-
odology. Section 6 compares our device with other
high-performance lossless data compressors. Fi-
nally section 7 concludes this paper.

2. MOTIVATION

The significant requirements for bandwidth and
data capacity generated by applications such as
real-time video conferencing, 3D animation mod-
eling, Internet telephony, virtual reality, video on
demand, etc have pushed forward networking and
storage technology to operate at speeds in excess

of 1 Gbit/s. Gigabit networking [2] has been made
possible thanks to fiber optic signaling equipment
able to transmit at a bandwidth of Gigabit/s over
long distances with low error rates. Storage equip-
ment has benefit from technology such as RAID
[3] (Redundant Array of Inexpensive Disks) to
achieve over 1 Gbit/s bandwidth performance.

Data compression technology is not currently
being used to its full advantage in these applica-
tions due to performance limitations encountered
in current data compression hardware. It has the
potential of doubling the performance of a stor-
age/communication system by increasing the avail-
able transmission bandwidth and data capacity with
minimum investment.

3. THE X-MATCHPRO ALGORITHM.

The X-MatchPRO algorithm [4-6] uses a dic-
tionary of previously seen data and attempts to
match or partially match the current data element
with an entry in the dictionary. Each entry is 4
bytes wide and several types of matches are pos-
sible where all or some of the bytes at different
positions inside the tuple match. Those bytes that
do not match are transmitted literally. This partial
match concept gives the name to the procedure-
the X referring to ‘don’t care’. At least 2 bytes
have to match and when no valid match is gener-
ated a miss is codified adding a single bit to the
literal. The dictionary is maintained using a move
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to front (MTF) strategy [8] whereby a new tuple
is placed at the front of the dictionary while the
rest move down one position. When the dictionary
becomes full the tuple placed in the last position is
discarded leaving space for a new one. X-
MatchPRO reserves one location in the dictionary
to code internal runs of full matches at location
zero. This Run-Length-Internal (RLI) technique is
used to efficiently code any 32-bit repeating pat-
tern.

The coding function for a match is required to
code several fields as follows:

A zero followed by:

If normal code:

1. The match location: It uses the binary code
associated to the matching location. Since the dic-
tionary has 16 entries 4 bits are used to code each
location.

2. A match type: That indicates which bytes of
the incoming tuple have matched. This is codified
using a static Huffman code [7] based on the sta-
tistics obtained through extensive simulation.

3. Any extra characters that did not match trans-
mitted in literal form.

If RLI code:

1. The RLI location: The last address in the dic-
tionary is reserved to code RLI events.

2. A run length: 8 bits are used to indicate how
many 32-bit repeating patterns have been observed.
The maximum run length that it is possible to pro-
cess in a single code is therefore 255.

The coding function for a miss has two fields
as follows:

A one followed by:

1. The four bytes in literal form.

A data tuple (4 bytes) is added to the front of
the dictionary while the rest move one position
down if a full match has not occurred. The move-
to-front technique is only applied when dealing
with full matches. In this case the tuples from the
first location until the location previous to the
matching tuple move down one location, while the
matching tuple is placed at the front of the dictio-
nary. Additionally an Out-of-Date-Adaptation
(ODA) policy is used in X-MatchPRO for through-
put purposes. This means that adaptation at time
t+2 takes place using the adaptation vector gener-
ated at time t.

4. THE X-MATCHPRO HARDWARE

The full-duplex architecture has 5 major com-
ponents, namely: the Model, the Coder, the De-
coder, the Packer and the Unpacker. The architec-
ture is depicted in Figure 1.

The model is the section of the compressor
whose functionis to identify where the redundancy
is located in a block of data and signal repetitive
data sequences to the coder.

The model is composed of:

1. Compression dictionary: CAM-based [9] dic-
tionary with 16 words. A bigger dictionary im-
proves compression but increases complexity. The
dictionary size is always one location smaller be-
cause one codeword is kept to signal RLI events.

2. Decompression dictionary: RAM-based dic-
tionary that stores the history data during a decom-
pression operation. The contents of the RAM dic-
tionary during decompression must be same as the
contents of the CAM dictionary during the com-
pression ineach cycle. Adaptation must take place
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Fig. 1. X-MatchPR O fill-duplex architecture.
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in exactly the same way to enable correct decom-
pression of the compressed block.

3. Pointer Array. The pointer array logic per-
forms an indirection function over the read and
write addresses that accessed the RAM dictionary.
It models the MTF maintenance policy ofthe CAM
dictionary moving pointers instead of data. The
pointer array enables mapping the CAM dictionary
to RAM for decompression. Since RAM is plenti-
ful in ProASIC FPGA’s and the pointer array is
much smaller than the CAM dictionary the sav-
ings in complexity allow having the full-duplex
architecture in a single device.

4. Priority logic: Logic that assigns a different
priority to each of the possible matches in the dic-
tionary. Those matches that improve compression
are assign a higher priority.

5. Best match decision logic: Logic that selects
one of the matches as the best for compression
using the priority information.

6. Tuple assembly: Module that assembles a
decompressed tuple using dictionary information
and any literal characters present in the code.

7. Move generation logic: Generation of the
move vector depending of the match type and
match location. The move vector adapts the CAM
dictionary in compression and the pointer array in
decompression.

8. ODA Logic: Out of Date Adaptation logic
that forces the dictionary to adapt with previous
match information and breaks in 2 the critical path
to improve speed. The ODA logic and movement
generation logic are replicated for the compression
and decompression channels. They have exactly
the same functionality.

The coder function is to use the information
provided by the model to produce a minimum out-
put of bits and obtain compression. It is composed
of:

1. Main coder: Main X-MatchPRO coder as-
signs a uniform binary code to the matching loca-
tion and static Huffiman code to the match type and
concatenates any necessary bytes in literal form.

2. RLI coder: RLI coder that detects the exist-
ence of runs of full matches at location zero. If a
RLI becomes active the pipeline is empty from the
previous code and the output of the chip is frozen
while the run length is taken place.

The decoder function is to decode the com-
pressed input stream and provided the model with
a combination of dictionary address plus literal data
so the model can reproduce the original
uncompressed data. It is composed of:

1. RLI decoder: RLI decoder that when a RLI
code is detected in the compressed input outputs

match location zero and match type zero as many
times as the number of repetitions indicated in the
RLI code.

2. Main decoder: The match location and match
types are decoded here together with any needed
literal characters.

The packer function is to pack the variable
length codewords output from the coder into fixed-
length codewords of 32 bits. It is composed of:

1. Bit assembly: Logic that writes a new 64-bit
compressed output to the output buffers whenever
more than 64 bits of compressed data are valid in
the internal buffer.

2. Width adaptation logic. This logic reads in
64-bit compressed words from the coder and writes
out 32-bit compressed words to the compressed
output bus. It performs a buffering function smooth-
ing the data flow out of the chip to the compressed
port.

The unpacker function is to break the fixed-
length codewords input from the compressed bus
into variable length codewords to be processed in
the decoder. It is composed of:

1. Bit disassembly: Logic that reads a new 64-
bit compressed vector from the internal buffer
whenever less than 66 bits are left valid in the in-
ternal decompression register after a decompres-
sion operation.

2. Width adaptation logic: This logic performs
the equivalent but opposite function as its coun-
terpart in the compression channel. It reads in 32-
bit of compressed data from the input compressed
bus and it writes out 64-bit of compressed data to
the bit disassembly logic when it requires more
data. It performs a buffering function smoothing
the data flow in the chip fromthe compressed port.

The initialization of the compression CAM sets
all words to zero. This means that a possible input
word formed by zeros will generate multiple full
matches in different locations. The algorithm sim-
ply selects the full match closer to the top. This
operational mode initializes the dictionary to a state
where all the words with location address bigger
than zero are declared invalid without the need for
extra logic. The reason is that location x can never
generate a match until the data contents of loca-
tion x-1 are different from zero because locations
closer to the top have higher priority generating
matches. The MTF adaptation mechanism shifts
down the dictionary when full matches are not de-
tected and, therefore, ensures that the last word
from this initial state to be deleted from the dictio-
nary is always the word located at location zero at
time zero. This operational mode in compression
enables the decompression RAM to have only lo-
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cation zero loaded with value zero during the ini-
tialization phase. This technique avoids having a
long overhead equal to dictionary size cycles to
initialize the RAM before each decompression
operation.

The compression CAM dictionary can have the
same location read and written simultaneously be-
cause it is legal to read a value at time t and re-
placed it with a new value for time t+1. Special
attention has to be paid to avoid providing the same
location for reading and writing to the decompres-
sion RAM. The decompression RAM reads its con-
tents in asynchronous mode and writes its contents
in synchronous mode to model the behavior of the
CAM.

If the same address appears during cycle t for
reading and writing it means that the algorithm
needs to asynchronously read the contents of the
RAM at time t and synchronously replaced their
contents for time t+1. The RAM fails to work un-
der these conditions. To avoid this situation spe-
cial logic monitors the read and write addresses. If
both addresses are the same the match type is used
to determine which bytes are matching and miss-
ing in the 4-byte tuple. Those bytes that match are
writing in locationx a value that it is already present
in location x. Therefore writing can be skipped.
Those bytes that miss are reading a value from lo-
cation x that can not be used to reconstruct the origi-
nal tuple so reading is unnecessary and only writ-
ing must done in location x. This address adjust-
ment technique avoids accessing the same loca-
tion for simultaneous reading and writing in the
decompression RAM but maintains the same op-
erational mode as the compression CAM.

X-MatchPRO uses a simple coprocessor style
interface to communicate with the rest of the sys-
tem. Compression and decompression commands
are issued through a common 16 bit control data
port. A 3-bit address is used to access the internal
registers that store the commands plus information
related to compressed and uncompressed block
sizes for reading or writing. A total of 6 registers
form the register bank. 3 registers are used to con-
trol the compression channel and the other 3 for
the decompression channel. The first bit in the ad-
dress line indicates if the read/write operation ac-
cesses compression or decompression registers.
The chip is designed to compress any block size
ranging from 8 bytes to 32 Kbytes. A decompres-
sion operation can be requested in the middle of a
compression operation and vice versa. The full-
duplex architecture using a 16-word dictionary has
been implemented ina A500K130 ProASIC FPGA

[9].

5.TEST METHODOLOGY

Our functional test of the device, once post-lay-
out back-annotationis completed successfully, uses
a low cost PC-based test methodology and the
JTAG port available in the FPGA. A text file is
written automatically by a PERL script translating
the original test vectors to the standard JAM [10]
programming and test language. JAM is a vendor-
and-platform-independent interpreted language for
programming and testing devices via the IEEE stan-
dard 1149.1 TAP controller, commonly known as
JTAG. This file contains the test vectors and JAM
instructions ready to be executed by the Gatefield
ProASIC JAM player [11] that controls the JTAG
port shifting in the input test vectors clocking the
device and shifting out the output test vectors.
These vectors are compared with the expected out-
put and fail or pass is reported. The same test vec-
tors used duringthe simulation phased are now used
in this verification phase to maintain consistency
during the whole testing process.

Each original test vector is decomposed in two
vectors corresponds to clock cycle low and the
other to clock cycle high. After some propagation
time the output of the circuit is ready to be strobed
and scan out. This test allows us to verify the cor-
rect functionality of the silicon.

6. RESULTS.

Table 1 shows a comparison of the FPGA-Based
X-MatchPRO implementation against several
popular high-performance ASIC compressors. The
selection includes:

1. The the ALDC1-40S [12] (IBM) and the
AHA3521 [13] (AHA) that implement the ALDC
[14] (Adaptive Lossless Data Compression) algo-
rithm. This algorithm is a LZl derivative devel-
oped by IBM.

2. The AHA3211 [15] that implements the
DCLZ [16] (Data Compression Lempel Ziv) al-
gorithm. This algorithm is a LZ2 derivative devel-
oped by Hewlett/packer and AHA.

3. The Hi/fn 9600 [ 17] that implements the L.ZS
[18] (Lempel-Ziv Stac) algorithm . This algorithm
is another LZ1 derivative developed by STAC/Hifn.

Table 1 reports the complexity of the X-
MatchPRO design in ProASIC tile’s. Tile is the
basic logic unit in the architecture of the ProASIC
technology. Actel ProASIC tiles are simple blocks
that can implement a logic function with 3 inputs
and 1 output such as an AND gate or a flip-flop.
Each tile can be configured to implement one of
these simple functions using the internal non-vola-
tile FLASH-based switches. Actel ProASIC archi-
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Table 1. X-MatchPRO comparison.

each block defines a very simple

DEVELOPERS BM “Advance Hadware STAC Systemn Deeign logic function, has proven to be
Archileciures (AHA) Electomes Group : :
Lnghboromgh well suited to implement the
Dntvezstty CAM-based dictionary that repre-
CHIF* ALDCI-08 | AHA3S2 AHAZ23] Hi‘fn 4600 X-MatchPRC . .
sents most of the logic present in
PROCESS | IBMCMOS | O3 micron | 0.3 misron | 035 micron | .25 micron . .
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= d A el ] implement mixed combinatorial
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THROUGHPUT | 40 Mbytew's 20 20 Mbytes's | 0 Mbytes's | 100 Mbytes's can be adapted to new FPGA’s
Mbytess . . . .
TR o = = = g - with higher gate count with little
PERRORMANCE Mbytesis effort and since the ProASIC ar-
ALGORITHM ALDC ALDC DCZL Lz8 X-MatchPRO chitecture is ASIC-style the same
EXTERNAL RAM NO N0 NO NO ¥0 RTL can be used to migrate to-
REQUIRED .
COMPRESSION 044 0.4 052 0.44 058 wards ASIC’s where higher
RATID

tecture is fine-granularity and flat so the simple
tiles are repeated across the device forming a ma-
trix of identical logic elements. Dedicated memory
blocks are group in the north side of the device.
There are a total of 20 memory blocks in a
AS500K130 and each of them can implement 2304
bits of fully-synchronous dual port RAM. The de-
sign uses 70% of the device logic that is approxi-
mately equivalent to 30 Kgates and the 20 blocks
of embedded RAM available (5 Kbytes). The total
gate count equivalent of logic plus memory is 210
K gates.

Table 1 shows that X-MatchPRO can achieve
higher performance throughput than the ASIC com-
pressors with a lower clock ratio and this is due to
its optimal parallel architecture. The compression
ratio figure in the last row is a ratio of output bits
to input bits (output_bits/input_bits) and it is based
on a data set formed by 100 Mbytes of data found
in the main memory of a UNIX workstation com-
pressing data in 4 Kbytes blocks. The FPGA-based
X-MatchPRO uses a very small dictionary of only
16 locations and that limits its compression per-
formance. The ASIC compressors use dictionary
sizes from 512 to 2048 positions.

7.CONCLUSIONS

X-MatchPRO offers unprecedented level of
compression/decompression throughput ina FPGA
implementation of a lossless data compression al-
gorithm for general application. The full-duplex
implementation effectively uses the resources avail-
able in the FPGA to simultaneously handle a com-
pressed and uncompressed data stream. The use of
a fine granularity device like the ProASIC where

throughputs should be obtained.
As future work we are now focus-
ing on improving compression ratios with the use
of bigger dictionary sizes targeted to higher den-
sity FPGA devices.
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