
Marek Aleksander, Mykola Karpinskyy, Grzegorz Litawa / Computing, 2011, Vol. 10, Issue 2, 91-96

 91

CALCULATION OF GF (P) ELLIPTIC CURVES IN FPGA

Marek Aleksander 1), Mykola Karpinskyy 2), Grzegorz Litawa 1)

1) State Higher Vocational School in Nowy Sacz, Poland,
aleksmar@pwsz-ns.edu.pl, http://www.pwsz-ns.edu.pl/it/

2) University of Bielsko-Biala, Poland,
mkarpinski@ath.bielsko.pl, http://www.keia.ath.bielsko.pl/index.php?poz=14

Abstract: The paper describes a hardware system carrying out point summation on elliptic curves. The implementation
of basic function, which is modulo multiplication of huge integrals, is based on Krestenson’s basis. Such a summing
unit has been used for hardware implementation of Pollard rho-algorithm. The paper also presents the performance of
the mentioned unit.

Keywords: Elliptic curve, rho-Pollard, Rademacher-Krestenson’s bases, FPGA, GF(p), ECDLP.

1. INTRODUCTION
The need for keeping stored, processed and

distributed data secret provoked a growing interest
in cryptographic and identification techniques. An
essential issue is therefore the safety level provided
by the cryptographic systems.

This article concerns gauging of elliptic curve
(EC) based cryptosystems safety. Elliptic curves
over finite field GF(2m) and p, GF(p) are commonly
used for cryptography purposes. Recently it has
become convenient to use hardware FPGA units
(Field Programmable Gate Array) for extremely fast
operations carried out on elliptic curves GF(2m)
according to the nature of the calculations.
Information concerning this issue may be found in
e.g. [1]. The aim of our work was to device a
hardware unit carrying out operations on elliptic
curves over finite field GF(p). In order to
accomplish our goal we have employed an
unconventional approach: a technique relying on
Rademacher’s-Krestenson’s basis allows
multiplication operations to be converted into
summing ones and taking advantage of previously
generated tables. Such operations are carried out by
hardware systems and offer a substantial
simplification of calculations.

2. ELLIPTIC CURVES AND

CORRESPONDING ARITHMETIC
Integrals of expressions in the form of:

dxdcxbxaxxR),(23∫ +++ , (1)

are called elliptic integrals. The name has been
derived from an ellipse length calculation. Being
more specific about elliptic integrals it should be
stressed that the only integrals of that type are ones
which may not be calculated in a finite form [2, 3].
A curve circumscribed by the following equation is
a good example of an elliptic curve:

dcxxy −−= 32 4 (2)

with a point in infinity O.
A closer look at the most important grouping

operation which is the point summation on an
elliptic curve reveals an issue: assume that points P
and Q belong to curve E and have respective
coordinates),(11 yxP and),(22 yxQ . Assume that
point P ≠ Q and P,Q ≠ O. Sum of points P + Q will
be defined as point),(33 yxR such that a straight
line drawn through points P and Q intersects with
the curve in point X = –R, consequently being a
opposite of R. Adding a point to itself (doubling) is
clearly described as PPX += . Point coordinates
equation takes a form of PPPR +== 2 .

Taking advantage of this equation it is simple to
define multiplication of a point by an integer. If τ is
an integer then PPPP +++= ...τ , where the
number of added points equals τ .

At the ending of the theoretical discussion
consider some basic equations where subtraction is
defined as addition of a negative
point)(PQPQ −+=− , and multiplication by a
negative integer τ− as)(PP ττ −= .

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Marek Aleksander, Mykola Karpinskyy, Grzegorz Litawa / Computing, 2011, Vol. 10, Issue 2, 91-96

 92

Further discussion will focus on elliptic curves
over finite field GF(2m) and GF(p) where p is a large
prime number. Elliptic curves over finite field are
characterized by a finite number of rational points
belonging to the curve.

Contemporary cryptography relies on elliptic
curves over finite field GF(2m) and GF(p). Therefore
these cases will be addressed further in the paper [2,
3, 4, 5, 6]. An elliptic curve over finite field GF(p) is
a modulo p reduction of curve E.

Let curve E be defined by the equation

baxxy ++= 32 , (3)

then the elliptic curve [4] over finite field GF(p) will
be described as:

.mod)(mod2 pxgpy = (4)

The modulo p reduction of curve E coordinates
has led to a presentation of the coordinates in field
GF(p).

3. POLLARD RHO PARALLEL METHOD

OF FINDING DISCRETE LOGARITHM
The concept of discrete logarithm. The crucial

issue with reference to ECC (Elliptic Curve
Cryptography) security is the Elliptic Curve Discrete
Logarithm Problem (ECDLP) defined in the
following way: Let E represent an elliptic curve
defined over a finite field, point P of order m and
point Q being a multiple of P. The found integer
l∈<0,m-1> such that Q=l·P [2, 7] is denoted as the
discrete logarithm of Q to the base P. There are
numerous approaches to the problem of the elliptic
curve discrete logarithm one of which is the
Pollard’s rho Algorithm and its parallel version.

Pollard has invented several methods of
calculating discrete logarithms in various
groups. Pollard rho Method [1, 2] applies a
singular random walk path until it falls into a
cycle. Pollard rho Method complexity is of

order 2
nπ , having the possibility of limiting

the demand for memory it is currently the best
known method. In order to speed up the
calculations a modified method is used. It is
called Parallel Method as it uses many random
walk paths realized simultaneously by many
processors. At present it is the fastest way to
attack an elliptic curve. In Pollard rho Parallel
Method we seek an intersection of two paths
rather than await the cycle completion. The use
of multiple random walk paths results in a linear
increase of efficiency. On average it takes as

long as [7] cn +2
π to find a point, the

expected value of memory demand equals
Kn 22

π which may be lowered through

altering K. Lowering memory demand,
however, means additional 2K point
computations (c = 2K) done by the machine.

4. THEORETICAL BASIS FOR

IMPLEMENTATION OF FPGA SYSTEM
CARRYING OUT OPERATIONS ON

ELLIPTIC CURVES GF(P)
The use of reprogrammable structures with

implemented Pollard rho parallel algorithm is
intended to increase effectiveness of calculations
carried out on elliptic curves over finite field of
higher orders GF(p). Coordinates calculation for
consecutive points on elliptic curves forces
multiplications of large modulo numbers. In such a
case traditional methods of multiplication fail to be
satisfactory even with the use of dedicated blocks.
One solution to this problem is implementation of
Rademacher-Krestenson’s basis thanks to which
modulo multiplication may be totally eliminated and
replaced by adding operations based on previously
generated tables [8].

Assume a multiplication of two numbers x and y
modulo a number p.

A system of congruence classes (Krestenson’s
BTL) applied to multiplication operations allows to
present the result of a multiplication in a matrix
form. Therefore x and y must be presented as:

0
0

1
1

2
2

1
1 22...222 xxxxxx i

i
r

r
r

r +++++= −
−

−
− , (5)

0
0

1
1

2
2

1
1 22...222 yyyyyy j

j
y

r
r

r +++++= −
−

−
−

, (6)

where r – positioning of x i y and xi, yj = 0,1. There
is a matrix shown in table 1 which represents a
product of x and y relative to module p where

pm ji
ij mod2 += .

Table 1. Determining the transformation matrix
module based on Rademacher–Krestenson.

 yr-1 … yj … y1 y0

xr-1 mr-1 r-1 … mr-1 j … mr-1 1 mr-1 0
… … … … … … …
xi mi r-1 … mij … mi1 mi0
… … … … … … …
x1 m1 r-1 … m1j … m11 m10
x0 m0 r-1 … m0j … m01 m00
Product of numbers x and y is obtained from

the following equation:

Marek Aleksander, Mykola Karpinskyy, Grzegorz Litawa / Computing, 2011, Vol. 10, Issue 2, 91-96

 93

() pmpyx
r

ks
sk modmod

1

1,
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⋅ ∑

−

=

, (7)

where 1, =ks yx . Logically meaning that skm lies
at the intersection of column and row for which
corresponding ix and jy equal 1.

Employing Krestenson’s basis for large number
calculations allows efficient multiplication
operations not only program-controlled but also
hardware-controlled large number calculations.
Obviously the above described algorithm allows to
replace multiplication operations characterized by
square complexity of calculation with summing
operations which in contrast are of linear complexity
of calculations. Such an implementation allows
highly efficient calculations on elliptic curves over
finite field of higher orders.

Hardware-based systems or parallel systems are a
perfect opportunity to utilize algorithms capable of
dividing any large numbers into segments operated
directly by a processor, or into segments of size
suitable for hardware structures for processing them.
Special algorithms have been devised in order to
represent any number in a form of a list

A=(a1, a2, …, an), (8)

where each of n cells ai includes a precisely sized
fragment of a large number. This approach allows
representation of large natural numbers in binary
system or as digits sequences housed in cells ai. In
this way each cell may be simultaneously operated
by independent processes. of others by parallel
processes [9].

Assume extremely large integers X, Y, Z. Divide
them into binary words of specified length m in base
δ, where δ = pm:

01
1

1 ... xxxxX n
n

n
n ++++= −

− δδδ , (9)

01
1

1 ... yyyyY r
r

r
r ++++= −

− δδδ , (10)

01
1

1 ... zzzzZ k
k

k
k ++++= −

− δδδ , (11)

and all coefficients).,0[,, δλβα ∈zyx
In further discussion numbers X, Y, Z are

considered regardless of sign assuming XY ≤ . In
the case of addition

1, +≤≤=+ nkrZYX . (12)

In a very simple way the above equation may be
adapted to multiple number additions, minding an
accurate estimation of number of cells k which may
be occupied while summing a set of numbers.

In the case of subtraction the number of occupied
cells is presented by

,ZYX =− .0 nk ≤≤ (13)

Having a large number fragmented into excerpts
in the form of lists it is possible to apply parallel
summing and subtraction processes carried out by
algorithms which will be explained at this point.
Each of the processes initiates a double word, each
component ai is stored in a low-order word and
component bi – in a high-order word assuming that
for every i > r 0=ib .

Summing algorithm for each of the processes
looks as follows:

1. Summing i-th component ii yx +

2. Value of () δϑ modiii yx += gets written
in the low-order word of adequate device

3. Position 1+i in the high-order word is
replaced by () δω divyx iii +=+1

4. Analysis of the high-order word of i-th
position allows:

a) algorithm termination in the case of
lack of transfer

b) return to point 1 in the case of
transfer occurrence.

It turns out clear that the result Z is obtained after
at most n+1 steps.

Subtracting algorithm for each of the processes
looks as follows:
1. Subtracting i-th component ii yx −

2. A value iϑ is calculated according to the
equation beneath and gets written in the low-
order word of adequate device

⎩
⎨
⎧

≥−
−+

=
iiii

iiii
i yxifyx

yxifyx
,

, pδ
ϑ

3. Position 1+i in the high-order word is replaced

by
⎩
⎨
⎧

≥
=

ii

ii
i yxif

yxif
,0
,1 p

ω

4. Analysis of the high-order word of i-th position
allows:

a) algorithm termination in the case of lack of
transfer

b) return to point 1 in the case of transfer
occurrence.

Similarly to summing algorithm the result Z is
obtained after at most n+1 steps.

Due to the fact that calculating reverse numbers
in field are realized at vast expense the summation
process is carried out in a mixed representation. For
two reasons the mixed representation is favored: it
does not require calculating reverse numbers in
field, which is necessary in affine representation and
allows reduction of multiplication operations from

Marek Aleksander, Mykola Karpinskyy, Grzegorz Litawa / Computing, 2011, Vol. 10, Issue 2, 91-96

 94

16 in projective representation to 11. Table 2 shows
calculations that need to be carried out in order to
add two points: P1 expressed in affine coordinates
and P2 expressed in projective coordinates. The
result being obviously expressed in projective
coordinates.

Table 2. Mixed summation point

217

246

3
214

213

2
211

X
Y

ZY

X
ZX

+=
−=

=

−=
=

λλ
λλ

λ

λλ
λ

() 2

2
3
38693

3
2
379

2
37

2
63

323

248

λλλλ

λλλ

λ

λ
λλ

+=

−+=

+−=

−=
+=

Y

X

ZZX

ZZ
Y

5. FPGA UNIT ARCHITECTURE

The construction of a hardware unit starts off
with a creation of Krestenson matrix for numbers of
definite length and a given module outside the
system. In FPGA system the matrix is stored in
ROM (Read-Only Memory) in such a form that is
adequate to the size of a number or the number of
integer words.

The multiplying unit is fed with numbers as
binary vectors and produces results of the same type.
As far as the structure of a multiplying unit is
concerned there are some basic elements to be
mentioned:

- Components responsible for picking Krestenson
matrix from ROM and placing it in a 3-
dimentional table inside the system.

- Components summing the matrix rows and
realizing modulo operations in precisely the
same way as it was described for the summing
unit. All rows are summed in a parallel manner.
As soon as the summing has finished the
modulo operation is carried out in much the
same way as in the case of the summing unit
with the help of a parallel subtraction as the
sum is smaller than a doubled module.

- Components responsible for summing the
results of the prior operation, modulo
operations done analogically to the above,
outputting the result.

A multiplying unit structure is shown
schematically in fig. 1.

In order to increase the pace of VHDL (Very
High Speed Integrated Circuits Hardware
Description Language) code creation, which is the
native code of the unit, a special function has been
written in C++ language allowing an automatic unit
code generation in VHDL device description
language.

Fig. 1 – Multiplying unit

Having described the multiplying unit it is
reasonable to move on to the nest unit which is
responsible for Pollard rho algorithm realization.
Structure of that unit is schematically shown in fig.
2.

Fig. 2 – Realizing unit Pollard rho algorithm

As the schematic shows only marked points are
sent over to the communication unit. Unit from
figure 2 carries out a single random walk path. As it
is shown in picture 2 the hardware unit’s job is to
realize a part of the algorithm, that is summing of
points one of which is stored in Rj matrix and the
other calculated by the system in a prior iteration or
is the starting point of a random walk according to
the rho Pollard algorithm.

Memory ROM II of Ri points basis and ai bi
coordinates is generated accordingly to parameters
of a curve being processed. ROM II memory is
stored in VHDL language however generated by an
exclusively dedicated program in C++ due to its size
and necessity of adapting the content to calculations

Marek Aleksander, Mykola Karpinskyy, Grzegorz Litawa / Computing, 2011, Vol. 10, Issue 2, 91-96

 95

on various curves. Analogically are calculated
coordinates of the starting point and the system
structure adapted to various curve sizes. The other
part of rho Pollard algorithm is carried out by PC
run dedicated programs responsible for reading
information in the from of distinctive points from
FPGA system (practically from multiple such
systems realizing independent random walks). This
remaining part of the algorithm is also responsible
for writing the information in a base and cross-
comparing. Generally, a standard integer data type
available in VHDL have been used in FPGA run
summation processes. As it is natural for this sort of
calculations to operate on huge numbers they are
divided into words of integer type and subsequently
added parallel as explained above.

6. RESULTS

Implementation of a unit presented in fig. 2 was
carried out in Startix III Altery system. Summary of
the system performance for various curve lengths are
show in tab. 3.

Table 3. Results for various curve lengths.

GF(p) iterations/second
72 349650
96 255681
120 207070
168 157024

The efficiency of the constructed unit is
expressed as number of iterations per second,
namely number of summations done by one unit
in one second – shown in tab. 3. As it is known,
an average number of iterations needed for
working out discrete logarithm equals [1, 2, 7]

D
n 2π

 (12)

where D is number of units Thus it is possible to
estimate time needed for finding discrete logarithm.

Let’s compare performance of a single FPGA
system containing a single processor responsible for
realizing one random walk utilizing Krestenson’s
basis with performance of a Pentium4 processor
which operates on huge numbers using one of the
commonly available libraries. An FPGA system
realizing calculations on curve GF(96) yields
256 000 summations while Pentium4 73 000
iterations per second.

7. CONCLUSION
Utilizing Krestenson’s basis in FPGA obtain

increase rate calculations on the elliptic
curves GF(p). Following the presented idea, a code
realizing single random walk may be used, after
some modification, in an FPGA cluster containing a
greater number of systems working parallel. This
would linearly increase the efficiency of rho Pollard
algorithm realization.

8. REFERENCES

[1] Majkowski P., Wojciechowski T., Wojdyn-
ski M., Rawski M. Implementation of module
for cryptanalysis of elliptic curve ciphers in
reprogrammable structures. Measurements,
Automation and Monitoring, (53) 7 (2007).
pp. 24-26. (in Polish)

[2] Blade I., Seroussi G., Smart N. Elliptic curves
in cryptography. TAO, Warsaw, 2004. (in
Polish)

[3] Fichtenholz G.M. Differential and integral
calculation. Vol. 2, Polish Scientific Publishers
PWN, Warsaw 2011. – 696 p. (in Polish)

[4] Chocianowicz W.: Cryptology and advanced
methods of cryptography (http://uznam.net.pl/
~blondasek/iuz/materialy/Krypto-2007-2008-
2MUDZ.pdf) (in Polish)

[5] IEEE PI363. Standard Specyfications for
Public Key, Cryptography. Draft 13. 1999.

[6] Hankerson D., Menezes A., Vanstone S. Guide
to elliptic curve cryptography. Springer, NY
2004. – 332 p. (http://math.boisestate.edu/
~liljanab/Crypto2 Spring10/GuideToECC.pdf)

[7] Bulens P., Meurice G., Quisquater J.-J.
Collision Search for Elliptic Curve Discrete
Logarithm over GF(2m) with FPGA, 2007
(http://www.springerlink.com/content/p274683
181434n28/)

[8] Yakymenko I., Kasyanchuk M., Nykolaj-
chuk Y. Matrix algorithms of processing of the
information flow in computer systems based on
theoretical and numerical Krestenson’s basis,
TCSET’2010, February 23-27, 2010, Lviv-
Slavske, Ukraine. – P. 241.

[9] Маkоhа А.Н., Zuj B.U. Arithmetic of very
large integers in parallel computer systems,
20.03.2007 (http://revolution.allbest.ru/math
ematics/00011260_0.html) (in Russian)

Marek Aleksander, Mykola Karpinskyy, Grzegorz Litawa / Computing, 2011, Vol. 10, Issue 2, 91-96

 96

Marek Aleksander graduated
from the AGH University of
Science and Technology,
Cracow, Poland, in 2000. He
received the Ph.D. degree from
the Military Technical Academy,
Warsaw, in 2004. He has been
working in the State Higher
Vocational School in Nowy Sacz,

Poland, since 2001. Currently he is a director of
Institute of Engineering. Author and co-author of
over 40 publications. His main areas of interest are
cryptology, mathematic modeling, wireless network
security.

Mykola Karpinskyy graduated
from the Lviv Polytechnic Institute
in 1980. He has been working in
the University of Bielsko-Biala
since 2002. Currently he is a
professor in Department of
Electrical Engineering and
Automatic. He obtains doctor’s
and habilitation’s degrees in

Science Electrical and Magnetic Instrumentation in

1989 and 1996, respectively, and full professor’s title
in Security of Information Technologies in 2001.
Author and co-author of over 100 publications. His
main areas of interest are computer systems and
wireless networks, especially their security, in
particular cryptographic methods of information
defense, lighting engineering and electric and
photometric measurements.

Grzegorz Litawa graduated
from the University of Rzeszow
in 2000 and Pedagogical
University of Cracow in 2001.
He has been working in the
State Higher Vocational School
in Nowy Sacz since 2002.
Currently he is an assistant
professor in Institute of
Engineering. Author and co-

author of over 10 publications. His main areas of
interest are cryptography, cryptoanalysis,
calculations distracted, design of digital circuits with
the use in cryptograph and computer network
security.

