
B. Padmanabhan, R. S. SivaKumar, J. Jasper / Computing, 2010, Vol. 9, Issue 3, 320-326 
 

 320 

 
 
 

OPTIMIZATION OF PIECEWISE NON-LINEAR MULTI CONSTRAINED 
ECONOMIC POWER DISPATCH PROBLEM USING AN IMPROVED 

GENETIC ALGORITHM 
 

B. Padmanabhan, R. S. SivaKumar, J. Jasper 
 

Ponjesly College of Engineering, Nagercoil, India 
padmanabhan_balu@yahoo.co.in, shiross912@yahoo.com, mailtojasper@gmail.com 

 
Abstract: In this paper, a more realistic formulation of the Economic Dispatch problem is proposed, which considers 
practical constraints and non linear characteristics. The proposed ED formulation includes ramp rate limits, valve 
loading effects, equality and inequality constraints, which usually are found simultaneously in realistic power systems. 
This paper presents a novel Genetic Algorithm to solve the economic load dispatch (ELD) problem of thermal 
generators of a power system. This method provides an almost global optimal solution, since they don’t get stuck at 
local optimum. The proposed method and its variants are validated for the two test systems consisting of 3 and 10 
thermal units whose incremental fuel cost functions takes into account the valve-point loading effects. 
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1. INTRODUCTION 
Economic Load Dispatch (ELD) seeks “the best” 

generation for the generating plants to supply the 
required demand plus transmission losses with the 
minimum production cost. Improvement in 
scheduling the units output can lead to significant cost 
savings. In traditional ELD problems, the cost 
function of each generator is approximately 
represented by a simple quadratic function and is 
solved using mathematical programming based on 
several optimization techniques such as dynamic 
programming, Linear programming, homogenous 
linear programming and quadratic programming 
methods[1],[2]-[4]. However none of these methods 
may be able to provide an optimal solution and they 
usually get stuck at a local optimum. Normally the 
input-output characteristic of modern generating units 
are highly non-linear in nature due to valve-point 
effect [19]-[22], ramp-rate limits, Fuel switching 
[14]-[15] etc, having multiple local minimum points 
in the cost function. To overcome such difficulties 
many heuristic search algorithms, such as Genetic 
algorithm [5], Differential Evolution [6], Tabu search 
[7, 8], etc., have been proposed to solve ELD 
problem. These techniques can be used to search the 
global optimum with any type of objective function 
and constraints. In this paper, two ED problem for 3 
and 10 thermal units with a non smooth fuel cost 
function [9] are employed to demonstrate the 
performance of the proposed method. This paper 
employs genetic algorithm to solve the non convex 

and non smooth cost function. 
The rest of this paper is organized as follows: 

Section II describes the formulation of an ED 
problem; while section III explains the standards in 
GA. Section IV then details the procedure of handling 
the GA. Section V gives the flow chart. Section VI 
gives the Data’s and Section VII gives the results of 
the optimization. Section VIII outlines our conclusion 
and future research. 

 
2. PROBLEM DESCRIPTION 

The objective of ED is to determine the generation 
levels for all on-line units which minimize the total 
fuel cost, while satisfying a set of constraints. It can 
be formulated as follows: 

 
2.1. ECONOMIC DISPATCH (ED) 
PROBLEM FORMULATION 

The fuel cost functions of the generating units are 
usually described by a quadratic function of power 
output. Thus the objective function is given as: 

Minimize:  

iiiiiii cPbPaPF ++= 2)(  (1) 

where 
ai, bi, ci – the fuel cost coefficients of the ith unit 
N- Number of generating units in the system 
Pi – output generation of ith unit. 
1. Power balance constraint: 
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where 
PD – Total power demand 
PL – Total network losses 
2. Capacity limits constraints: 

maxmin
iii PPP ≤≤    (3) 

where 
Pi 

min – minimum generation limit 
Pi 

max – maximum generation limit 
 

2.2. VALVE POINT EFFECT 
Large steam turbine generators will have a 

number of steam admission valves that are opened in 
sequence to obtain ever–increasing output of the 
unit. As the unit loading increases the input to the 
unit increases and the incremental heat rate 
decreases between the opening points for any two 
valves [10], however, when a valve is first opened, 
the throttling losses increases rapidly and the 
incremental heat rate rises suddenly. This is “valve 
point” effect which leads to non-smooth, non-
convex input-output characteristics, to be solved 
using the heuristic techniques. The valve point effect 
is incorporated in ED problem by superimposing the 
sine component model on the quadratic cost curve 
which is given below, 

])[sin()()(* min
iiiiiiii PPfePFPF −+=    (4) 

where 
Fi*(Pi) – fuel cost if ith unit with valve point 

effect 
ei, fi – the fuel cost coefficients of the ith unit 

with valve point effect. 
 

 
 

Fig. 1 – Valve point curve 

 
2.3. RAMP RATE LIMITS: 

The Ramp-Up and Ramp-Down rate limits of ith 
generator are given by 

As generation increases 

iii URPP <=− 0    (5) 

As generation decreases 

iii DRPP <=− 0    (6) 

and 

),min(),max(
0

max
0

min
iiiiii URPPPDRPP

i
+<=<=−  (7) 

Where Pi is the current output power and Pi0 is 
the output power in the previous interval of the ith 
generator unit. URi is the up-ramp rate limit of the ith 
generator and DRi is the down-ramp rate limit of the 
ith generator. 

 
3. OPTIMIZATION USING GENETIC 

ALGORITHM 
3.1. BASIC FUNDAMENTALS OF GA 

Genetic Algorithm (GA) is a search algorithm 
based on the conjecture of natural selection and 
genetics. The features of genetic algorithm are 
different from other search techniques in several 
aspects. 
• First, the algorithm is a multi-path that searches 

many peaks in parallel, and hence reducing the 
possibility of local minimum trapping. 

• Secondly, GA works with a coding of parameters 
instead of the parameters themselves. The coding 
of parameter will help the genetic operator to 
evolve the current state into the next state with 
minimum computations. 

• Thirdly, GA evaluates the fitness of each string to 
guide its search instead of the optimization 
function. 

• Three basic operators of GA are reproduction, 
crossover, and mutation 
 

3.2. BASIC OPERATORS OF GA 
Reproduction: A mechanism by which the most 

highly fit members in a population is selected to pass 
on information to the next population of members. It 
effectively selects the fittest of the springs in the 
current population to be used in generating the next 
population. In this way, relevant information 
concerning the fitness of a string is passed along to 
successive generations. 

Crossover: A mechanism by which strings can 
exchange information, possibly creating more highly 
fit strings in the process and allowing the 
exploration of new regions of the search space. 

Mutation: It ensures that a string position will 
never be fixed at a certain value for all time. 

 
3.3. ALGORITHM FOR GA 
1. Code the problem variables into binary strings. 
2. Randomly generate initial population strings. 

Tossing of a coin can be used. 

A

B

C

Generations in MW 

Fuel 
Rate in 

MBtu/hr 
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3. Evaluate fitness values of population members 
4. If solution available among the population? 

then Stop, else Continue. 
5. Select highly fit strings as parents and produce 

offspring’s according to their fitness. 
6. Create new string by mating current offspring. 

Apply crossover and mutation operators to 
introduce variations and form new strings. 

7. New springs replace existing one. 
8. GOTO step 4 and repeat  
9. Stop. 

 
4. IMPLEMENTATION OF GA 

4.1. CODING: 
Implementation of problem in a genetic problem 

starts from the parameter encoding. It is carefully 
done to utilize the genetic algorithm’s ability to 
efficiently transfer information between 
chromosome strings and objective function of the 
problem. Binary coded strings 1s and 0s are used. 

 
4.2. FITNESS FUNCTION: 

Genetic algorithm mimics the survival of the 
fittest principle of nature to make a search process. 
Therefore, the Genetic Algorithm problems are 
naturally suitable for maximization problems. 
Minimization problems are usually converted into 
the maximization problems using some suitable 
transformations, The fitness function for 
maximization problem is given by f(x) =F(x) and for 
minimization f(x)=[1/1+F(x)]. 

In order to emphasize the best chromosome and 
speed up the convergence of the evolutionary 
process, fitness function is normalized into the range 
between 0 and 1. The fitness function of the ith 
chromosome is given by 

)]1)/)(((1/[1)( −+= FxFkxf ii  (8) 

where 
)( xFi is the solution corresponding to the ith 

chromosome 
min

if is the solution of the highest ranking 
chromosome 

k is the scaling constant 
 

4.3. REPRODUCTION 
The reproduction genetic algorithm operator 

selects the good strings in a population and forms a 
matting pool. The commonly used selection operator 
is the proportionate reproduction operator where a 
string is selected from the mating pool with a 
probability proportional to its fitness. The 
probability of selecting the ith string is 

∑
=

=
L

j
ii ffp

1
/    (9) 

where  
L is the population size 

if is the fitness function of the ith population 
This selection scheme is implemented by using 

the roulette-wheel [11] with its circumference 
marked for each string proportionate to the string’s 
fitness. 

 
4.4. COMPETITION AND SELECTION 

Each individual in the combined population has 
to compete with some other individuals to have a 
chance to be copied to the next generation. The 
score of each trial vector after stochastic competition 
is given by 

∑
=

=
L

n
ni ww

1

   (10) 

 
4.5. CROSSOVER OPERATOR 

In crossover the information is exchanged among 
stings of the mating pool to create new strings. In the 
crossover operator the good substrings from parent 
strings will be combined to form a better child 
offspring. There are three forms of crossover: 
• One point crossover 
• Uniform crossover 
• Multi point crossover 

The effect of crossover may be detrimental or 
beneficial. The crossover has three distinct sub-
steps, namely: 
• Slice each of parent in the substrings 
• Exchange a pair of corresponding substrings of 

parents 
• Merge the two respective substrings to form 

offspring. 
 

4.6. MUTATION 
Mutation is the important operator, because 

newly created individuals have no new inheritance 
information and the number of alleles is decreasing. 
This process results in the contraction of the 
population to one point. Diversity is necessary to 
search a big part of the search space. It is achieved 
by the mutation. 

Mutation operator changes 1to 0 and vice versa 
with a small mutation probability. The bit-wise 
mutation is performed bit-by-bit by flipping the coin 
with required probability. In general, mutation 
probability is fixed throughout the whole search 
processing. However a small fixed mutation 
probability can only result in a premature 
convergence, while the search with a large fixed 
mutation probability will not converge. 
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5. FLOW CHART 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 – Flowchart for Genetic Algorithm. 

 

6. DATA’S AND RESULT 
6.1. TEST CASE I 

3-generator System: The unit characteristics 
data are given in Table 1,2 and 3. The load demand 
is 850MW. The B loss coefficients are given in the 
Table 4.[12] 

 
Table 1. Capacity and Cost Co-Efficient 

Quantities Unit-1 Unit-2 Unit-3 

ai 0.004820 0.001940 0.001562 
bi 7.97 7.85 7.92 
ci 78 310 562 

Pimin 50 100 100 
Pimax 200 400 600 

 
 

Table 2. Valve-Point Loading 

Quantities Unit-1 Unit-2 Unit-3 
ei 150 200 300 
Fi 0.063 0.042 0.0315 

 
 

Table 3. Ramp Rate Limits 

Unit Pio URi DRi 
1 170 50 90 
2 350 80 120 
3 440 80 120 

 
 

Table 4. B-Coefficients 

 
         0.0006760      0.0000953      -0.0000507 

  B =     0.0000953      0.0005210  0.0000901    MW-1
 

         -0.0000507      0.0000901  0.0002940 
                        
 
 

   B0 =   -0.07660  -0.00342   0.01890     
 
 
 
   B00 =   4.0357    MW 
 

 
6.2. TEST CASE II 

10-generator Systems: The load demand is 
2000MW. The unit characteristics data are given in 
the Table 5, 6 and 7. The system B loss coefficients 
are given in the Table 8. 

 
 
 

Start 

Initilize population 
chromosome

Chromosome evalution 

Parent chromosome 
selection 

Creation of off-spring 
chromosome via crossover 

&mutation 

Off-spring chromosome evalution 

Is number of  
gen reached? 

Extration of off-
spring population 
fitness statistics & 

recalculation 

Optimized solution as initial parent 
to evaluate fitness 

Create off-spring and evaluate  
off-spring fitness 

Individuals compete to form next 

Is stopping 
rule 

satisfied?

Stop 

No 

Yes 

No 

Yes 
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Table 5. Capacity AND Cost Co-Efficient 

Unit ai bi ci Pimin Pimax 
1 0.1524 38.5379 786.7988 150 470 
2 0.1058 46.1591 451.3251 135 470 
3 0.0280 40.3965 1049.9977 73 340 
4 0.0354 38.3055 1243.5311 60 300 
5 0.0211 36.3278 1658.5696 73 243 
6 0.0179 38.2704 1356.6592 57 160 
7 0.0121 36.5104 1450.7045 20 130 
8 0.0124 36.5104 1450.7045 47 120 
9 0.1090 39.5804 1455.6056 20 80 

10 0.1295 40.5407 1469.4026 10 455 
 

Table 6. Valve-Point Loading 

Quantities ei fi 
Unit-1 450 0.041 
Unit-2 600 0.036 
Unit-3 320 0.028 
Unit-4 260 0.052 
Unit-5 280 0.063 
Unit-6 310 0.048 
Unit-7 300 0.086 
Unit-8 340 0.082 
Unit-9 270 0.098 

Unit-10 380 0.094 
 

Table 7. Ramp Rate Limits 

Quantities Pio URi DRi 
Unit-1 90 80 120 
Unit-2 400 80 120 
Unit-3 100 70 105 
Unit-4 95 65 100 
Unit-5 80 60 90 
Unit-6 105 60 100 
Unit-7 100 130 130 
Unit-8 90 100 120 
Unit-9 40 80 80 
Unit-10 40 80 120 

 

Table 8. B-Coefficients 

 
              49  14  15  15  16  17  17  18  19  20 
              14  45  16  16  17  15  15  16  18  18 
              15  16  39  10  12  12  14  14  16  16 
              15  16  10  40  14  10  11  12  14  15 

B  =  1× 10-4     16  17  12  14  35  11  13  13  15  16      MW-1 
              17  15  32  10  11  36  12  12  14  15 
              17  15  14  11  13  12  38  16  16  18 
              18  16  14  12  13  12  16  40  15  16 
              19  18  16  14  15  14  16  15  42  19 
              20  18  16  15  16  15  18  16  19  44 

 
B0 =  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

 
B00  =   0.00000 

Table 9. Convergence Results for 3 Generating Units 
With Valve Point Effect & Losses 

 
PD = 850MW 
No. of Trials = 50 
No. of Population = 5 
Crossoverrate=0.8; MutRate=0.001 

 
Quantities Res-1 Res-2 Res-3 
P1(MW) 148.67 146.75 146.56 
P2(MW) 297.33 293.5 293.12 
P3(MW) 428.88 422.5 421.87 
F1(Rs/hr) 1379.5 1379.4 1379.4 
F2(Rs/hr) 2643.1 2588.5 2584.3 
F3(Rs/hr) 4487.5 4388 4377.7 

Ploss(MW) 13.361 13.159 13.139 
Total Gen(MW) 874.88 862.76 861.55 

Total Fuel Cost(Rs/hr) 8510.1 8355.9 8341.4 
CPU Time(sec) 6.25 6 6.0313 

Best Trial 13 28 50 
 
Table 10. Convergence Results for 10 Generating 

Units With Valve Point Effect 

 
PD = 2000MW 
No. of Trials = 50 
No. of Population = 5 
Crossoverrate=0.8; MutRate=0.001 
 

Unit power output Optimal Values by 
GA 

P1(MW) 225.6242 
P2(MW) 233.7826 
P3(MW) 330 
P4(MW) 300 
P5(MW) 242 
P6(MW) 160 
P7(MW) 130 
P8(MW) 118 
P9(MW) 80 
P10(MW) 245.9484 
Total Power Output(MW) 2065.3552 
Ploss(MW) 56.872 
Total Generation Cost(Rs/h) 125975.5063 
CPU time(sec) 23.547 
Best Trial 47 

 
7. CONCLUSION 

In this paper, a comprehensives ED model 
including ramp rate limits, valve loading effects and 
transmission losses together is presented. In this 
method, the genetic algorithm method is found best 
suited for the fuel cost functions of non-smooth, 
non-continuous valve point curves. The proposed 
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GA can provide a more diverse search of solution 
space and so better optimum solutions with low 
computation burden can be found. The research 
work is under way in order to incorporate more 
security issues of power system in the ED model 
with other constraints. 
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