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Abstract: In this paper, we propose a control strategy for a nonholonomic robot which is based on an Adaptive Neural 
Fuzzy Inference System. The neuro-controller makes it possible the robot track a desired reference trajectory. After a 
short reminder about Adaptive Neural Fuzzy Inference System, we describe the control strategy which is used on our 
virtual nonholonomic robot. And finally, we give the simulations’ results where the robot have to pass into a narrow 
path as well as the first validation results concerning the implementation of the proposed concepts on real robot.  
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1. INTRODUCTION 
Research about the multi-robot systems have 

started in the late 1980s, like for instance the project 
CEBOT [1]. Indeed, the multi-robot systems offer 
many advantages in comparison with systems using 
only one robot ([2] and [3])  

- In first, cooperation between a group of 
several robots can carried out more complex 
tasks,  

- Secondly, the use of several robots for a given 
task allows to increase robustness,  

- And finally, the design and the use of several 
simple robots can be cheaper and more 
flexible.  

Today, and in the future, many applications can 
benefit of advantages of multiple robot systems like, 
for instance, in the warehouse management, for the 
industrial assembling, in military applications, or for 
daily tasks, so on. But generally, the design of one 
control strategy for systems with several robots 
requires cooperation and coordination between all 
robots. This means that robots can communicate 
between them and self-organize in the group. With 
the new recent technologies like wireless 
communication, one robot can easily send 
information to another robot. Consequently, in the 
future works, the main challenge will focus on the 
design of control strategies allowing to a group of 
robots to self-organize with, if possible, emergent 

behaviors. In this context, the goal of our laboratory 
is to design control strategies for multi-robot 
systems. But one major problem about the control of 
a multi-robot system is coordination and formation 
control, and namely the design of control strategy 
making it possible for a wheeled robot to track a 
desired trajectory. And generally, the wheeled robots 
are nonholonomic robots increasing the difficulty to 
design the control strategy.  

Most of the control approaches are based on 
asymptotic stabilization with the feedback controls. 
Different methods have been used to reduce or to 
transform the nonlinear kinematics issued equations 
into a linear approximation system. The approach 
proposed by Samson in 1995 transforms the 
nonlinear system into a chained system with the 
feedback control to solve the path-following 
problem [4]. Several authors have addressed the 
problem of tracking admissible trajectory by 
applying dynamic feedback linearization techniques 
([5] to [8]).  

In [9] Morin and Samon are certainly the firsts to 
address the problem of tracking arbitrary trajectories 
(i.e., not necessarily for the controlled robot) based 
on the conception of transverse functions. And in 
[10], Barfoot and Clark propose a feedback control 
law inheriting strong robustness properties 
associated with stable linear systems. However, the 
above-mentioned approach yields slow convergence, 
making it quite inappropriate for real-time 
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applications.  
This short overview of control strategies for 

nonholonomic robots emphasizes the fact that all 
proposed approaches are based on a kinematical 
modeling and most of them have a slow 
convergence. The main drawback of the above-
referenced approaches is related to the fact that they 
have been designed for specific cases (specific 
usage) and could not always be generalized for the 
general cases. An alternative solution to the 
kinematical modeling is to use artificial neural 
networks’ based approaches.  

In this paper, we propose a new approach to 
control nonholonomic robot based on Adaptive 
Neural Fuzzy Inference System (ANFIS). This 
approach may be decomposed in two parts: the first 
one allows rotting an arbitrary (e.g. given) path into 
several trajectories (characterized as “desired 
trajectories”), and the second is composed of two 
neuro-controllers (one controlling the position and 
the other the orientation), allowing to track the 
desired trajectories. In fact, the suggested ANFIS 
based control approach doesn’t depend on 
kinematics issued equations, and although in the 
present work it is applied for nonholomic robot’s 
control, the concept may be generalized as a global 
control strategy to another kind of wheeled robots.  

The paper is organized in six sections. In the next 
section, we introduce the Adaptive Neural Fuzzy 
Inference System. In the third section, we give the 
kinematical model of the nonholonomic robot in 
order to state the control parameters, describing how 
we can control the wheeled robot with ANFIS. In 
section 4, we present the suggested control strategy. 
Simulations’ and validation’s results are shown in 
the fifth section. We give the simulations’ results 
where the robot have to pass into a narrow path as 
well as the first validation results concerning the 
implementation of the proposed concepts on real 
robot. At last, we get some brief conclusions.  

 
2. ADAPTIVE NEURAL FUZZY 

INFERENCE SYSTEM 
The main advantage of a Fuzzy Inference 

Systems is that they allow dealing with linguistic 
rules, making such systems appropriate to design 
control strategy where it is difficult to use the 
mathematical modeling. The control of 
nonholonomic systems (and thus, nonholonomic 
robots) is among those classes of problems where 
the mathematical modeling is difficult to be used 
because of strong non-linearity of such systems. 
However, the main disadvantage of a fuzzy 
inference system is that it needs knowledge of an 
expert. It also needs a relatively long time to get the 
accurate membership functions.  

Neural network based approaches, or more 
generally adaptive systems based on learning 
process (i.e. Q-learning, genetic algorithm, so on), 
can overcome this disadvantage improving the basic 
fuzzy inference system. ANFIS, combining neural 
networks and fuzzy inference systems, is a class of 
such adaptive fuzzy inference systems. In this 
section, we briefly remind the ANFIS architecture 
initially proposed by Jang in 1995 [11].  

Let us assume a control system with m inputs X1, 
X2, ..., Xm and one output Y; let suppose n linguistic 
rules, where each rule Ri, where },2,1{ ni L∈  is the 
index of the rule, can be expressed as:  
 

If X1 is Ai1 and X2 is Ai2 and … and Xm is Aim Then Y is wi 
 
Aij is a fuzzy set for i-th rule and j-th input and 

wi is a real number that represents a consequent part. 
In the present case, the membership function is 
defined as a Gaussian function, given by equation 
(1). The output of the issued neural-fuzzy network is 
given by the equation (2), where ui is obtained from 
the equation (3).  
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Now, let us define the set of parameters z, given 

by equations (4) and (5), supposed to be adapted 
during the neural based minimization process as well 
as the function F(z, t), defined by equation (6), to be 
minimized during the aforementioned process, 
where t is the current time, Y(t) is the output of the 
neural fuzzy network and Y

d
(t) is the desired output.  
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In 1995, Godjevac show that if F(z, t) is defined 
as it has been stated-above, then it is possible to use 
an iterative procedure to update the above-defined 
parameters in order to minimize the function F(z, t) 
[12]. According to Godjevac, the three kinds of 
above-defined parameters aij, bij and wi may be 
updated by equations (7), (8) and (9), respectively. 
Γa, Γb and Γw are predefined constants.  
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3. NONHOLONOMIC ROBOT’S 

DYNAMICS 
Generally, the control of wheeled robots is 

performed by a follow of reference path and 
supposes to measure both the position and 
orientation with respect to a fixed frame. Let us 
consider a given trajectory C in the reference frame, 
and a point P attached to the robot chassis, at the 
mid-distance of the wheels, as illustrated in Fig.1. 
The state of the robot can be described by a triplet as 

),,( θyxP , in which x and y are the robot’s current 
coordinates, measured in the reference frame. θ is 
the angle formed by the robot’s motion direction and 
the x-axis.  

The kinematical modeling of this wheeled robot 
(i.e. unicycle-type mobile robot) may be represented 
by the set of equations (10) and (11) (see [11] and 
[12]), where Vx and Vy represent the instantaneous 
horizontal and vertical velocities of the point P 
located at mid-distance of the actuated wheels, 
respectively. V represents the intensity of the 
longitudinal velocity and Ω the angular velocity of 
the robot. Ωleft and Ωright are the angular velocity of 
the “left” and “right” wheels, respectively, r is the 
radius of the wheels and l is the distance between the 
two wheels.  
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Fig. 1 – Robot’s coordinates described by a triplet as 

P(x, y, θ) 

 
For an unicycle-type mobile robot, the goal of the 

control strategy is to compute the velocities of each 
wheel in order to make the robot follow a given (e.g. 
desired) path. The given trajectory can be expressed 
as a time-dependent function ( ))(),(),( ttytxP ddd θ , 
where )(tdθ  represents of the trajectory’s curvature 
at each step time t, )(txd  is the desired x-axis 
coordinate and )(tyd  is the desired y-axis 
coordinate of the robot.  

However, it is pertinent to note that in the case of 
nonholonomic robots complying with the 
kinematical model, represented by equations (10) 
and (11), the achievement of the aforementioned 
goal is not a trivial problem. The difficulties are 
inherent to the nonlinear nature of the robot’s 
dynamics which is sensitive as well to the given 
trajectory’s shape as to the environment (e.g. the 
nature of ground, etc…).  

 
4. SUGGESTED CONTROL STRATEGY 

As it has been mentioned in the introductory 
section, we propose a new approach based on neural 
fuzzy networks, taking advantage from combining 
artificial neural network’s learning skills and Fuzzy 
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Inference System’s linguistic rules. The proposed 
approach includes two neuro-controllers (one 
controlling the position and the other the 
orientation), allowing to track the desired 
trajectories. The goal of the two neural networks is 
to control the velocity of each wheel in order to 
minimize the position error, defined as the error 
between robot’s current position and the desired 
position ( ))()(),()( tytytxtx dd −− , and the 
orientation error, defined as the error between the 
robot’s current orientation and the desired 
orientation ( ))()( tt dθθ − .  

 
4.1. ORIENTATION CONTROL 

The orientation control allows the robot to rotate 
in order to follow the target angle. Consequently, the 
related ANFIS based controller requires one input 
( ))(tX y  which is the aforementioned orientation 

error (see equation (12)), and one output ( ))(tYθ  
which is defined as an angular velocities difference 
(see equation (13)). rightΩ  and leftΩ  represent right 
wheel’s and left wheel’s current angular velocities, 
respectively. 

 
)()()( tttX dθθθ −=        (12) 

 
)()()()( ttttY leftright

θθθ Ω−Ω=∆Ω=     (13) 
 
Thus, according to ANFIS described in Section 

2, the ANFIS based controller’s output (defined by 
the equation (13)) could be expressed as equation 
(14).  
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In the same way, according to ANFIS described 

in Section 2, at each time step (e.g. iteration), the 
parameters )(twi

θ  are update in order to minimize 
the function )(tFθ  defined as expressed by equation 
(15).  

 

( )2)()()( tttF dθθθ −=   (15) 
 

4.2. POSITION CONTROL 
As for the orientation, the position control allows 

the robot to move in order to track the target point 

( ))(),( tYtX dd  according to a given (e.g. some 
desired) path. Consequently, in this case, the related 
ANFIS based controller requires two inputs )(tX Px  
and )(tYPy  which are defined on the basis of the 
aforementioned position error (see equations (16) 
and (17)), and one output )(tYP  which is also 
defined as an angular velocity (see equation (18)), 
where )(tright

θΩ  and )(tleft
θΩ  represent the above-

stated right wheel’s and left wheel’s current angular 
velocities.  
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)(txd  and )(tyd  correspond to robot’s current 

coordinates and )(txd  and )(tyd  to the desired 
coordinates (according to the desired robot’s 
trajectory). )(tright

PΩ  and )(tleft
PΩ  represent, 

respectively, right wheel’s and left wheel’s current 
angular velocities, regarding the position. Here also, 
according to what has been stated in Section 2, the 
ANFIS based controller’s output (defined by the 
equation (18)) could be expressed as equation (19).  
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In the same way, at each time step (e.g. iteration), 

the parameters P
iw  are update in order to minimize 

the function )(tFP  defined as expressed by equation 
(20).  

 

( ) ( )22 )()()()()( tytytxtxtF dd
P −+−=  (20) 

 
4. 3. TRAJECTORY CONTROL  

The trajectory’s control strategy combines the 
above-described orientation’s and position’s ANFIS 
based controllers. Fig.2 gives the bloc-diagram of 
the suggested control strategy, where the two 
involved neuron-controllers correct the robot’s 
orientation and its position in order to make the 
robot track some desired trajectory. 
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Fig. 2 – Bloc-diagram of the trajectory’s ANFIS based 
control strategy, including an orientation’s dedicated 
neuron controller and a position’s devoted neuron-

controller 

 
In this case, the angular velocity of two wheels 

( )(trightΩ  and )(tleftΩ ) are given by the set of two 

equation (21). )(tright
PΩ  and )(tleft

PΩ  are obtained 
from the ANFIS based position controller, and ∆Ω  
is obtained from the ANFIS based orientation 
controller [14]. 
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In the most of proposed neuron-controllers, the 

control task is performed in “generalization” phase 
(e.g. after accomplishing the training phase) It is 
pertinent to note that accordingly to what has been 
mentioned in Section 2, the trajectory’s control 
(orientation and position control), in the proposed 
approach, is performed by adjusting (updating) the 
set of parameters z (defined in Section 2) 
minimizing the function F(z, t). In other words, our 
control strategy uses the “learning” process (e.g. 
training phase) to control the robot’s wheels. This 
way of doing may be interpreted as some kind of 
“unconscious” artificial cognitive mechanism (by 
opposition to “conscious” cognitive mechanism – 
see [15]) where the “knowledge” (e.g. learning) 
based process operates in a “reflexive” way (by 
opposition to “intentional” regulation) regulating the 
robot’s rolling organs (wheels).  

 
5. VALIDATION RESULTS 

In this section we present two sets of results, 
validating the suggested ANFIS based control 

strategy. The first one, issued from simulation, 
presents a practical example where the robot is 
supposed to move from an initial position to a 
destination (e.g. goal) position by passing a narrow 
path. The second set gives results obtained from 
implementation of the suggested concept on real 
robot (a Khepera III robot) performing a simple but 
a nonlinear trajectory.  

 
5.1. SIMULATION BASED CASE STUDY 

The case study concerns the control of a wheeled 
robot moving from an initial position to a destination 
(e.g. goal) position by passing a narrow path, 
according to a predefined trajectory. Fig.3 shows the 
case study’s frame where, starting from the point 
“A” (initial position), the robot is supposed to reach 
the point “C” (e.g. final position) accordingly to the 
indicated trajectory.  
 

 
Fig. 3 – Description of the “case study” frame and the 

desired (e.g. planed trajectory) 

 
As shows Fig.3, the proposed example may be 

decomposed into three parts: firstly the robot moves 
from the point A toward the obstacles, secondly the 
robot follows a circle trajectory, and finally the robot 
goes towards the final position. 

• During the above-mentioned three parts (of 
the whole trajectory), the desired fractional 
trajectories ))(),(),(( ttytxP ddd θ  are 
computed as follow: 

• During the first part, the robot moves from 
initial position A to the obstacle with 
position’s control only (the orientation 
remains unchanged). In this part, robot follow 
the vertical line 3.0)( =txd  without the 
orientation control. Equation (22) gives the 
path definition, where )(txd  and )(tyd  
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represent the robot’s current coordinates 
within the reference frame. °= 0)(tdθ  is the 
orientation of the robot. y∆  is chosen 
according to both length L and duration T of 
the path’s accomplishment (execution). 
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• During the second part, firstly the robot turn 

around itself from °= 0)(tdθ  to 

°−= 180)(tdθ  by using the orientation 
control, and secondly the robot use trajectory 
control to follow a circular arc (according to 
the set of equations (23)). Finally, the robot 
rotates from °−= 270)(tdθ  to °= 0)(tdθ .  
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• During the last part, the robot follows a 

vertical line 0.0)( =txd  and passes the 
narrow path in order to reach the final position 
(e.g. the point “C”).  

 
Simulation have been performed by using 

software Webots (www.cyberbotics.com) simulating 
a virtual robot KheperaIII within the above 
described case study’s farame. The controller have 
been designed under MatLab software platform 
(www.mathworks.com). Fig.4 and Fig.5 show the 
trajectory and orientation of the robot during the 
simulation, respectively. On both two figures, the 
red line represents the desired items (trajectories 
orientation) and the blue dot line the accomplished 
items (position or orientation) of the robot.  

Fig.6, (6-a, 6-b, 6-c and 6-d) shows a snapshot of 
this simulation. The path of the robot can be 
interpreted as follow:  
• From t = 0 (figure 6-a) to t = 200 (figure 6-b), the 

robot follow a vertical line and moves from the 
point (x = 0.3, y = −0.8) to point (x = 0.3, y = 0).  

• At t = 200 (figure 6-b), the robot turns on itself 
during 100 step time. During this stage, the robot 
stay at the point (x = 0.3, y = 0) but turns from 0° 

to -180°.  
• From t = 300 to t = 500 (figure 6-c), the robot 

follows the above-defined desired circular 
trajectory and moves progressively from the 
point (x = 0.3, y = 0, θ =-180°) to (x = 0, y = 
−0.3, θ =-270°)  

• At t = 500 the robot turns on itself during 100 
step time. During this stage, the robot stay at the 
point (x = 0, y = −0.3) but turns from -270° to 0°.  

• Finally, from t = 600 to t = 800 (figure 6-d), the 
robot follow a vertical line and moves to goal 
position (x = 0, y = 0.6).  
 

 
Fig. 4 – Accomplished and desired positions relative to 

the three sub-trajectories defining the case study 
example 

 

 
Fig. 5 – Accomplished and desired orientations 

relative to the three sub-trajectories defining the case 
study example 
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(a)    (b) 

  
(c)  (d) 

Fig. 6 – Simulation results showing virtual Khepera III robot executing the Case study example 

 
Fig. 7 – Snapshot of the experimental validation concerning the real kheperaIII robot’s orientation’s control: 

rotation of -90° (a), -180° (b) and -270° (c) 

 
Fig. 8 – Snapshot of the experimental validation concerning the real kheperaIII robot’s position’s control. 

From left to right: robot moves away 20, 50, 80 and 100 centimeters from its starting position 
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Fig. 9 – Snapshot of the experimental validation concerning the real kheperaIII robot’s trajectory’s control. 

The robot performs a curvilinear trajectory 
 

5.2. EXPERIMENTAL VALIDATION USING 
REAL ROBOT 

The used robot is the robot kheperaIII with the 
korebotLE module (see http://www.k-team.com). 
The robot Khepera III is equipped with two motors 
associated with incremental encoders, 9 infrared 
sensors and five ultrasonic sensors. A “dsPIC 
30F5011” microprocessor allows to manage all 
devices of the robot through a I2C communication. 
In addition, this robot offers the possibility to 
connect a KoreBot board allowing increasing the 
computational abilities. The main component of the 
KoreBot board is an Intel “PXA255” XScale 
processor running at 400 MHz with 60 MB RAM 
and 32 MB flash memory. When the KoreBot board 
is mounted on the Khepera III robot, the dsPIC 
microcontroller runs the communication protocol 
and switches to the I2C slave mode. To control the 
robot, we used the “Khepera III Toolbox”. This is a 
set of scripts, programs and code modules for the 
Khepera III robot (see http://en.wikibooks.org/ 
wiki/Khepera\_III\_Toolbox) allowing to control the 
robot. The previously described cognitive controllers 

which are based on ANFIS have been designed with 
c language and implemented on the korebot. Both 
orientation (e.g. rotation) and position of the robot 
are computed by using an odometer based process. 
Fig.7 and Fig.8 show the first results relative to the 
experimental validation. Fig.7 shows the ANFIS 
based controller’s validity as well as its performance 
on controlling the real kheperaIII robot’s orientation. 
In this experimental validation, the robot is supposed 
to perform three successive rotations according to 
the following protocol: first, starting from its initial 
orientation (shown by the first picture of the figure 
7-a), the robot performs a rotation of -90° (e.g. 
“turning-right” operation) maintaining its position. 
Then, starting from its new orientation, the robot 
repeats two times the above-mentioned operation 
(e.g. turns-right) attaining successively the -180° and 
-270° (see figures 7-b and 7-c).  

Fig.8 shows the experimental validation relative 
to the ANFIS based controller’s performance on 
controlling the real kheperaIII robot’s position. In 
this second experimental validation, the robot is 
supposed to move respecting a straight line (e.g. 



Ting Wang, Fabien Gautero, Christophe Sabourin and Kurosh Madani / Computing, 2011, Vol. 10, Issue 1, 56-65 
 

 64 

without changing its initial orientation shown in the 
leftist picture of the figure) attaining four successive 
new positions: 20cm, 50cm, 80cm and 100cm from 
its starting position, respectively. Fig.9 gives results 
of experimental validation on a real Khepera III 
robot considering a curvilinear desired trajectory. 
The predefined trajectory is shaped in a 60-b-60 cm

2
 

2-D frame. The starting point is the location 
characterized by (x = 0, y = 0, θ = 0°) and the final 
destination is located at (x = 60, y = 60) with an 
orientation of θ = +90°. So, as well the robot’s 
position as it’s orientation change between departure 
location and final destination in a nonlinear way. In 
fact, as shows this figure through the 9 sampled 
positions (and the associated photographs) the robot 
follows correctly the planed (desired) trajectory.  

It is pertinent to remind that such control 
mechanism could be generalized to different kind of 
wheeled robots independently from the concerned 
robots’ dynamics (because it operated on the basis of 
a “learning” process).  

 
6. CONCLUSION 

In this paper, we have proposed a control strategy 
for nonholonomic robot based on Adaptive Neural 
Fuzzy Inference System. This neuro-controller 
makes it possible the robot track a given reference 
trajectories. We have presented results relative to the 
control of a robot aiming to avoid an obstacle. We 
also presented the experimental validation results 
relative to the implementation of the proposed 
cognitive controller using a real kheperaIII robot. 
The obtained results show the viability of the 
proposed machine-learning based approach in 
controlling as well the robot’s position as its 
orientation.  

The first interest of our approach is that it is 
independent from the robot’s kinematical model. 
Consequently, it is possible to extend our control 
strategy for another kind of robot as cart-like model. 
The second interest is that it offers the possibility to 
design multi-level control, where the path planning 
and the trajectory computing are separated.  

Finally, it is pertinent to remind that contrary to 
other neuron-controller (where the control task is 
performed after accomplishing the training phase), 
the proposed ANFIS based approach uses the 
training process (continuously) to perform the 
control. This way of doing may be interpreted as 
kind of “unconscious” artificial cognitive 
mechanism where the “knowledge” (e.g. learning) 
based process operates in a “reflexive” way 
regulating the robot’s rolling organs (wheels).  

Further works will focus, on the one hand, the 
generalization of such multi-level control strategy to 
the control of a robot’s formation (e.g. a group of 

several Khepera III robots), and on the other hand, 
the experimental validation on a real group of 
kheperaIII robots including several robots.  
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