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Abstract: In this paper, the concept and characteristics of fractal are briefly introduced; The drawing principle of L-
system and IFS system is discussed. Based on this discussion, we analyse virtual plant growth procedure simulated by 
the L-system. Further, an efficient expression that can describe the plant growth and the control of direction is defined; 
Inspired from proposed expression, we propose a new method based on the combination of L-system and IFS system to 
simulate the plant morphology. We valid and show our proposed system with high fidelity and efficiency on the 
simulation of plant morphology by comparison experiments. Extra experiment shows it can be applied into computer art 
and video game scenario design. 
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1. INTRODUCTION 
With the rapid development of computer 

graphics, the simulation of different plants’ 
morphology in nature has been a research hotspot in 
computer graphics. The simulation of virtual plants 
generated by computer has a wide application 
prospect in simulation of the ecological 
environment, virtual reality and game design, etc. 
The traditional approaches based on European 
geometric theory can only realize the simulation for 
some pattern with simple geometry and regulation, 
they can’t realize the simulation for the rich natural 
scenery. Further, the modelling of irregular shape is 
also a difficult problem in terms of current virtual 
reality technology. The fractal geometry is a subject 
which focuses on the research of irregular shape, it’s 
an important area for the simulation of natural 
scenery. Under the impetus of reference [1~6], L-
system and IFS system have become main measures 
used in the modelling for virtual plant. From the 
point of botany, reference [7] proposed the concept 
of two-scale which include micro state and macro 
state, and established a two-scale automata model 
which can simulate the growth of virtual plant, at the 
same time, it applied a probability model which is in 
terms of the development process of plant terminal 
bud and axillaries bud, the experimental result is 
shown in Fig.1. By interactive deformation 
treatment for the branches, reference [8] provided a 
three-dimensional tree model which can beautify the 

trees’ shape. The approach contained three parts: 
three-dimensional plant model based on interactive 
deformation treatment, interactive selection 
mechanism for branches and the deformation 
treatment for the selected branches. Based on 
aesthetic theory, this method gives an overall 
aesthetics control for the tree shape, and an 
experimental result is shown as Fig.2. From Fig.1 
and Fig.2, we can easily see these two models don’t 
concern the specific details such as leaves and 
flowers, so the realistic of tree model is not enough, 
the simulation effects remains to be further 
improved. In this paper, we attempt to combine the 
L-system and IFS system together, and propose a 
series of improvement approaches in order to realize 
the simulation of plant morphology with high 
fidelity. 

The rest of this paper is organized as follows: 
section 2 introduces some basic knowledge about L-
system and IFS system, and following in section 3, 
we propose two main improvements on the 
combination of L-system and IFS system. To 
evaluation the feasibility and efficiency of our 
adapted algorithm, comparison experiments are 
conducted in section 4; Section 5 concludes this 
paper.  
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Fig. 1 – Tree simulation result with two scale model 

 

 
Fig. 2 – Tree simulation result with interactive 

deformation treatment 

 
2. L-SYSTEM AND IFS 

L-system was first put forward by American 
biologist Aristid Linder Mayer in 1968. Actually, L-
system is a rewriting system, by empirical summary 
and abstract to the procedure of plant growth, we 
can obtain an initial state set and a rules which 
describe the procedure of plant growth, then replace 
the initial state sets with the rules, we can get a 
character sequence that can performance the plant 
topology, after geometric interpretation towards the 
character sequence that we get before, it will be able 
to generate very complex fractal images. 

IFS system was first proposed by Michael 
F.Barnsley. He firstly generated some fractal images 
using a group of contraction affine transform, i.e., 
contraction, rotation, translation and other 
transformation towards the original graph, he got 
some extreme images with self-similar fractal 
structure, and the set of affine transformation is 
called as IFS. 

 
2.1. THE REWRITING MECHANISM OF L-
SYSTEM AND ITS INTERPRETATIONS 

The essence of L-system is a character rewriting 
mechanism, the simplest L-system called 0L-system, 
it is a context-free grammar relationship, it can be 
described by a triple , ,v w p< > , which v  denotes 
all the characters that can be identified in the system, 
w V +∈  is a non-empty string which called axiom, 

*ЧVp V∈  is a finite set of production. 
The axiom and production in the L-system are 

described by string. To produce specific image, we 
give the string with a specific meaning. In the L-

system, we use turtle graphics to explain strings. The 
turtle morphology can be defined as a collection of 
three elements ( , , )x y θ , which ( , )x y  represents the 
turtle’s location in the Cartesian, θ represents the 
direction of the turtle; In general, we give the step 
d and angle incrementα . Two dimensional L-string 
and their turtle interpretations are shown in table 1: 

Table 1. Turtle interpretations 

( )F d  Move forward one step, draw the path of 
motion, the turtle’s next state become 
(x+d*cos ,y+d*sin , )θ θ θ  

( )α+  rotate counter clockwise by angle α, the 

turtle’s next state will be ( , , )x y θ α+  
( )α−  Rotate clockwise by angle α, the turtle’s 

next state will be ( , , )x y θ α−  
[ push the current state of turtle to the stack 

to start a branch 
] End a branch, and pop a state from the 

stack and take it as current state 
 

Take the typical Koch curve as an example; the 
generation rule is as follows: 

 
: 60α °  

: (1) (1) (1)w F F F−− −−      The initial map                     
: ( ) ( /3) ( /3) ( /3) ( /3)p Fd Fd Fd Fd Fd−> + −− +       Generators 

     
      
Initial map         Generators     Iterated by 2 times 

When extended into three-dimensional space, the 
key problem is to use three orthogonal vectors H, L 
and U to represent current location of the turtle, so 
the turtle’s rotation can be described as following: 

 
[ `, `, `] [ , , ]H L U H L U R=                                 (1) 

 
Which: 
 

cos sin 0
( ) sin cos 0

0 0 1
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α α
α α α
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⎜ ⎟
⎝ ⎠

     cos 0 sin
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sin 0 cos
LR

α α
α

α α

−⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
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1 0 0
( ) 0 cos sin

0 sin cos
UR α α α

α α

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Based on two-dimensional L-system, we add 
some new symbols to describe the change direction 
of turtle in three-dimensional space, the new 
symbols and their turtle interpretations are shown in 
table 2: 
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Table 2. Symbols for rotation 

( )σ+  rotate left by angle σ around U, which 
described by matrix ( )UR σ  

( )σ−  rotate right by angle σ around U, which 
described by matrix ( )UR σ−  

&( )σ  rotate down by angle σ around vector L, 
which described by matrix ( )LR σ  

^( )σ  rotate up by angle σ  around vector L, 
which described by matrix ( )LR σ−  

\( )σ  rotate left by angle σ  around vector H, 
which described by matrix ( )HR σ  

/( )σ  rotate right by angle σ  around vector H, 
which described by matrix ( )HR σ  

 
The space direction and rotation schematic figure 

are as Fig.3. 
 

2.2. THE IFS SYSTEM 
The Formulism of describing plant morphology 

used by IFS system is as following: for one plant 
image we have got, we can use a finite number of 
sub-images which are transformed from it by 
compression affine transformation to coverage it 
according to the collage theorem, and allow some 
overlapping between the sub-images, then we can 
get a set of compression affine transformation as 
following: 

 
2

1 2 3{ : , , ,..., }nR w w w w  

    cos sin
sin cosi

x r q x e
w

y r q y f
α β
α β

−⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
                    (2) 

 
In expression (2), character r represents the 

scaling factor in x direction between sub-images and 
source image, character q represents the scaling 
factor in y direction between sub-images and source 
image; character α and β  represent the rotation 
angle for sub-graphs compared with the original 
image respectively, character e  represents the 
displacement in x direction of sub-graph, character 
f  represents the displacement in y direction of sub-

graph. According to the area proportional of the sub-
graph, we can get a probability set 1 2 3{p ,p ,p ,...,p }n , 
which p 0i > (i=1,2,….n), and represents the 
probability of the corresponding transformation, pi  
satisfies the following expression: 

 

1
=1

n

i
i

p
=
∑                                                   (3) 

Expression (2) and (3) construct a complete IFS 
system. When we draw graphics using the 
parameters of the IFS, we use random iteration 
algorithm, in other words, we can choose an original 
point x,y（ ） to our starting point, and then choose 
one affine transformation according to the 
corresponding probability, calculate a new point 

x`,y`（ ） and draw that point, and afterwards, we set 
the new point as a new original point. By repeating 
the above process, and iterating for many times, all 
the track of the point we calculated can form a new 
image which is similar to original image, we call this 
image as IFS attractor. 

 
3. SIMULATION OF THE THREE-

DIMENSIONAL TREE’S MORPHOLOGY 
3.1. AN EFFECTIVE METHOD FOR 
THREE-DIMENSIONAL PLANT 
MODELING 

When we extend IFS system into three-
dimensional space, the basic case is the same as that 
in two-dimensional plane, the only difference is that 
the string is explained in three-dimensional space. 
When simulating three-dimensional plant, an 
important point is how to get plants’ next growing 
point quickly. Most researchers devote their time to 
make the simulation result have high fidelity, but 
they neglect a problem that how to make the 
expression which represents the information of 
growing point simpler. In this section, we proposed 
a new approach which can get the next growing 
point more quickly. 

 
Fig. 3 – The rotation schematic diagram 

 

 
Fig. 4 – Calculating schematic diagram 
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The three-dimensional plant’s growth procedure 
can be seen as a turtle’s crawling procedure in space. 
For the problem that how to represent the turtle’s 
crawling location, reference [9] chooses quaternion 
method. Although it can solve the practical problem 
of motion analysis and control, but it needs lots of 
middle steps to get the final result. Reference [10] 
chooses the angle between growth direction and X 
axis, Y axis, Z axis as transform parameters, but for 
design and implementation for algorithm, it needs 
many additional parameters. Here, we adopt a 
collection of six elements ( , , , , , )x y z α β γ  to 
represent current status of the turtle. In expression, 
( , , )x y z  represents the location of the turtle’s 
current status, ( , , )α β γ  represents the turtle’s 
current direction, it equals to the direction of 
vector ( , , )α β γ , and when in actual calculating 

procedure, it meets 2 2 2 dα β γ+ + = (step 
length). As depicted in Fig.3, suppose ( , , )A x y z  as 
the location of turtle’s last status. ( `, `, `)B x y z  
represents the location of turtle’s current status, 

1 1 1( , , )C x y z is the next location which need to be 
calculated. According to the explanation of the 
turtle’s map, when the turtle craws to point B  and 
don’t rotate yet, the current turtle’s crawling 
direction is equal to the direction of vector AB

uuur
, that 

is ( , , ) ( ` , ` , ` )x x y y z zα β γ = − − − . 
To calculate the next location 1 1 1( , , )C x y z , we 

can extend the segment AB  to point 
2 2 2D( , , )x y z and let AB BD d= = . Suppose we 

face ( )σ+ in string, it means that taking B as non-
fixed point, counter clockwise rotate point D around 
U axis by angle σ, then point C coincides with point 
D. So, the coordinate value of point C is calculated 
as following: 

(1) Take origin as the start point of vector a
r

, let 
( ` , ` , ` )a x x y y z z= − − −

r
, suppose the end 

point of vector a
r

 is M, obviously, the 
coordinate value of point M satisfies: 
( ` , ` , ` ) ( , , )x x y y z z α β γ− − − = ; 

(2) We can take origin as non-fixed point, rotate 
point M by ( )σ+ , we call the new point as N, 
and so the coordinate value of N point can be 
calculated by the rotation matrix. The specific 
calculating methods are as following: 

 

3

3

3

` 1 0 0 1 0 0
` 0 cos sin 0 cos sin
` 0 sin cos 0 sin cos

T T Tx x x
y y y

z zz

α
α α β α α
α α γ α α

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜= − − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (4) 

 
After rotation, the turtle’s direction of current 

status have been changed, the new direction meets: 
 

3 3 3( , , ) ( , , )x y zα β γ =    (5) 

(3) Translate vector b
r

 which starts with origin 
and ends with point N, make point B as the 
new start point of vector b

r
, then we can see 

that point C will be the end point of vector b
r

, 
so the coordinate value of point C can be 
calculated by using following formula: 

 

31

1 3

1 3

` `
` `
` `

TT T T Txx x x
y y y y

z zz z

α
β
γ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + = +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

     (6) 

From formula (6), we can see that: the location of 
next status can be got by adding that of current 
status and the direction of current status. At the same 
time, using a vector to represent the direction, we 
can easily calculate the direction of turtle’s status 
after rotation. Compared with the approaches used in 
reference [9] and [10], the approach used in this 
paper only uses the addition and subtraction of 
matrix and little multiplication, it avoids many 
complicated calculations. The whole method is 
simple and practical, and has a high operability. 

In the procedure of crawling, if the turtle rotate 
for many times, what we should do is only to repeat 
the step (2), but remember that: in every time we 
calculate, we should change the rotation matrix to 
the corresponding matrix. 

 
3.2. THE PROPOSED ALGORITHM 

Tree is a typical kind of plant, their appearance 
varies from one to another, but we can find that all 
trees have the same growth mechanism, namely 
most trees have two parts: 

Spindle: branches which have child branches, all 
branches composite the plant topology. 

Terminal: tree’s terminals include leaves or 
flowers instead of child branches in general. 

So the three-dimensional simulation for plant 
mainly includes two parts: the simulation for spindle 
and that for terminal. 

 
3.2.1. THE SIMULATION FOR SPINDLE 

Parameter L-system has advantages in the 
simulation for tree’s growth pattern and topology; 
it can describe the random growth mechanism and 
topology of the branch freely and conveniently. By 
controlling and changing parameters in fractal unit 
and production rules, we can realize the modelling 
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for complicated three-dimensional topology, an 
example is shown as following: 

 
: ( 0) ( )
: ( 0) ( ) ( )[ ( )][ ( 1* )[/( 1)
( 1) ( 1* )][\( 1).( 1) ( 1* )][\( 2)

( 1) ( 1* )]][ ( 2* )[\( 1) ( 2) ( 2* )]
[\( 1).( 2) ( 2* )][/( ) ( 2) ( 2* )]]

w w F d
p w F d W F d M t d B

a F r d B a F r d B
a F r d M t d B a F r d

B a F r d B a F r d

− >
+ +

+
+

  (6) 

 
1, 2r r : represents the branch’s scaling ratio of 

the first, second branch node respectively.  
1, 2a a : represents the angle between child 

branch and father branch of the first, second branch 
node respectively. 

1, 2B B : represents the rotation angle between 
child branch and father branch’s vertical of the 
first, second branch node respectively. 

1, 2t t : represents the ratio between child 
branch’s length and father branch’s length of the 
first, second branch node respectively. 

The model based on this algorithm has much 
advantage on the control for the tree’s specific 
details. But once parameters assigned value, the 
tree’s topology are the same, but in real nature, 
even the same kind tree also have some differences 
in detailed morphology because of the different 
habitat and different inner gene. To get a more 
extensive effect, based on the above algorithm, we 
introduce random elements, so we contribute some 
improvements for the above parameter L-system as 
following: 

We can set several different values for each 
parameter, and for each value, set a probability 
factor p which means the probability of being 
chosen. When painting, choose one value each 
time. All the probability factors for one parameter 

meet
1

1
n

i
i

p
=

=∑ . For example, as shown in 

expression (7) and (8), we can set three values to 
choose for radius scaling ratio 1r , when painting, 
choose one according to the corresponding 
probability factor. 

 
1 {sin( / 4), sin( / 3), sin( / 6)}r π π π∈  (7) 

 
[sin( /4)] [sin( /3)] [sin( /6)] 1p p pπ π π+ + =  (8) 

 
Likewise, when painting new branch, the ratio 

between the radius of child branch and that of 
father branch is not a fixed constant, but a value 
which fluctuates within a certain range, so the 
tree’s morphology would be more close to natural 
law. 

There is also another deficiency in above model 
mechanism, namely, in the same branch: the 
bottom of the branch is larger than the top. In order 
to simulate the branch better, we use a truncated 
cone to simulate branches, and we can also set 

3r as the ratio between the radius of upper face and 
that of bottom face in the truncated cone, the 
processing method for 3r is similar to that for 1r . 

Actually, in the process of plant growth, some 
plant’s topology structure would change when it 
becomes closer to the terminal mud, so when 
painting, we can add a judgment for iteration times, 
when the times reach one given number, the 
topological rules would be changed. 

 
3.2.2. THE SIMULATION OF TERMINAL 

In the aspect of simulating plant’s morphology, 
IFS system has the following advantages: the 
generated graphics is coloured; the shade gradually 
changes and graphics has rich texture. For those 
reasons, IFS system is fit to simulate the graphics 
with rich texture such as tree’s leaves and flowers. 
To integrate the L-system with IFS system to 
simulate plant’s morphology, we encapsulate the 
IFS algorithm as a function, with different 
parameters and set of compression affine 
transformation, we can paint leaves with different 
location, different size and different morphology. 
When simulating, we don’t paint a truncated cone 
to simulate the terminal, instead, we call the 
encapsulated IFS function and assign 
corresponding value for each parameter, then paint 
leaves for the plant’s terminal. 

The combination for IFS system and L-system is 
something like “building block”. On one side, use 
the generated rules and parallel rewriting 
mechanism of L-system as the method for 
“building block”, on another side, use the graphics 
with rich texture generated by IFS system as 
“block”. By this improved algorithm, we can 
simulate many kinds of plant’s morphology with 
high fidelity. 

 
3.2.3. THE IMPLEMENTATION FOR 
PROPOSED ALGORITHM 

According to the analyses above, we can use 
two modules to implement our proposed algorithm, 
one is character parallel rewriting module, and 
another is turtle map explanation module. The 
algorithm flows of the two modules are shown in 
fig.5 and fig.6 respectively. 
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Fig. 5 – The algorithm for character parallel rewriting 
module 

 
Fig. 6 – The algorithm for turtle map explanation 

module 

 
To implement the above two modules, we use 

three key functions. Before show the three functions, 
we define the following basic characters: 

Table w: storage the initial map; 
Table p: storage the generators; 
Stack: the stack we used in function; 
Point pt: represent the current grow point; 
Step: the initial step; 
Scale: the scale factor to regulate plant’s 

growing morphology; 
N: iteration times; 

1. The main function for the whole system 
1.  int i=0, char v=w.at(i); 
2. if( i >w.length()) 
3. {     
4.exit();   
5. }else { 
6. switch (v) { 
7. case  ’F’: L-rule(N); 
8. break(); 
9. case ’+’: calculate new rotation vector; break();  
10.case ’-’: calculate new rotation vector;  break(); 
11.case’&’: calculate new rotation vector; break(); 
12.case ’^’: calculate new rotation vector; break(); 
13. case ’\’: calculate new rotation vector; break(); 
14. case ’/’: calculate new rotation vector; break(); 
15.  } 
16. i=i+1; 
17. } 
 
2. The iterated function L-rule( n ) 

1. if(n==1) 
2. {    draw(); 
3.       exit();  } 
4. else if (n==0) 
5. {      leaf(); //call  the encapsulated IFS function 
6.int j=0;   
7. }else { 
8.int j=0; } 
9. if(j>p.length()) 
10. exit() ; 
11. else { 
12.  char t=p.at(j); 
13. switch (t){ 
14. case ’F’: Factor=(Rand()%10)/55; 
15.           step=step*Factor; 
16.           n=n-1; 
17.           L-rule (n-1); 
18.           break(); 
19. case  ’+’: calculate new rotation vector; break(); 
20. case  ’-’: calculate new rotation vector;  break(); 
21. case ’&’: calculate new rotation vector; break(); 
22. case  ’^’: calculate new rotation vector; break(); 
23. case  ’\’: calculate new rotation vector; break(); 
24. case  ’/’: calculate new rotation vector; break(); 
25. case ’[’: 
26.stack.push(currentstate); 
27.          Factor=(Rand()%10)/55; 
28.          step=step*Factor; 
29.          break(); 
30.  case =’]’:currentstate=stack.pop(); break(); 
31.  } 
32.  j=j+1; 
33. } 
 
3. Draw function 
1. draw initial map; 
2. calculate next growing point pn; 
3.       pt=pn; 
4.  calculate new rotation vector; 
5.   exit() ; 
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As mentioned in 3.2.2, the encapsulated IFS 
function is a basic function for IFS system, here we 
don’t give its specific implementation. 

 
4. EXPERIMENTAL RESULTS AND 

ANALYSIS 
4.1. EXPERIMENTAL RESULTS 

We implement our proposed improved algorithm 
with Visual C++ and OpenGL library, in the process 
of simulation, considering the random element of the 
diagram parameters involved in L-system and IFS 
system, we carried out a large number of plant 
simulation experiments, some typical experimental 
results are as shown in fig.7 and fig.8.  

               
(a) bamboo’s leaves  (b) bamboo’s node  (c)Bamboo 

Fig. 7 – The simulation result of bamboo 

 
Fig. 8 – The simulation result of tree 

 
In this paper, we redefine the parameters in 

expression(1): 
cos , sin , sin , cosa r b q c r d qα β α β= = − = = , 

the data used in this paper are as following: 
Fig.7(a)’s affine transform coefficient are shown 

in table 3. 
 
Table 3. Fig.7 (a)’s affine transform coefficient 

w a b c d e f p 
1 0.29 0.4 -0.4 0.0 0.28 0.44 0.25 
2 0.33 -0.34 0.39 0.4 0.41 0.0 0.25 
3 0.42 0.0 0.0 0.63 0.29 0.36 0.25 
4 0.61 0.0 0.0 0.61 0.19 0.23 0.25 

 
Fig.7(b)’s affine transform coefficient are shown 

in table 4. 

Table 4. Fig.7 (b)’s affine transform coefficient 

w a b c d e f p 
1 0.5 0.5 0.0 0.0 0.0 0.0 0.15 
2 0.5 0.5 0.0 0.0 50 0.0 0.35 
3 0.5 0.5 0.0 0.0 0 50 0.35 
4 0.5 0.5 0.0 0.0 50 50 0.15 

 
Fig.8’s affine transform coefficients are shown in 

table 5. 
 

Table 5. Fig.8’s affine transform coefficient 

w a b c d e f p 
1 0.0 0.0 0.0 0.16 0.0 0.0 0.01 
2 0.85 0.04 -0.04 0.85 0.0 1.6 0.85 

3 0.2 -0.26 0.23 0.22 0.0 1.6 0.07 
4 -0.15 0.28 0.26 0.24 0.0 0.44 0.07 

 
Nowadays, Fractal is becoming more and more 

important to computer art and video game scenario 
design. For example, the natural landscape (Shown 
in Fig.9) is a key application using proposed 
approach, and the affine transform coefficient for 
this figure are given in appendix.  

 
Fig. 9 – Simulation result of landscape 

 
4.2. COMPARISON EXPERIMENTS 

The algorithms proposed in reference [9] and [10] 
are typical algorithms which use L system to 
simulate plant’s morphology. With the same 
experimental environment mentioned in section 4.1, 
we implement the algorithms used in reference [9] 
and [10], and some experimental results are shown 
in fig.10 and fig.11.  

 
Fig. 10 – Simulation result of trunk 
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Fig. 11 – Simulation result of tree 

 
As can be seen from the comparison results, the 

plant can be simulated more accuracy using our 
proposed approach.  

 
4.3 RESULTS DISCUSSION 

Compared with algorithms proposed in reference 
[9] and [10], our algorithms mainly present two 
improvements. 

(1) The fidelity of plant simulation result 
From the experimental results shown in section 

4.1 and the comparison experimental result shown in 
section 4.2, obviously we can find that our proposed 
algorithm can simulate plant’s morphology with 
higher fidelity. There is an important extra point we 
must mention especially, i.e., from fig.9, we can see 
that our algorithm also have an extensive application 
prospect in simulation of natural scenery. 

(2) The complexity for controlling plant’s 
growth process 

As mentioned in section 3.1, we give a simpler 
expression which can calculate the state of next 
growing point than that proposed in reference [9] 
and [10]. Here, we give the other two schematic 
diagrams which used to calculate the next grow 
point. Fig.12 (a) and (b) are the schematic diagrams 
used in reference [9] and reference [10] respectively. 

  
(a)                                       (b) 

Fig. 12 – Schematic diagram for plant growing 
direction controlling 

 
From fig.12, we can see that our formula is 

simple and effective to control plant growing 
direction. 

When conducting experiments, we record a series 
of rendering time for simulation result shown fig.8 
and that for fig.11. The relationship between total 
rendering time and the rendered amount is shown in 
fig.13.  

 

 
Fig. 13 – Relationship between total rendering time 

and rendered amount 

 
At the same time, we give the relationship 

between single average rendering time and the 
rendered amount in fig.14. 

 

 
Fig. 14 – Relationship between each single rendering 

time and rendered amount 

 
From fig.13 and fig.14, we can see that our 

proposed approach mainly has two improvements in 
rendering time: 

(1) we can simulate a plant with higher fidelity 
using less time than that of algorithm 
proposed in reference [9] and [10], and the 
efficiency increases 13 % approximately; 

(2) when the rendered amount is large, using our 
proposed algorithm, the average stimulation 
time for each object increases more slowly 
than that of algorithm proposed in reference 
[9] and [10], and this improvement has 
obvious advantage in large-scale simulation 
for natural landscape. 
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5. CONCLUSIONS 
This paper aims to improve the traditional L-

system, gives a simpler method to calculate plant’s 
next growing point. Based on parametric L-system, 
we add the stochastic element, and combine 
stochastic L-system with parameter L-system 
together to make the simulation results have higher 
fidelity. At last, we use the IFS algorithm to generate 
the leaves, so that the graphics painted by L-system 
would be closer to the plant in nature. Experimental 
results show that our proposed approach can 
simulate virtual plants with high fidelity using less 
rendering time. But in this paper, we don’t consider 
the influence of gravity on the branches’ 
morphology [11~13], we also don’t consider the 
environment (such as wind) around the plant in 
nature, so our further work is to build a good 
dynamic model for plant’s branches and to realize 
the branches’ dynamic flicker in wind. 

 
Appendix 

The affine transform coefficient for hill 

 
The affine transform coefficient for green tree 

 
The affine transform coefficient for palm tree 

 
The affine transform coefficient for gray tree 

 
The affine transform coefficient for sun 
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