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Abstract: Approaches to modeling of cognitive evolution that is evolution of animal cognitive abilities are proposed 
and discussed. Backgrounds of models of cognitive evolution, that are developed in an area of researches “Adaptive 
behavior”, in which modeled “organisms” adapting to variable environment are studied, are outlined. Initial steps of 
modeling of cognitive evolution are characterized. The sketch program for future investigations of cognitive evolution is 
proposed. 
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1. INTRODUCTION 
Approaches to modeling of cognitive evolution 

are proposed and discussed in the current paper. 
Modeling of cognitive evolution is a study of 
evolution of animal cognitive properties by means of 
mathematical and computer models. This modeling 
is related to epistemological problems, to 
foundations of mathematics, to the problem of 
human intelligence origin. Some initial steps 
towards development of models of cognitive 
evolution have been made in the area of research 
“Adaptive Behavior”. Investigations of adaptive 
behavior are described shortly below. 

We begin with discussion of the epistemological 
problem: why human intelligence is applicable to 
cognition of nature? This problem and approaches to 
analyze it by means of investigation of cognitive 
evolution are described in Section 2. Then we 
describe the area of research “Adaptive Behavior” 
(Section 3) and typical models of adaptive behavior 
(Section 4). Models of adaptive behavior that are 
directly related to cognitive evolution are outlined in 
Section 5. The sketch program for future modeling 
of cognitive evolution is proposed in Section 6. 
Section 7 underlines the importance of modeling of 
cognitive evolution. Section 8 concludes the paper. 

 
2. EPISTEMOLOGICAL PROBLEM 

There is the profound epistemological problem: 
why the human thinking is applicable to cognition of 
the nature? To characterize the problem, let us 
consider physics. The power of physics is due to 

effective use of mathematics. However, why 
mathematical deductions are applicable to studies of 
real physical phenomena? Indeed, a mathematician 
makes logical inferences, proves theorems, basing 
on his mind, independently from the physical world. 
Why his results are applicable to the real nature? 

Similar questions were interesting for scientists 
for a long time. In the 1780s, Immanuel Kant 
investigated human thinking, human cognition. As a 
result, the well-known “Critique of pure reason” [1] 
and its popular narration “Prolegomena to any future 
metaphysics” [2] appeared. Kant investigated 
cognitive abilities in a certain approximation, 
namely, in the approximation of single adult human 
person. He did not analyze the origin of human 
cognitive abilities, he presumed that these abilities 
exist and analyzed, how these abilities operate in 
scientific cognition of the nature. According to Kant, 
there is a system of categories, concepts, logic rules, 
and inference methods, which are used in cognition 
of nature. This system of “pure reason” is of a priory 
character; it exists in our minds before any 
experience. Analyzing scientific cognition of nature, 
Kant concluded that as pure reason is of a priory 
character, our reason prescribes its laws to nature 
[2]: 

 
“…it seems at first strange, but is not the less 
certain, to say: the understanding does not derive 
its laws (a priori) from, but prescribes them to, 
nature.” 

 
Probably, it was reasonable in Kant’s times to 
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use the approximation of single adult person: it is 
difficult to analyze all sides of the problem at once. 
Besides, Charles Darwin’s theory of species origin 
was not created yet. After appearance of Darwinian 
theory, the concept of a priory “pure reason” had to 
be revised. And the revision did occur. It was clearly 
expressed by Konrad Lorenz in the paper “Kant’s 
doctrine of the a priori in the light of contemporary 
biology” [3].  

According to Lorenz, Kantian a priory categories 
and other forms of “pure reason” were emerged 
during natural selection. Components of “pure 
reason” arose during evolution, as a result of 
numerous interactions with the external world. In an 
evolutionary context, “pure reason” is not of a priory 
character, it has obvious evolutionary empirical 
roots. 

Actually, Kant and Lorenz demonstrated that 
without analysis of evolutionary origin of human 
cognitive abilities, there is no answer to the question 
of applicability of the human thinking to cognition 
of the nature. 

In order to analyze evolutionary roots of human 
mind, it is natural to investigate, why and how high 
level cognitive abilities did emerge during 
evolutionary processes. In other words, we can 
follow evolutionary roots of animal and human 
cognitive abilities and represent a general picture of 
evolutionary emergence of the human thinking. 

Can we really proceed in this way? Can we find 
evolutionary roots of the human mind, analyzing 
animal cognition properties? Yes, we can. In order 
to demonstrate such possibility, we present the 
following analogy.  

Let us consider the elementary logic rule that is 
used by a mathematician in deductive inferences, 
namely, modus ponens: “if A is present and B is a 
consequence of A, then B is present”, or 

 

B
BAA →,

 .    (1) 

 
Now let us go from the mathematician to a dog 

that is subjected to the experiment of classical 
conditioning. A neutral conditioned stimulus (CS) 
precedes a biologically significant unconditioned 
stimulus (US). After a number of presentations of 
the pair (CS, US), the causal relation CS → US is 
stored in the dog’s memory. Using this relation at a 
new presentation of the CS, the dog is able to do the 
elementary “inference”: 

 

US
USCSCS, →

 .    (2) 

 
Thus, after the presentation of the CS, the dog 

expects the US. 
Of course, the application of the rule modus 

ponens (purely deductive) by the mathematician and 
the inductive “inference” of the dog are obviously 
different. However, can we think about evolutionary 
roots of logical rules that are used in mathematics? 
Yes, we certainly can. The logical conclusion of the 
mathematician and the inductive “inference” of the 
dog are similar. Thus, this analogy demonstrates that 
we can analyze evolutionary roots of the human 
thinking. 

It should be noted that the final results of 
cognitive evolution, the logical rules that are used in 
mathematical deductions are known and formalized. 
For example, in the 1930s, Gerhard Gentzen 
developed methods of natural deduction and 
formalized sets of logical rules that are used at 
theorem proofs [4]. These sets of logical rules are 
based on elementary inference rules such as modus 
ponens. 

How can we concretely investigate origin of logic 
forms of thinking? Are any backgrounds for 
modeling of cognitive evolution? Fortunately, there 
is an area of research “Adaptive Behavior” that 
includes some initial steps of modeling of cognitive 
evolution. This field of investigations is 
characterized in the next section. 

 
3. AREA OF INVESTIGATIONS 

“ADAPTIVE BEHAVIOR” 
In the early 1990s, the area of investigations 

“Adaptive Behavior” was initiated [5]. The basic 
approach of this research direction is designing and 
investigation of artificial (in the form of a computer 
program or a robot) “organisms” that are capable to 
adapt to a variable environment. These organisms 
are often called “animats” or agents, autonomous 
agents. The term “animat” originates from two 
words: animal + robot = animat.  

The ultimate goal of this field of research is “…to 
embed human intelligence within an evolutionary 
perspective and to seek how the highest cognitive 
abilities of man can be related to the simplest 
adaptive behaviors of animals” [6]. This goal is 
similar to the goals of modeling of cognitive 
evolution. 

Investigations of adaptive behavior are based on 
serious computational intelligence methods: 
− Neural networks, 
− Genetic algorithm [7] and other methods of 
evolutionary computations, 
− Classifier Systems [8], 
− Reinforcement Learning [9]. 

Applications of this direction of research are 
artificial intelligence, robotics, models of adaptive 
behavior in social and economic systems. 
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Typical examples of models of adaptive behavior 
are outlined in the next section. 

 
4. EXAMPLES OF MODELS OF 

ADAPTIVE BEHAVIOR 
4.1. MODELS OF BRAIN AND BEHAVIOR 
AT THE NEUROSCIENCE INSTITUTE 

At the Neuroscience Institute 
(http://www.nsi.edu) that is leaded by Gerald 
Edelman, a number of models of a brain (Darwin I, 
Darwin II, …) are investigated. These models are 
used to construct control systems of artificial 
organisms NOMAD (Neurally Organized Mobile 
Adaptive Device) or Brain-Based Device. 

Principles of NOMAD modeling are as follows: 
1) The device NOMAD is located in the real 

physical environment. 
2) The device should solve certain behavioral 

problem. 
3) The nervous system of the device should 

reflect architecture of a brain and dynamics of 
processes in a brain. 

4) The behavior of the device and processes in 
modeled nervous system should be compared with 
experimental biological data. 

Behavior of a mouse in a Morris water maze has 
been modeled in [10]. Investigation of a mouse or a 
rat in the Morris water maze is one of modern 
canonical biological experiments. This experiment 
consists in the following. There is a pool with an 
opaque liquid (for example, it can be water that is 
colored slightly by milk). There are different 
drawings on pool boards; the mouse sees and can 
use these drawings for orientation. A hidden 
platform is in a certain place of the pool. The mouse 
can find the platform and escape from sinking. The 
experimenter throws the mouse into the pool, the 
mouse floats some time and then it finds the 
platform and escapes from sinking or starts to sink 
(then it is rescued by the experimenter). After a 
number of experiments the mouse begins to use 
drawings on pool boards for orientation and to find 
the platform rather quickly. 

Behavior of a mouse in a Morris water maze has 
been modeled by means of NOMAD as follows [10]. 
NOMAD was the wheeled mobile device; its control 
system was a neural network that consisted from 
90000 neurons. This neural network had 50 different 
various neural areas; in particular, certain areas of a 
hippocampus were distinguished. The neural 
network had 1.4·106 synaptic contacts between 
neurons. The processes that occurred in different 
neural network areas were investigated in details. 
The NOMAD sensory system consisted from a 
camera for vision, an odometry for self-movement 

cues, a system of infrared transceivers for obstacle 
avoidance, and the special infrared detector of the 
hidden platform; this detector was able to detect the 
platform only for such time moments, when 
NOMAD was directly over the platform. 

NOMAD was located in a room that had the 
hidden platform; different multi-colored strips 
(drawings) were on room walls. In the beginning of 
each of computer experiments, NOMAD was 
located in different sites of the room; the task of 
NOMAD was to find the hidden platform. Learning 
of the neural network of NOMAD was accomplished 
by means the modified Hebb rule. The modification 
is based on reinforcement learning [9]. 
Reinforcement learning used rewards (received by 
NOMAD at approaching to the hidden platform) and 
punishments (received at approaching to room 
walls). 

The simulation demonstrated that 1) NOMAD 
was trained to find the platform quickly (during 10-
20 modeled experiments); 2) place neurons were 
formed in the modeled hippocampus; these neurons 
were active, only when NOMAD was in certain 
places of the room; 3) certain causal connections 
between some neural areas were formed in the 
modeled hippocampus. 

Thus, the described simulation is interesting 
biologically inspired computer research of the self-
learning adaptive device. 

 
4.2. BIONIC MODEL OF SEARCHING 
ADAPTIVE BEHAVIOR 

Interesting direction of researches within the 
framework of “Adaptive Behavior” is a study of 
searching animal behavior. Searching behavior of 
caddis fly larvae Chaetopteryx villosa was modeled 
in [11]. Larvae inhabit creek bottoms and carry on 
themselves a case (“a small house”) that is a tube 
from sand and other particles which they collect at 
the creek bottom. Larvae build their cases from hard 
particles; they can use small or large sand particles. 
Using large particles, the larva can build cases more 
quickly and effectively than with small particles, so 
its preference is evident. Large particles are 
distributed randomly, but typically occur in groups 
of several particles. However, search of large 
particles at the creek bottom demands time and 
energy expenses, not known to the larva in advance. 

The larva uses two tactics: 1) testing particles in 
its vicinity and building the case from selected 
particles, 2) searching for a new place with a 
collection of appropriate particles. Investigations of 
larva behavior reveal inertia in switching between 
tactics.  

The computer model of searching behavior of 
larvae is designed in [11]. The model uses a concept 



Vladimir G. Red’ko / Computing, 2011, Vol. 10, Issue 1, 33-41 
 

 36 

of a motivation, namely the motivation to an 
attachment of particles to a larva case. Dynamics of 
the motivation M(t) is described by the equation: 

 
)()()1()( 1 tIttMktM ++−= ξ  ,  (3) 

 
where t is discrete time, t = 1, 2,…, k1 is the 
parameter characterizing a slow relaxation of the 
motivation (0 < k1 < 1, 1- k1 << 1), ξ (t) is the 
random variation of the motivation, the variable I(t) 
characterizes the directed change of the motivation 
at testing of particles by the larva: 

 

last

lastcurr

S
SS

ktI
−

= 2)(  ,   (4) 

 
where k2 is the positive parameter, Scurr is the area of 
the currently tested particle, Slast is the area of the 
last particle that has been tested before. 

If the motivation M(t) is sufficiently large, then 
the testing and the attachment of particles to the 
larva case occur; this behavior corresponds to the 
first tactic of behavior. If the value M(t) is small, 
then the larva moves and searches for a new place 
with suitable sizes of particles; this corresponds to 
the second tactic of behavior. 

The developed model [11] agrees satisfactorily 
with biological experimental data. Both in biological 
experiments and in the model, large particles are 
preferably attached to the case; there is a large 
distribution in number of attached particles; the total 
number of attached particles is not large in both 
cases. 

It should be noted that according to (3), (4), 
dynamics of the motivation M(t) is simple and 
effective. This dynamics takes into account the 
inertia of the motivation change, random variations 
and the directed change of the motivation M(t). So, 
the developed approach can be used at modeling of a 
regulation of switching between behavioral tactics of 
animals that have several needs and corresponding 
motivations. This approach can be also used for 
development of artificial animat control systems, for 
example, for development of control systems of 
mobile robots. 
 
4.3. MODEL OF EVOLUTION OF 
POPULATION OF AUTONOMOUS 
ADAPTIVE AGENTS 

The computer model of agents which are similar 
to the biological organisms adapting to change of 
temperature Т in the external environment is 
designed and analyzed. The control system of an 
agent is based on neural network adaptive critic 
designs [12]. The control system ensures the 

forecasting of Т changes and the agent movement in 
accordance with temperature changes. Agent 
behavior is adjusted by means of reinforcement 
learning and evolutionary optimization. The 
interaction between learning and evolution is 
analyzed. The Baldwin effect is demonstrated in the 
current model: certain acquired features (obtained by 
means of learning) of agents can be genetically 
assimilated during several generations of Darwinian 
evolution. 

The Baldwin effect [13], [14] that is the genetic 
assimilation of acquired features during a number of 
generations of Darwinian evolution is well known. 
The operation of this effect includes two stages. At 
the first stage, evolving organisms obtain (owing to 
appropriate mutations) a property to learn some 
useful features. Fitness of such organisms increases; 
hence, they are distributed in the population. But 
learning has some disadvantages: it demands energy 
and time. Therefore the second stage (the genetic 
assimilation) is possible: useful features can “be 
reinvented” by evolutionary processes and these 
features can be directly coded in genomes of 
organisms. 

 
4.3.1. DESCRIPTION OF THE MODEL 

The model is based on the following analogy. 
Modeled “lizards” that adapt to temperature changes 
are considered. The adaptation essence consists in 
the following. There are two places, which lizards 
can choose: 1) a place on a stone, 2) a place in a 
burrow. The natural behavior is as follows. At large 
temperature the lizard heats on the stone, at low 
temperature it gets into the burrow and keeps its 
body warm. 

The agent-lizard uses its control system to choose 
a place. The agent control system is optimized by 
means of reinforcement learning and Darwinian 
evolution. 

The temperature of the external environment Text 
(the temperature on the stone) is determined by time 
series Text(t), t = 1, 2,... The current situation S(t) is 
determined by two values Text(t) and P(t), S(t) = 
{Text(t),P(t)}, where P(t) is the parameter of the 
position of the lizard: P(t) = 0 if the lizard is in the 
burrow, and P(t) = 1 if the lizard is on the stone. The 
action of the lizard is the choice of its position 
P(t+1) in the next time moment. 

It is supposed that there is some optimum 
temperature of lizard body T0 and when the lizard is 
in the burrow its temperature is close to T0 ; though 
the environment temperature influences slightly on 
the temperature in the burrow. So, the temperature in 
the burrow Tint(t) is 

 
])([)( 030 TtTkTtT extint −+=  ,  (5) 
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where k3 is the small positive parameter, 0 < k3 <<1. 

The reinforcement r(t), which is received by the 
lizard at the time moment t, is proportional to the 
difference T(t) – T0, where T(t) is the current 
temperature in that place where the lizard is in the 
moment t: 

 
 ])([)( 04 TtTktr −=  ,   (6) 

 
where k4 > 0. For simplicity we suppose that the 
lizard predicts Text(t), and Tint(t) can be estimated by 
it according to the Eq. (5). 

Control system of the agent-lizard. The control 
system of the agent-lizard is intended for 
maximization of the utility function U(t) [9]: 

 

,...2,1),()(
0

=+= ∑
∞

=

tjtrtU
j

jγ  ,  (7) 

 
where r(t) is the current reinforcement determined 
by the Eq. (6), γ is the discount factor (0 < γ < 1, 
1-γ << 1). 

The control system of the agent consists of two 
neural networks (NNs): the model and the critic. The 
model NN predicts dynamics of the environment 
temperature Text(t). The critic NN estimates the 
utility function U for the current situation S(t), for 
predicted situations for two possible positions of the 
agent in the next time step, and for the next situation 
S(t+1). 

Operation and learning of the agent control 
system. Inputs of the model NN are m previous 
values of temperature Text(t-m+1),…, Text(t), this NN 
predicts the environment temperature in the next 
time moment )1( +tT pr

ext . The model is the two-
layer NN that operates according to formulas: 
 

)}(),...,1({ tTmtT extext +−=Mx  ,  (8a) 
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where xM is the input vector, yM is the vector of 
outputs of neurons of the hidden layer, M

ijw  and M
jv  

are synaptic weights of the model NN. 
The critic NN is intended for the estimation of 

quality of a situation V(S(t)) that is the estimation of 
the utility function U(t) for the agent in the situation 
S(t). The critic is the two-layer NN that operates 

according to formulas: 
 

)}(),({)( tPtTt ext== SxC  ,   (9a) 
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i
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where xC is the input vector, yC is the vector of 
outputs of neurons of the hidden layer, C

ijw  and C
jv  

are synaptic weights of the critic NN. 
Following operations are carried out in the agent 

control system each time moment t: 
1) The model NN predicts the external 

temperature in the next time moment )1( +tT pr
ext . 

2) The critic NN estimates the value V for the 
current situation V(t) = V(S(t)) and for predicted 
situations for both possible actions )1( +tV pr

P  = 
))1(( +tV pr

PS , where )1( +tpr
PS  = 

)}1(),1({ ++ tPtT pr
ext , P(t+1) = 0 or P(t+1) = 1. 
3) The ε-greedy method is applied [9]: the action 

corresponding to the maximum value )1( +tV pr
P  is 

chosen with probability 1-ε, the alternative action is 
chosen otherwise (0 < ε << 1). The action choice is 
the selection of the value P(t+1). 

4) The chosen action P(t+1) is carried out. The 
transition to the next time moment t+1 occurs. The 
reinforcement r(t+1) in accordance with the Eq. (6) 
is obtained by the agent. The real value Text(t+1) is 
observed and compared with the prediction 

)1( +tT pr
ext . The synaptic weights of the model NN 

are adjusted to minimize the error of this prediction 
by means of the usual back-propagation method 
[15]. The learning rate of the model NN is equal to 
αM. 

5) The quality of the next situation is estimated 
by the critic NN: V(t+1) = V(S(t+1)); S(t+1) = 
{Text(t+1), P(t+1)}. The time difference error δ(t) is 
calculated [9]: 

 
)()1()1()( tVtVtrt −+++= γδ  .  (10) 

 
6) The synaptic weights of the critic NN are 

adjusted to minimize the time difference error δ(t); 
this adjustment is carried out by means of the 
gradient method, similar to the back-propagation 
method. The learning rate of the critic NN is equal to 
αC. 

The evolution scheme. In addition to agent 
learning, the evolutionary optimization of control 
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systems of agents takes place. The evolving 
population consists of n agents. Each agent has its 
resource R(t) that changes according to 
reinforcements: R(t+1) = R(t) + r(t), where r(t) is 
determined by the Eq. (6). Evolution passes through 
a number of generations, ng = 1, 2,… Duration of 
each generation ng is Tg time steps (Tg is the lifetime 
of the agent). At the beginning of each generation, 
initial resource of any agent R(t) is zero. At the end 
of each generation, the agent having maximum 
resource Rmax(ng) (the best agent of the generation 
ng) is determined. This best agent gives birth to n 
descendants that constitute the next generation. 

Each agent has two sets of synaptic weights of 
both NNs: G and W. The set G are initial NN 
synaptic weights that are received by the agent at the 
moment of its birth from the agent-parent. This set 
G is the agent genome that does not vary during its 
life. The set W are temporary NN synaptic weights 
that are adjusted during the agent life by means of 
learning. At the moment of the agent birth W = G. 
Descendants of the agent inherit its genome G (with 
small mutations). As the genome G is inherited, the 
evolution process has Darwinian character. 

 
4.3.2. RESULTS OF SIMULATIONS 

The main parameters of computer simulations are 
the following: the discount factor γ = 0.9; the 
number of inputs of the model NN m = 10; the 
number of neurons in the hidden layers of the model 
and critic NNs NhM = NhC = 10; the learning rate of 
the model and critic NNs αC = αC = 0.01; the 
parameter of the ε-greedy method ε = 0.05; the 
intensity of mutations Pmut = 0.1; the duration of a 
generation Tg = 1000, the population size n = 10. 

The time dependence of the external temperature 
is the sinusoid: 

Text (t) = 0.5sin(2πt/20) + T0, T0 = 1.5. 
In order to compare learning and evolutionary 

optimization the following cases were analyzed: 
Case L (pure learning); in this case the single 

self-learning agent was considered; 
Case E (pure evolution), i.e. the evolving 

population of agents without learning; 
Case LE (learning + evolution), i.e. the full 

model described above. 
The values of resource obtained by agents during 

1000 time steps for these three cases were compared. 
For cases E and LE, the generation duration was Tg 
= 1000, and the maximum value of agent resource in 
the population Rmax(ng) at the end of each generation 
was registered. In the case L (pure learning), the 
single agent was analyzed. The resource of this 
agent was set to be zero every Tg = 1000 time steps: 
R(Tg(ng-1)+1) = 0. In this case the index ng was 
increased by 1 after every Tg time steps, and it was 

set Rmax(ng) = R(Tgng). 
The plots Rmax(ng) are shown in Fig. 1 that 

demonstrates that learning together with evolution 
(the case LE), ensures more effective growth Rmax as 
compared with learning or evolution separately 
(cases L and E). The curves are averaged over 1000 
simulations. 
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Fig. 1 – The plots Rmax(ng) 

The obvious influence of leaning on evolutionary 
processes is often observed in some simulations. In 
these simulations, the essential growth of resource of 
the best agent of the population begins with certain 
time delay (200-500 time steps). This means that the 
agent initially learns to get satisfactory behavioral 
policy, and only after several generations the agent 
resource growth begins from the start of a 
generation. This phenomenon can be interpreted as 
the Baldwin effect: the initially acquired (via 
learning) property to obtain resource become the 
inherit one during several generations. The example 
of this phenomenon is shown in Fig. 2. This figure 
demonstrates resource dynamics R(t) for the best 
agent of the population during five generations. 

Fig. 2 shows that during early generations 
(generations 1 and 2), any significant increase of 
agent resource begins only after a lag of 200 to 500 
time steps. The best agent does optimize its policy 
by learning. Subsequently, the best agents find an 
advantageous policy faster and faster. By the fifth 
generation, a newborn agent “knows” a decent 
policy as it is encoded in its genome G, and the 
learning does not improve the policy significantly. 
Thus, Fig. 2 demonstrates that the initially learned 
policy becomes inherited (the Baldwin effect [13], 
[14]). 

It should be noted that the processes of agent 
learning and evolutionary optimization of agent 
control systems include random components. So, a 
particular dependence R(t) can be different from the 
dependence shown in Fig. 2. However, some delays 
of increase of agent resource are observed in main 
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part of computer experiments. The simulation 
represented in Fig. 2 shows profound example of 
such delay. 
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Fig. 2 – Time dependence of the resource R(t) of the 
best agent of the population during five generations. 

The case LE 

Thus, according to our simulations for Darwinian 
evolution, the good agent strategy of behavior that is 
initially obtained by means of learning can become 
inherited. Moreover, this genetic assimilation of 
initially acquired features can occur quickly: during 
only 3-5 generations. This phenomenon is important 
from biological point of view, because it 
demonstrates that some Lamarckian properties can 
be observed during Darwinian evolution. It should 
be noted that our model is rather formal. In order to 
understand this phenomenon in full extent, more 
biologically well-grounded models should be 
developed and investigated. 

 
5. MODELS OF ANIMAL COGNITIVE 

ABILITIES 
Certain models of cognitive abilities of animals 

are already investigated in the framework of 
“Adaptive behavior”. Let us note some of such 
researches. 

Models of conditioned reflexes were investigated 
in early works [16], [17].  

Researches of an anticipatory behavior, at which 
animals predict future situations and actively use 
these predictions for the organization of the 
behavior, are conducted currently [18]. 

Interesting works are devoted to the 
formalization of rules of decision making. For 
example, Mark Witkowski proposed a theory of 
decision making rules that correspond to different 
levels of biological evolution [19]. Rules take into 
account an associative memory, conditioned 
reflexes, predictions of action results. Schemes of 
learning and decision making that are based on these 
rules are developed; certain computer simulations 
confirm efficiency of proposed rules. 

Some works analyze evolutionary development 
of neural structures of animal brains. For example, 

the work [20] analyzes an evolution of neural 
structures that have the important role at the action 
selection ensuring adaptive behavior. 

Thus, certain models of cognitive features of 
animal adaptive behavior are designed and 
investigated already. However, these investigations 
are preliminary in many aspects. The next section 
proposes key steps for future modeling of cognitive 
evolution. 

 
6. SKETCH PROGRAM FOR FURTHER 

RESEARCH OF COGNITIVE EVOLUTION 
The sketch program for further researches of 

cognitive evolution can include the following steps. 
A) Modeling of adaptive behavior of animats 

that have several natural needs: food, 
reproduction, safety.  

Such modeling can be simulations of a natural 
and well-developed behavior of simple modeled 
organisms. Modeling in this direction is already 
initiated (see below). 

B) Investigation of the transition from the 
physical level of information processing in 
nervous system of animals to the level of 
generalized “notions”. 

Such transition can be considered as emergence 
of the property of “notion” in animal minds. The 
generalized “notions” are mental analogues of our 
words, which are not said by animals, but really used 
by them. For example, the dog obviously has 
internal notions “friend”, “enemy”, “food”. Usage of 
notions leads to essential reduction both the needed 
memory and the time of information processing, 
therefore it should be evolutionary advantageous. 

C) Investigations of processes of generating of 
causal relations in animal memory. 

Storing relationships between the cause and the 
effect and the adequate use of these relationships is 
one of key properties of active cognition of 
regularities of the external world by animals. For 
example, such relationships are generated at the 
conditioned reflex: the animal remembers the 
temporal relation between the conditioned stimulus 
(CS) and the unconditioned stimulus (US). This 
allows it to predict events in the external world and 
adequately use these predictions. 

Natural next step is the transition from 
memorizing separate causal relations to systems of 
logic conclusions. 

D) Investigations of “logic conclusions” in 
animal minds. 

Actually, at classical conditioning, animals do a 
“logic conclusion”: {CS, CS → US} => US or “If 
the conditioned stimulus takes place, and the 
conditioned stimulus result in the unconditioned one, 
then the occurrence of the unconditioned stimulus is 
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expected”. We can even state that such conclusions 
are similar to logical conclusions at mathematical 
deductions (see Section 2 above). It is important to 
understand, how systems of these conclusions 
operate, to what extent this “animal logic” is similar 
to our human logic. 

The listed items outline steps of possible 
investigations from simplest forms of adaptive 
behavior to logical rules that are used at 
mathematical deductions. 

Basing on these steps, we began corresponding 
modeling [21]. The formal model of the simple 
agents which have needs of food, reproduction, and 
safety (Step A) has been designed and analyzed. The 
model demonstrated a natural behavior of agents. 
Also the important role of reproduction during 
evolutionary optimization of agent control systems 
has been revealed. It is interesting to note that 
similar works of other researchers appeared recently. 
For example, the adaptive behavior of agents that 
have several needs and corresponding motivations 
was analyzed in [22]. 

Another model that is described in [21] 
demonstrates the formation of several generalized 
heuristics by the self-learning agent searching food 
in the two-dimensional cellular environment. These 
heuristics result in generating chains of actions by 
the agent. Additionally, the formation of internal 
generalized “notions” by the agent (Step B) was 
observed in this model [23]. These notions are used 
by the agent in its heuristics. It should be noted that 
simple models described in [21], [23] can be 
considered as the certain initial stage of more 
powerful investigations of cognitive evolution. 

Comparing steps of the sketch program with 
noted works [16-23], it is possible to conclude that 
there are some small elements corresponding to each 
step of the program already. In other words, we can 
see some small fragments of a picture of cognitive 
evolution now, but we do not see the whole picture 
yet. Nevertheless, investigations of cognitive 
evolution are interesting and important.  
 

7. IMPORTANCE OF MODELING OF 
COGNITIVE EVOLUTION 

Let us underline interdisciplinary relations and 
the importance of investigations of cognitive 
evolution. 
− These investigations are related to foundations of 

science, to foundations of mathematics, to the 
serious problem: why formal logic conclusions, 
mathematical deductions are applicable to the 
real world. 

− These researches are interesting from 
philosophical, epistemological point of view; 
they are aimed at understanding the applicability 

of the human thinking for investigations of the 
real physical world. 

− The research area “Adaptive behavior” includes 
certain backgrounds for creating and developing 
of models of cognitive evolution. 

− The investigations of cognitive evolution are 
interesting from the point of view of cognitive 
sciences, as they are connected with important 
cognitive processes, processes of scientific 
cognition. 
 

8. CONCLUSION 
Thus, approaches to modeling of cognitive 

evolution have been proposed and discussed. This 
modeling is related to foundations of science and to 
foundations of mathematics. Initial steps towards 
modeling of cognitive evolution have been already 
done in the research area “Adaptive Behavior”. The 
sketch program for further modeling of cognitive 
evolution is proposed. The program includes 
research steps that are aimed for investigations from 
simple animal cognitive abilities to mathematical 
deductions. 
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