
Hai Wang, Fei Hao / Computing, 2010, Vol. 9, Issue 2, 165-174

 165

ADAPTED ALGORITHM OF VIRTUAL PLANTS SIMULATION
BASED ON STOCHASTIC L-SYSTEM

Hai Wang 1), Fei Hao 2)

1) Department of Computer Science, Wu Han University, Hubei, China 430072, e-mail: hkhaiwang@gmail.com

2) Department of Computer Science, Korea Advanced Institute of Science and Technology 373-1,
Guseong-Dong, Yuseong-Gu, Daejeon 305-701, South Korea, e-mail: fhao@kaist.ac.kr

Abstract: In this paper, the concept and characteristics of fractal are briefly introduced; The drawing principle of L-
system and IFS system is discussed. Based on this discussion, we analyse virtual plant growth procedure simulated by
the L-system. Further, an efficient expression that can describe the plant growth and the control of direction is defined;
Inspired from proposed expression, we propose a new method based on the combination of L-system and IFS system to
simulate the plant morphology. We valid and show our proposed system with high fidelity and efficiency on the
simulation of plant morphology by comparison experiments. Extra experiment shows it can be applied into computer art
and video game scenario design.

Keywords: fractal, plant simulation, IFS system.

1. INTRODUCTION
With the rapid development of computer

graphics, the simulation of different plants’
morphology in nature has been a research hotspot in
computer graphics. The simulation of virtual plants
generated by computer has a wide application
prospect in simulation of the ecological
environment, virtual reality and game design, etc.
The traditional approaches based on European
geometric theory can only realize the simulation for
some pattern with simple geometry and regulation,
they can’t realize the simulation for the rich natural
scenery. Further, the modelling of irregular shape is
also a difficult problem in terms of current virtual
reality technology. The fractal geometry is a subject
which focuses on the research of irregular shape, it’s
an important area for the simulation of natural
scenery. Under the impetus of reference [1~6], L-
system and IFS system have become main measures
used in the modelling for virtual plant. From the
point of botany, reference [7] proposed the concept
of two-scale which include micro state and macro
state, and established a two-scale automata model
which can simulate the growth of virtual plant, at the
same time, it applied a probability model which is in
terms of the development process of plant terminal
bud and axillaries bud, the experimental result is
shown in Fig.1. By interactive deformation
treatment for the branches, reference [8] provided a
three-dimensional tree model which can beautify the

trees’ shape. The approach contained three parts:
three-dimensional plant model based on interactive
deformation treatment, interactive selection
mechanism for branches and the deformation
treatment for the selected branches. Based on
aesthetic theory, this method gives an overall
aesthetics control for the tree shape, and an
experimental result is shown as Fig.2. From Fig.1
and Fig.2, we can easily see these two models don’t
concern the specific details such as leaves and
flowers, so the realistic of tree model is not enough,
the simulation effects remains to be further
improved. In this paper, we attempt to combine the
L-system and IFS system together, and propose a
series of improvement approaches in order to realize
the simulation of plant morphology with high
fidelity.

The rest of this paper is organized as follows:
section 2 introduces some basic knowledge about L-
system and IFS system, and following in section 3,
we propose two main improvements on the
combination of L-system and IFS system. To
evaluation the feasibility and efficiency of our
adapted algorithm, comparison experiments are
conducted in section 4; Section 5 concludes this
paper.

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Hai Wang, Fei Hao / Computing, 2010, Vol. 9, Issue 2, 165-174

 166

Fig. 1 – Tree simulation result with two scale model

Fig. 2 – Tree simulation result with interactive

deformation treatment

2. L-SYSTEM AND IFS

L-system was first put forward by American
biologist Aristid Linder Mayer in 1968. Actually, L-
system is a rewriting system, by empirical summary
and abstract to the procedure of plant growth, we
can obtain an initial state set and a rules which
describe the procedure of plant growth, then replace
the initial state sets with the rules, we can get a
character sequence that can performance the plant
topology, after geometric interpretation towards the
character sequence that we get before, it will be able
to generate very complex fractal images.

IFS system was first proposed by Michael
F.Barnsley. He firstly generated some fractal images
using a group of contraction affine transform, i.e.,
contraction, rotation, translation and other
transformation towards the original graph, he got
some extreme images with self-similar fractal
structure, and the set of affine transformation is
called as IFS.

2.1. THE REWRITING MECHANISM OF L-
SYSTEM AND ITS INTERPRETATIONS

The essence of L-system is a character rewriting
mechanism, the simplest L-system called 0L-system,
it is a context-free grammar relationship, it can be
described by a triple , ,v w p< > , which v denotes
all the characters that can be identified in the system,
w V +∈ is a non-empty string which called axiom,

*ЧVp V∈ is a finite set of production.
The axiom and production in the L-system are

described by string. To produce specific image, we
give the string with a specific meaning. In the L-

system, we use turtle graphics to explain strings. The
turtle morphology can be defined as a collection of
three elements (, ,)x y θ , which (,)x y represents the
turtle’s location in the Cartesian, θ represents the
direction of the turtle; In general, we give the step
d and angle incrementα . Two dimensional L-string
and their turtle interpretations are shown in table 1:

Table 1. Turtle interpretations

()F d Move forward one step, draw the path of
motion, the turtle’s next state become
(x+d*cos ,y+d*sin ,)θ θ θ

()α+ rotate counter clockwise by angle α, the

turtle’s next state will be (, ,)x y θ α+
()α− Rotate clockwise by angle α, the turtle’s

next state will be (, ,)x y θ α−
[push the current state of turtle to the stack

to start a branch
] End a branch, and pop a state from the

stack and take it as current state

Take the typical Koch curve as an example; the
generation rule is as follows:

: 60α °

: (1) (1) (1)w F F F−− −− The initial map
: () (/3) (/3) (/3) (/3)p Fd Fd Fd Fd Fd−> + −− + Generators

Initial map Generators Iterated by 2 times

When extended into three-dimensional space, the
key problem is to use three orthogonal vectors H, L
and U to represent current location of the turtle, so
the turtle’s rotation can be described as following:

[`, `, `] [, ,]H L U H L U R= (1)

Which:

cos sin 0
() sin cos 0

0 0 1
HR

α α
α α α

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

 cos 0 sin
() 0 1 0

sin 0 cos
LR

α α
α

α α

−⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

1 0 0
() 0 cos sin

0 sin cos
UR α α α

α α

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

Based on two-dimensional L-system, we add
some new symbols to describe the change direction
of turtle in three-dimensional space, the new
symbols and their turtle interpretations are shown in
table 2:

Hai Wang, Fei Hao / Computing, 2010, Vol. 9, Issue 2, 165-174

 167

Table 2. Symbols for rotation

()σ+ rotate left by angle σ around U, which
described by matrix ()UR σ

()σ− rotate right by angle σ around U, which
described by matrix ()UR σ−

&()σ rotate down by angle σ around vector L,
which described by matrix ()LR σ

^()σ rotate up by angle σ around vector L,
which described by matrix ()LR σ−

\()σ rotate left by angle σ around vector H,
which described by matrix ()HR σ

/()σ rotate right by angle σ around vector H,
which described by matrix ()HR σ

The space direction and rotation schematic figure

are as Fig.3.

2.2. THE IFS SYSTEM
The Formulism of describing plant morphology

used by IFS system is as following: for one plant
image we have got, we can use a finite number of
sub-images which are transformed from it by
compression affine transformation to coverage it
according to the collage theorem, and allow some
overlapping between the sub-images, then we can
get a set of compression affine transformation as
following:

2

1 2 3{ : , , ,..., }nR w w w w

 cos sin
sin cosi

x r q x e
w

y r q y f
α β
α β

−⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (2)

In expression (2), character r represents the

scaling factor in x direction between sub-images and
source image, character q represents the scaling
factor in y direction between sub-images and source
image; character α and β represent the rotation
angle for sub-graphs compared with the original
image respectively, character e represents the
displacement in x direction of sub-graph, character
f represents the displacement in y direction of sub-

graph. According to the area proportional of the sub-
graph, we can get a probability set 1 2 3{p ,p ,p ,...,p }n ,
which p 0i > (i=1,2,….n), and represents the
probability of the corresponding transformation, pi
satisfies the following expression:

1
=1

n

i
i

p
=
∑ (3)

Expression (2) and (3) construct a complete IFS
system. When we draw graphics using the
parameters of the IFS, we use random iteration
algorithm, in other words, we can choose an original
point x,y（ ） to our starting point, and then choose
one affine transformation according to the
corresponding probability, calculate a new point

x`,y`（ ） and draw that point, and afterwards, we set
the new point as a new original point. By repeating
the above process, and iterating for many times, all
the track of the point we calculated can form a new
image which is similar to original image, we call this
image as IFS attractor.

3. SIMULATION OF THE THREE-

DIMENSIONAL TREE’S MORPHOLOGY
3.1. AN EFFECTIVE METHOD FOR
THREE-DIMENSIONAL PLANT
MODELING

When we extend IFS system into three-
dimensional space, the basic case is the same as that
in two-dimensional plane, the only difference is that
the string is explained in three-dimensional space.
When simulating three-dimensional plant, an
important point is how to get plants’ next growing
point quickly. Most researchers devote their time to
make the simulation result have high fidelity, but
they neglect a problem that how to make the
expression which represents the information of
growing point simpler. In this section, we proposed
a new approach which can get the next growing
point more quickly.

Fig. 3 – The rotation schematic diagram

Fig. 4 – Calculating schematic diagram

Hai Wang, Fei Hao / Computing, 2010, Vol. 9, Issue 2, 165-174

 168

The three-dimensional plant’s growth procedure
can be seen as a turtle’s crawling procedure in space.
For the problem that how to represent the turtle’s
crawling location, reference [9] chooses quaternion
method. Although it can solve the practical problem
of motion analysis and control, but it needs lots of
middle steps to get the final result. Reference [10]
chooses the angle between growth direction and X
axis, Y axis, Z axis as transform parameters, but for
design and implementation for algorithm, it needs
many additional parameters. Here, we adopt a
collection of six elements (, , , , ,)x y z α β γ to
represent current status of the turtle. In expression,
(, ,)x y z represents the location of the turtle’s
current status, (, ,)α β γ represents the turtle’s
current direction, it equals to the direction of
vector (, ,)α β γ , and when in actual calculating

procedure, it meets 2 2 2 dα β γ+ + = (step
length). As depicted in Fig.3, suppose (, ,)A x y z as
the location of turtle’s last status. (`, `, `)B x y z
represents the location of turtle’s current status,

1 1 1(, ,)C x y z is the next location which need to be
calculated. According to the explanation of the
turtle’s map, when the turtle craws to point B and
don’t rotate yet, the current turtle’s crawling
direction is equal to the direction of vector AB

uuur
, that

is (, ,) (` , ` , `)x x y y z zα β γ = − − − .
To calculate the next location 1 1 1(, ,)C x y z , we

can extend the segment AB to point
2 2 2D(, ,)x y z and let AB BD d= = . Suppose we

face ()σ+ in string, it means that taking B as non-
fixed point, counter clockwise rotate point D around
U axis by angle σ, then point C coincides with point
D. So, the coordinate value of point C is calculated
as following:

(1) Take origin as the start point of vector a
r

, let
(` , ` , `)a x x y y z z= − − −

r
, suppose the end

point of vector a
r

 is M, obviously, the
coordinate value of point M satisfies:
(` , ` , `) (, ,)x x y y z z α β γ− − − = ;

(2) We can take origin as non-fixed point, rotate
point M by ()σ+ , we call the new point as N,
and so the coordinate value of N point can be
calculated by the rotation matrix. The specific
calculating methods are as following:

3

3

3

` 1 0 0 1 0 0
` 0 cos sin 0 cos sin
` 0 sin cos 0 sin cos

T T Tx x x
y y y

z zz

α
α α β α α
α α γ α α

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜= − − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (4)

After rotation, the turtle’s direction of current

status have been changed, the new direction meets:

3 3 3(, ,) (, ,)x y zα β γ = (5)

(3) Translate vector b
r

 which starts with origin
and ends with point N, make point B as the
new start point of vector b

r
, then we can see

that point C will be the end point of vector b
r

,
so the coordinate value of point C can be
calculated by using following formula:

31

1 3

1 3

` `
` `
` `

TT T T Txx x x
y y y y

z zz z

α
β
γ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + = +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (6)

From formula (6), we can see that: the location of
next status can be got by adding that of current
status and the direction of current status. At the same
time, using a vector to represent the direction, we
can easily calculate the direction of turtle’s status
after rotation. Compared with the approaches used in
reference [9] and [10], the approach used in this
paper only uses the addition and subtraction of
matrix and little multiplication, it avoids many
complicated calculations. The whole method is
simple and practical, and has a high operability.

In the procedure of crawling, if the turtle rotate
for many times, what we should do is only to repeat
the step (2), but remember that: in every time we
calculate, we should change the rotation matrix to
the corresponding matrix.

3.2. THE PROPOSED ALGORITHM

Tree is a typical kind of plant, their appearance
varies from one to another, but we can find that all
trees have the same growth mechanism, namely
most trees have two parts:

Spindle: branches which have child branches, all
branches composite the plant topology.

Terminal: tree’s terminals include leaves or
flowers instead of child branches in general.

So the three-dimensional simulation for plant
mainly includes two parts: the simulation for spindle
and that for terminal.

3.2.1. THE SIMULATION FOR SPINDLE

Parameter L-system has advantages in the
simulation for tree’s growth pattern and topology;
it can describe the random growth mechanism and
topology of the branch freely and conveniently. By
controlling and changing parameters in fractal unit
and production rules, we can realize the modelling

Hai Wang, Fei Hao / Computing, 2010, Vol. 9, Issue 2, 165-174

 169

for complicated three-dimensional topology, an
example is shown as following:

: (0) ()
: (0) () ()[()][(1*)[/(1)
(1) (1*)][\(1).(1) (1*)][\(2)

(1) (1*)]][(2*)[\(1) (2) (2*)]
[\(1).(2) (2*)][/() (2) (2*)]]

w w F d
p w F d W F d M t d B

a F r d B a F r d B
a F r d M t d B a F r d

B a F r d B a F r d

− >
+ +

+
+

 (6)

1, 2r r : represents the branch’s scaling ratio of

the first, second branch node respectively.
1, 2a a : represents the angle between child

branch and father branch of the first, second branch
node respectively.

1, 2B B : represents the rotation angle between
child branch and father branch’s vertical of the
first, second branch node respectively.

1, 2t t : represents the ratio between child
branch’s length and father branch’s length of the
first, second branch node respectively.

The model based on this algorithm has much
advantage on the control for the tree’s specific
details. But once parameters assigned value, the
tree’s topology are the same, but in real nature,
even the same kind tree also have some differences
in detailed morphology because of the different
habitat and different inner gene. To get a more
extensive effect, based on the above algorithm, we
introduce random elements, so we contribute some
improvements for the above parameter L-system as
following:

We can set several different values for each
parameter, and for each value, set a probability
factor p which means the probability of being
chosen. When painting, choose one value each
time. All the probability factors for one parameter

meet
1

1
n

i
i

p
=

=∑ . For example, as shown in

expression (7) and (8), we can set three values to
choose for radius scaling ratio 1r , when painting,
choose one according to the corresponding
probability factor.

1 {sin(/ 4), sin(/ 3), sin(/ 6)}r π π π∈ (7)

[sin(/4)] [sin(/3)] [sin(/6)] 1p p pπ π π+ + = (8)

Likewise, when painting new branch, the ratio

between the radius of child branch and that of
father branch is not a fixed constant, but a value
which fluctuates within a certain range, so the
tree’s morphology would be more close to natural
law.

There is also another deficiency in above model
mechanism, namely, in the same branch: the
bottom of the branch is larger than the top. In order
to simulate the branch better, we use a truncated
cone to simulate branches, and we can also set

3r as the ratio between the radius of upper face and
that of bottom face in the truncated cone, the
processing method for 3r is similar to that for 1r .

Actually, in the process of plant growth, some
plant’s topology structure would change when it
becomes closer to the terminal mud, so when
painting, we can add a judgment for iteration times,
when the times reach one given number, the
topological rules would be changed.

3.2.2. THE SIMULATION OF TERMINAL

In the aspect of simulating plant’s morphology,
IFS system has the following advantages: the
generated graphics is coloured; the shade gradually
changes and graphics has rich texture. For those
reasons, IFS system is fit to simulate the graphics
with rich texture such as tree’s leaves and flowers.
To integrate the L-system with IFS system to
simulate plant’s morphology, we encapsulate the
IFS algorithm as a function, with different
parameters and set of compression affine
transformation, we can paint leaves with different
location, different size and different morphology.
When simulating, we don’t paint a truncated cone
to simulate the terminal, instead, we call the
encapsulated IFS function and assign
corresponding value for each parameter, then paint
leaves for the plant’s terminal.

The combination for IFS system and L-system is
something like “building block”. On one side, use
the generated rules and parallel rewriting
mechanism of L-system as the method for
“building block”, on another side, use the graphics
with rich texture generated by IFS system as
“block”. By this improved algorithm, we can
simulate many kinds of plant’s morphology with
high fidelity.

3.2.3. THE IMPLEMENTATION FOR
PROPOSED ALGORITHM

According to the analyses above, we can use
two modules to implement our proposed algorithm,
one is character parallel rewriting module, and
another is turtle map explanation module. The
algorithm flows of the two modules are shown in
fig.5 and fig.6 respectively.

Hai Wang, Fei Hao / Computing, 2010, Vol. 9, Issue 2, 165-174

 170

Fig. 5 – The algorithm for character parallel rewriting
module

Fig. 6 – The algorithm for turtle map explanation

module

To implement the above two modules, we use

three key functions. Before show the three functions,
we define the following basic characters:

Table w: storage the initial map;
Table p: storage the generators;
Stack: the stack we used in function;
Point pt: represent the current grow point;
Step: the initial step;
Scale: the scale factor to regulate plant’s

growing morphology;
N: iteration times;

1. The main function for the whole system
1. int i=0, char v=w.at(i);
2. if(i >w.length())
3. {
4.exit();
5. }else {
6. switch (v) {
7. case ’F’: L-rule(N);
8. break();
9. case ’+’: calculate new rotation vector; break();
10.case ’-’: calculate new rotation vector; break();
11.case’&’: calculate new rotation vector; break();
12.case ’^’: calculate new rotation vector; break();
13. case ’\’: calculate new rotation vector; break();
14. case ’/’: calculate new rotation vector; break();
15. }
16. i=i+1;
17. }

2. The iterated function L-rule(n)

1. if(n==1)
2. { draw();
3. exit(); }
4. else if (n==0)
5. { leaf(); //call the encapsulated IFS function
6.int j=0;
7. }else {
8.int j=0; }
9. if(j>p.length())
10. exit() ;
11. else {
12. char t=p.at(j);
13. switch (t){
14. case ’F’: Factor=(Rand()%10)/55;
15. step=step*Factor;
16. n=n-1;
17. L-rule (n-1);
18. break();
19. case ’+’: calculate new rotation vector; break();
20. case ’-’: calculate new rotation vector; break();
21. case ’&’: calculate new rotation vector; break();
22. case ’^’: calculate new rotation vector; break();
23. case ’\’: calculate new rotation vector; break();
24. case ’/’: calculate new rotation vector; break();
25. case ’[’:
26.stack.push(currentstate);
27. Factor=(Rand()%10)/55;
28. step=step*Factor;
29. break();
30. case =’]’:currentstate=stack.pop(); break();
31. }
32. j=j+1;
33. }

3. Draw function
1. draw initial map;
2. calculate next growing point pn;
3. pt=pn;
4. calculate new rotation vector;
5. exit() ;

Hai Wang, Fei Hao / Computing, 2010, Vol. 9, Issue 2, 165-174

 171

As mentioned in 3.2.2, the encapsulated IFS
function is a basic function for IFS system, here we
don’t give its specific implementation.

4. EXPERIMENTAL RESULTS AND

ANALYSIS
4.1. EXPERIMENTAL RESULTS

We implement our proposed improved algorithm
with Visual C++ and OpenGL library, in the process
of simulation, considering the random element of the
diagram parameters involved in L-system and IFS
system, we carried out a large number of plant
simulation experiments, some typical experimental
results are as shown in fig.7 and fig.8.

(a) bamboo’s leaves (b) bamboo’s node (c)Bamboo

Fig. 7 – The simulation result of bamboo

Fig. 8 – The simulation result of tree

In this paper, we redefine the parameters in

expression(1):
cos , sin , sin , cosa r b q c r d qα β α β= = − = = ,

the data used in this paper are as following:
Fig.7(a)’s affine transform coefficient are shown

in table 3.

Table 3. Fig.7 (a)’s affine transform coefficient

w a b c d e f p
1 0.29 0.4 -0.4 0.0 0.28 0.44 0.25
2 0.33 -0.34 0.39 0.4 0.41 0.0 0.25
3 0.42 0.0 0.0 0.63 0.29 0.36 0.25
4 0.61 0.0 0.0 0.61 0.19 0.23 0.25

Fig.7(b)’s affine transform coefficient are shown

in table 4.

Table 4. Fig.7 (b)’s affine transform coefficient

w a b c d e f p
1 0.5 0.5 0.0 0.0 0.0 0.0 0.15
2 0.5 0.5 0.0 0.0 50 0.0 0.35
3 0.5 0.5 0.0 0.0 0 50 0.35
4 0.5 0.5 0.0 0.0 50 50 0.15

Fig.8’s affine transform coefficients are shown in

table 5.

Table 5. Fig.8’s affine transform coefficient

w a b c d e f p
1 0.0 0.0 0.0 0.16 0.0 0.0 0.01
2 0.85 0.04 -0.04 0.85 0.0 1.6 0.85

3 0.2 -0.26 0.23 0.22 0.0 1.6 0.07
4 -0.15 0.28 0.26 0.24 0.0 0.44 0.07

Nowadays, Fractal is becoming more and more

important to computer art and video game scenario
design. For example, the natural landscape (Shown
in Fig.9) is a key application using proposed
approach, and the affine transform coefficient for
this figure are given in appendix.

Fig. 9 – Simulation result of landscape

4.2. COMPARISON EXPERIMENTS

The algorithms proposed in reference [9] and [10]
are typical algorithms which use L system to
simulate plant’s morphology. With the same
experimental environment mentioned in section 4.1,
we implement the algorithms used in reference [9]
and [10], and some experimental results are shown
in fig.10 and fig.11.

Fig. 10 – Simulation result of trunk

Hai Wang, Fei Hao / Computing, 2010, Vol. 9, Issue 2, 165-174

 172

Fig. 11 – Simulation result of tree

As can be seen from the comparison results, the

plant can be simulated more accuracy using our
proposed approach.

4.3 RESULTS DISCUSSION

Compared with algorithms proposed in reference
[9] and [10], our algorithms mainly present two
improvements.

(1) The fidelity of plant simulation result
From the experimental results shown in section

4.1 and the comparison experimental result shown in
section 4.2, obviously we can find that our proposed
algorithm can simulate plant’s morphology with
higher fidelity. There is an important extra point we
must mention especially, i.e., from fig.9, we can see
that our algorithm also have an extensive application
prospect in simulation of natural scenery.

(2) The complexity for controlling plant’s
growth process

As mentioned in section 3.1, we give a simpler
expression which can calculate the state of next
growing point than that proposed in reference [9]
and [10]. Here, we give the other two schematic
diagrams which used to calculate the next grow
point. Fig.12 (a) and (b) are the schematic diagrams
used in reference [9] and reference [10] respectively.

(a) (b)

Fig. 12 – Schematic diagram for plant growing
direction controlling

From fig.12, we can see that our formula is

simple and effective to control plant growing
direction.

When conducting experiments, we record a series
of rendering time for simulation result shown fig.8
and that for fig.11. The relationship between total
rendering time and the rendered amount is shown in
fig.13.

Fig. 13 – Relationship between total rendering time

and rendered amount

At the same time, we give the relationship

between single average rendering time and the
rendered amount in fig.14.

Fig. 14 – Relationship between each single rendering

time and rendered amount

From fig.13 and fig.14, we can see that our

proposed approach mainly has two improvements in
rendering time:

(1) we can simulate a plant with higher fidelity
using less time than that of algorithm
proposed in reference [9] and [10], and the
efficiency increases 13 % approximately;

(2) when the rendered amount is large, using our
proposed algorithm, the average stimulation
time for each object increases more slowly
than that of algorithm proposed in reference
[9] and [10], and this improvement has
obvious advantage in large-scale simulation
for natural landscape.

Hai Wang, Fei Hao / Computing, 2010, Vol. 9, Issue 2, 165-174

 173

5. CONCLUSIONS
This paper aims to improve the traditional L-

system, gives a simpler method to calculate plant’s
next growing point. Based on parametric L-system,
we add the stochastic element, and combine
stochastic L-system with parameter L-system
together to make the simulation results have higher
fidelity. At last, we use the IFS algorithm to generate
the leaves, so that the graphics painted by L-system
would be closer to the plant in nature. Experimental
results show that our proposed approach can
simulate virtual plants with high fidelity using less
rendering time. But in this paper, we don’t consider
the influence of gravity on the branches’
morphology [11~13], we also don’t consider the
environment (such as wind) around the plant in
nature, so our further work is to build a good
dynamic model for plant’s branches and to realize
the branches’ dynamic flicker in wind.

Appendix

The affine transform coefficient for hill

The affine transform coefficient for green tree

The affine transform coefficient for palm tree

The affine transform coefficient for gray tree

The affine transform coefficient for sun

6. REFERENCES
[1] A. Lindenmayer. Mathematical models for

cellular interactions in development II. Simple
and branching filaments with two-sided inputs,
Journal of Theoretical Biology. 1968, 3, p.300-
315.

[2] M. F. Barnsley, S. Demko. Iterated function
systems and the global construction of fractals,
Proc. Roy. Soc. London Ser. 1985, pp. A.399,
243–275.

[3] M. F. Barnsley. Fractal functions and
interpolation, Journal Constr. Approx. 1986,
pp.303–329.

[4] Przemyslaw Prusinkiewicz, Aristid
Lindenmayer, James Hanan. Development
models of herbaceous plants for computer
imagery purposes, SIGGRAPH, 1988, pp.141-
150.

[5] Prusinkiewicz P., Hammely M. S., Mjolsness
E., etc. Animation of plant development,
Proceedings of the 20th Annual Conference on
Computer Graphics and Interactive
Techniques. Anaheim, CA, 1993, pp.351–360.

[6] Prusinkiewicz P., Lindenmayer A. The
algorithmic beauty of plants. New York:
Springer-Verlag, 1990, pp. 40–50.

[7] Zhao Xing, de Reffye Philippe, Xiong Fanlun,
etc. Dual Scale Automaton Model for Virtual
Plant Development, Chinese Journal of
Computers, 2001, 24 (6), pp.608–615.

[8] Pan Yun-He, Mao Wei-Qiang. Research on
Interactive Morphing Based 3D Modeling of
Tree, Journal of Computer Aided Design &
Computer Graphics, 2001, 13 (11), pp.1035–
1042.

[9] Ke Guan. The Plant Modeling Research Based
on Improved 3D L-System and Quaternion,
Proceedings of the 2008 IEEE International
Conference on Information and Automation,
ICIA, 2008, pp. 828-833.

[10] Li Feng, Li Wang. Algorithm of 3D Fractal
Plants Based on L-system and Its
Implementation, Journal Computer Simulation,
2005, 22 (11), p. 205–208.

[11] Hitoshi Kanda, Jun Ohya. Efficient, realistic
method for animating dynamic behaviors of 3D
botanical trees, Proceeding of the 2003 IEEE
International Conference on Multimedia and
Expo, IEEE Computer Society, 2003, 1(7), p.
89-92.

[12] J. Beaudoin, J. Keyser. Simulation levels of
detail for plant motion, Proceedings of
SIGGRAPH/Eurographics Symposium on
Computer Animation, 2004, p. 297-304.

Hai Wang, Fei Hao / Computing, 2010, Vol. 9, Issue 2, 165-174

 174

[13] M. Shinya. Fourier stochastic motion – motion
under the influence of wind, Proceedings
Eurographics'92, 1992, 11(3), p. 119-128.

Hai Wang, born in 1988 in
Hubei, China. With high
interest in computer
science, in 2007 he
entered Wu Han
University, where he is
studying at department of
computer science. In his
B.S. period, he does some
projects with his mentor,
mainly about distributed
simulation,digital image

processing. Now still greatly interested in image
compression with IFS.

Fei Hao received the B.S.
and M.S. degrees in school
of Mathematics and
Computer Engineering from
Xihua University, Chengdu,
China, in 2005 and 2008,
respectively. He is currently
working toward the PHD
degree in the Department of
Computer Science, Korea
Advanced Institute of
Science and Technology

(KAIST), Daejeon, South Korea. He has published
12 research papers in International and National
Journals as well as conferences.

His research interests include intelligent
information processing, social computing and time
series data mining.

