
G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, A. Guerrieri / Computing, 2010, Vol. 9, Issue 1, 80-89

 80

SPINE-BASED APPLICATION DEVELOPMENT ON HETEROGENEOUS
WIRELESS BODY SENSOR NETWORKS

Giancarlo Fortino 1), Stefano Galzarano 1), Roberta Giannantonio 2),

Raffaele Gravina 1, 3), Antonio Guerrieri 1)

1) Dept. of Electronics, Informatics, and Systems (DEIS), University of Calabria, Rende (CS), Italy,
e-mail: g.fortino@unical.it, galzarano@si.deis.unical.it, aguerrieri@deis.unical.it

2) TILAB, Telecom Italia, Torino, Italy, e-mail: roberta.giannantonio@telecomitalia.it
3) WSN Lab Telecom Italia, Berkeley, CA 94704,

e-mail: rgravina@deis.unical.it

Abstract: Wireless sensor networks (WSNs) are a novel technology enabling new classes of applications and systems
for ubiquitous and pervasive computing. In particular, WSNs for the human body, also known as Wireless Body Sensor
Networks (WBSNs), will enable not only continuous, multi-purpose monitoring of people but also will support social
interaction among people coming into physical contact. In these contexts, applications demand a wide range of
functionalities, in terms of sensor types, processing performance, communication capabilities. Moreover the
development of such applications has to deal with the issue of handling heterogeneous WBSNs since different kinds of
sensor node architectures could be necessary to fulfill all the application requirements. This paper proposes an
approach based on the SPINE frameworks (SPINE1.x and SPINE2) for the programming of signal processing
applications on heterogeneous wireless sensor platforms. In particular, two integrable approaches based on the
proposed frameworks are described that allow the development of applications for WBSNs constituted by
heterogeneous sensor nodes. The approaches are exemplified through a human activity recognition system based on a
WBSN composed of two types of sensor nodes, heterogeneous with respect to base software and hardware.

Keywords: Wireless body sensor networks, software development methodology, task-oriented programming,
distributed signal processing, SPINE.

1. INTRODUCTION
Wireless body sensor networks (WBSNs) have

great potential to enable a broad variety of assisted
living applications such as health and activity
monitoring, and emergency detection. It is therefore
important to provide design methodologies and
programming frameworks which enables rapid
prototyping of collaborative WBSN applications [1].
Although several effective application development
frameworks already exist for WBSNs based on
specific sensor platforms (e.g. CodeBlue [2], SPINE
[6], Titan [4]), effective methods for platform-
independent development of WBSN applications
which would enable rapid development of multi-
platform applications and fast application porting
from one platform to another, are still missing or in
their infancy. In fact, the aforementioned
frameworks can be only used to effectively develop
WBSN applications for TinyOS-based sensor
platforms. Thus, to develop applications for new
sensor platforms, such frameworks should be
implemented for each new sensor platform to be

exploited. This not only increases development
efforts but also enforces developers to become
skilled on the low-level programming abstractions
provided by a new employed sensor platform.

In this article we propose two integrable
approaches for tackling the development of signal
processing applications on heterogeneous WBSNs.
Such approaches are based on SPINE and SPINE2,
two software frameworks which allow a quick
prototyping of WBSN applications. In particular, in
the first approach the WBSN coordinator can
interact with heterogeneous sensor nodes on which a
particular SPINE porting is implemented. In the
second approach the WBSN coordinator interacts
with heterogeneous nodes each of which is
programmed using a same SPINE2 core framework.

The first approach will be presented in the
section 2 of this article, while the second approach
will be explained in the section 3. In section 4 a real
application deployed on a heterogeneous WBSN is
described. In the end some brief final considerations
will be provided.

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, A. Guerrieri / Computing, 2010, Vol. 9, Issue 1, 80-89

 81

2. THE SPINE FRAMEWORK
SPINE (Signal Processing in Node Environment)

[3, 6] is a software framework for the design of
collaborative Wireless Body Sensor Network
(WBSN) applications. It provides programming
abstractions, APIs and libraries of protocols, utilities
and data processing functions which simplify
development of distributed signal processing
algorithms for the analysis and the classification of
sensor data. SPINE [6] is distributed in Open Source
under the LGPL license to facilitate establishing a
broad community of users and developers that
contribute to the scientific evolution of the
framework with new capabilities and applications.

SPINE framework is constituted by two
distinctive parts: a node side runtime system residing
on the sensor nodes and a Java application, the
coordinator, residing on a PC and having
functionalities such as nodes configuration and
control, data gathering and data analysis.

To date, two releases of SPINE are available:
• The TinyOS release (version 1.3) which

supports different kinds of sensor platforms running
the TinyOS [7] operating system (supported
platforms are TelosB, MicaZ, Shimmer).

• The Z-Stack release (version 1.0) allows the
development of WBSN applications on the Z-Stack
platform [8] according to the ZigBee standard [9]. In
particular, Z-Stack is the implementation of the
ZigBee stack carried out by Texas Instruments.

In the following subsections the characteristics of
each version of SPINE and the feasibility of
integrating both of them into a single heterogeneous
WBSN are explained in details.

2.1. SPINE 1.3
The software architecture of the node side part of

the framework is reported in Fig. 1. It is composed
of a set of nesC components forming the runtime
system which relies on the components provided by
TinyOS for accessing the hardware resources, such
as radio, sensors and timers. More specifically, the
SPINEApplication is the core of the framework and
is responsible for managing the overall system. The
PacketManager allows the reception/parsing and the
formatting/sending of application-level messages
over the network through the RadioController that,
in turn, relies on the communication interfaces
(Radio Interface) of TinyOS. The BufferPool takes
charge of providing a set of buffers in which sensed
data and function results are stored. The
SensorBoardController provides access to the
integrated sensors of the node, whereas the
FunctionManager provides processing capabilities
for data pre-elaborations, useful for avoiding battery
consumption due to the excessive raw data

transmission. This component manages a set of
functions already implemented in the release [6], but
it is possible to easily extend the framework with
other ones, on the basis of the user application
requirements.

TinyOS environment

SPINE 1.3 runtime system

Radio Interface Sensor
Interface

PacketManager

SPINEApplication

FunctionManagerSensorBoard
Controller

RadioController
Functions

Timer
Interface

BufferPool

FeatureEngine

SPINE 1.3 nesC components

TinyOS nesC components
Fig. 1 – The SPINE 1.3 node side framework

module FeatureEngineP { provides { interface
Function; interface FeatureEngine; }
 uses {
 interface Boot;
 interface Feature as Features[uint8_t featureID];
 interface BufferPool;
 }
}
implementation {

 void calculateFeature(uint8_t featureCode,
 uint8_t windowSize,
 uint16_t* bufferPoolCopy) {

 call Features.calculate[featureCode](
 (int16_t **)buffer, windowSize);
 result = call Features.getResultSize[featureCode]();

 }
}

Fig. 2 – The module code of the SPINE1.3
FeatureEngine component

A particular set of functions handled by the

FunctionManager is enclosed into the
FeatureEngine subcomponent. It is in charge of
calling appropriate feature calculation on the basis of
the computational operations needed on sensed data.
A sample code skeleton of the FeatureEngine is
reported in Fig. 2 and in Fig. 3. Like any other nesC
component, the FeatureEngine is composed of a
“module” and a “configuration” [7]. The former acts
as a feature dispatcher depending on the featureCode
parameter while the latter includes all necessary
wiring operations for components that actual
implement every feature extraction operation.

G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, A. Guerrieri / Computing, 2010, Vol. 9, Issue 1, 80-89

 82

configuration FeatureEngineC {
 provides interface FeatureEngine;
 uses interface Feature
 as Features[uint8_t featureID];
}
implementation {
 components MainC, BufferPoolP, FeatureEngineP;
 // declared feature components
 components MaxC, MinC, RangeC, MeanC, AmplitudeC,
 RmsC, StandardDeviationC, TotalEnergyC, VarianceC,
 ModeC, MedianC, RawDataC, PitchRollC,
 VectorMagnitudeC;

 FeatureEngineP.FeatureEngine = FeatureEngine;
 FeatureEngineP.BufferPool -> BufferPoolP;
 FeatureEngineP.Boot -> MainC.Boot;
 FeatureEngineP.Features = Features;

 // wiring of the declared components
 FeatureEngineP.Features[MAX] -> MaxC;
 FeatureEngineP.Features[MIN] -> MinC;
 FeatureEngineP.Features[RANGE] -> RangeC;
 FeatureEngineP.Features[MEAN] -> MeanC;
 FeatureEngineP.Features[AMPLITUDE] -> AmplitudeC;
 FeatureEngineP.Features[RMS] -> RmsC;
 FeatureEngineP.Features[ST_DEV] ->
 StandardDeviationC;
 FeatureEngineP.Features[TOTAL_ENERGY] ->
 TotalEnergyC;
 FeatureEngineP.Features[VARIANCE] -> VarianceC;
 FeatureEngineP.Features[MODE] -> ModeC;
 FeatureEngineP.Features[MEDIAN] -> MedianC;
 FeatureEngineP.Features[RAW_DATA] -> RawDataC;
 FeatureEngineP.Features[PITCH_ROLL] -> PitchRollC;
 FeatureEngineP.Features[VECTOR_MAGNITUDE] ->
 VectorMagnitudeC;
}

Fig. 3 – The configuration code of the SPINE1.3
FeatureEngine component

2.2. SPINE FOR Z-STACK

The framework architecture of the SPINE for Z-
Stack is shown in Fig. 4. It consists of components
having different names from the ones of the version
1.3, but having same functionalities because,
obviously, the framework has to offer the same
interface to the high level application running on
top of it.

The implementation of these components, in C
language, is dependent on the services provided by
the Z-Stack system [8]. One of its parts is the
Operating System Application Layer (OSAL) which
is not, strictly speaking, considered an Operating
System, because of its very limited functionality.
However, it offers APIs for: tasks managing
(initialization, scheduling, synchronization and
message passing), interrupts handling, timers
managing and memory allocation. All these
functionalities are represented in Fig. 4 as different
blocks: Task Creation System, Task Synch System,
Timers and Memory Management.

Every Z-Stack application has to be defined as a
set of tasks, each of which has to implement proper
routines for initialization and management of
events, like timeouts, interrupts or incoming

messages from other tasks. So, the application
lifecycle depends on how tasks are configured and
how tasks interact with each others through
messages exchange.

All the framework components are implemented
as tasks running upon the OSAL infrastructure.

Z-Stack environment

SPINE for Z-Stack runtime system

ZigBee
compliant stack

Timers

Communication

SPINEApplication

FunctionManagerSensorManager

Task Creation
System

Sensor
Drivers

Task Synch.
System

BufferPool

Memory
Management

SPINE for Z-Stack components

Z-Stack components

Functions

FeatureEngine

Fig. 4 – The SPINE for Z-Stack node side framework

The SensorManager relies on the Task Creation

System for the creation of the necessary tasks
responsible for sensing operations.

A limitation of the Z-Stack environment is that
it supports the creation of tasks only at the system
start-up, but this is not compliant to the framework
which should manage sensing tasks at runtime. So,
it was necessary to directly modify a part of the Z-
Stack specification, for having the possibility to
add new tasks on running system.

Moreover, the stack does not offer APIs for
accessing physical sensor, simply because the
board comes without installed sensors. For this
reason, an accelerometer has been interfaced to the
microcontroller and a proper driver has been
implemented for providing a direct access to it. In
the future other physical sensors and relative
drivers could be added to the framework. The
SensorManager is responsible for managing sensor
drivers and associates them to the sensing tasks.

Every acquisition operation is associated to a
sampling time and for this purpose the Timers
component offers a simple way for associating a
particular timeout event of a timer to the execution
of a task. It suffices that a sensing task calls the
timer allocation function and the OSAL will be in
charge of signaling, with an event, the execution of
the task after the timer expiration. This approach
differs from the one adopted in SPINE1.3, where
an explicit association to the timer and the
consequent sensing operation execution compete to
the programmer. The part of the framework that
substantially differs in the two versions is related to
the communication management. In fact, in order to

G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, A. Guerrieri / Computing, 2010, Vol. 9, Issue 1, 80-89

 83

be executed on the Z-Stack environment, the
framework has to be ZigBee compliant. So, all the
application-level messages have to be encapsulated
in a message packet formatted according to the
protocol stack specifications. This is performed
through the use of APIs provided by the ZigBee
Device Object of the Z-Stack system.

The FunctionManager manages the processing
functions on the node and makes use of the Task
Synch System to request result transmission to an
appropriate communication task. The BufferPool
has the same functionality as the BufferPool of
SPINE1.3. As in SPINE1.3, the FunctionManager
handles the FeatureEngine subcomponent for
sensed data pre-elaboration. Its sample C code is
shown in Fig. 5. Differently from the SPINE1.3
version of the FeatureEngine, the version for Z-
Stack consists of a series of explicit case statements
depending on the unique code of the requesting
feature.

2.3. HETEROGENEOUS PROGRAMMING

The SPINE coordinator, which runs at the base
station side, is able to interact both with TinyOS
sensor nodes and Z-Stack sensor nodes (as shown
in Fig. 6). This allows building a WBSN composed
of heterogeneous nodes which however should be
programmed by using the node side SPINE
implementation for each specific node. So, while
this approach allows using heterogeneous sensors
in the same WBSN, different types of sensors must
be differently programmed. In order to perform its
functionalities, the coordinator has to be interfaced,
via USB cable, to one of each sensor type (TinyOS
and Z-Stack) using the appropriate radio
communication capabilities for communicating
with two different parts of the WBSN (it is worth
noting that TinyOS sensor platforms supported by
SPINE 1.3 use the IEEE 802.15.4 standard while Z-
Stack uses the ZigBee standard). Nevertheless the
high-level communication service is the same as it
uses a unique format for application-level messages
used for nodes configuration and information
exchange.

Furthermore, the coordinator can be either local
or remote; in fact, a new implementation of the
coordinator supports multi-user remote application
control through RMI technology. When it is needed
to use different types of sensors within a WBSN
application, it is important to know how much the
framework performs differently on them. A
performance comparison between SPINE 1.3 on
TelosB nodes and SPINE for Z-Stack nodes,
concerning the processing of specific features
computed on different sizes (50, 100) of data
samples, is reported in Table 1.

uint8 featureEngine_calculateFeature(
 functionParameter_t* par,
 active_feature* activeFeatureList,
 uint8 actFeatsIndex, FEspace* workspace){

 callFeature(
 activeFeatureList[actFeatsIndex].FeatureCode,
 par->ch, activeFeatureList[actFeatsIndex].mask,
 par->windowSize, result);

buildResult(workspace->result, result,
 activeFeatureList[actFeatsIndex].FeatureCode,
 activeFeatureList[actFeatsIndex].mask);

}

uint8 callFeature(FeatureCodes code, int16** ch,
 uint8 mask, uint8 length, uint16** result){

 uint8 op_result = OP_ERROR;

 switch(code){
 case MAX:{
 op_result= feature_Max(ch,mask,length,result);
 break;
 }
 case MIN:{
 op_result= feature_Min(ch,mask,length,result);
 break;
 }
 case RAW_DATA:{
 op_result=feature_RawData(ch,mask,length,result);
 break;
 }
 case MEAN:{
 op_result=feature_Mean(ch,mask,length,result);
 break;
 }
 case AMPLITUDE:{
 op_result=feature_Amplitude(ch,mask,length,result)
 break;
 }
 case RMS:{
 op_result= feature_Rms(ch,mask,length,result);
 break;
 }
 case ST_DEV:{

op_result=feature_StandardDeviation(ch,mask,length,
 result);

 break;
 }
 case VARIANCE:{

op_result=feature_Variance(ch,mask,length,result);
break;

 }
 case MEDIAN:{
 op_result=feature_Median(ch,mask,length,result);
 break;
 }
 case PITCH_ROLL:{

op_result=feature_PitchRoll(ch,mask,length,result);
 break;
 }
 case VECTOR_MAGNITUDE:{

op_result=feature_VectorMagnitude(ch,mask,length,
 result);

 break;
 }
 case MODE:{

op_result=feature_Mode(ch,mask,length,result);
break;

 }
 case TOTAL_ENERGY:{

op_result=feature_TotalEnergy(ch,mask,length,
 result);
break;

 }
 default:break;
 }
 return op_result;
}

Fig. 5 – The code of the FeatureEngine component of
SPINE for Z-Stack

G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, A. Guerrieri / Computing, 2010, Vol. 9, Issue 1, 80-89

 84

SPINE
Coordinator

TN ZN

SPINE
programming

for TinyOS

SPINE
programming

for Z-Stack

ZN
ZN ZNTN

TN

TN

TN

ZN

TN TinyOS node (TelosB, MicaZ , Shimmer)

ZN Z-Stack node

Fig. 6 – A SPINE heterogeneous network

As can be noted, a Z-Stack node provides better

performance than TelosB (obviously, because of its
different and higher performance hardware), so it is
more desirable to use Z-Stack nodes to accomplish
complex and time-consuming processing task.

Table 1. Performance comparison between SPINE 1.3
(on TelosB sensor nodes) and SPINE for Z-Stack

3. THE SPINE2 FRAMEWORK
The SPINE2 framework [10] is an evolution of

SPINE based on the C-language for reaching a very
high platform independency for C-like
programmable sensor platforms (e.g. TinyOS,
Ember [11], Z-Stack) and so raising the level of the
provided programming abstractions from platform-
specific to platform-independent.
To develop platform-independent WSN applications,
several approaches, defined for platform-
independent software development in conventional
distributed platforms, can be effectively adopted:

• Model-driven Development (MDD). MDD is an
approach which provides a set of guidelines for
structuring specifications expressed as models
and, then, translating such models into platform-
dependent code [12]. In particular, MDD defines
system functionality using a platform-independent
model (PIM) through an appropriate domain-
specific language (DSL); then, given a platform

definition model (PDM) corresponding to
CORBA, .NET, the Web, etc., the PIM is
transformed into one or more platform-specific
models (PSMs) that computers can run. The PSM
may use different DSLs or general purpose
languages (e.g. Java, C#, PHP, Python).
Moreover, automated tools generally perform this
transformation.
• Virtual Machine (VM). A VM runs as a normal
application inside an OS. Its purpose is to provide
a platform-independent programming environment
that abstracts away details of the underlying
hardware or operating system, and allows a
program to execute in the same way on any
platform.
• Software Layering (SL). Software layering has
been largely used for the development of
communication protocol suites to hide network
heterogeneity. Therefore to hide heterogeneity of
different platforms a basic software layer (or core
framework), which provides basic functionality, is
defined for a set of heterogeneous platforms based
on a similar programming language and adapted to
each different platforms through platform specific
modules. Code development is carried out through
such common programming language according to
the defined core framework.
Although MDD approach is very flexible and

effective for platform-independent software
development, a major problem is that automatic
translation may introduce overhead in terms of
generated code size and execution speed. The VM
approach is effective for providing platform
independence, but the deployment of a VM on node
able to execute the SPINE language can be very
expensive in terms of execution speed and used
resources (e.g. memory). According to the SL
approach, a SPINE2 core framework can be defined
through a language used by the majority of sensor
platform and, then, adapted to such different
platforms through platform specific software
modules. With this approach the core framework can
be accurately defined and implemented and kept
highly efficient. However, it fits only sensor
platforms programmed through compatible
languages.

SPINE2 was founded on an SL approach based
on the C language (see Fig. 7), which is the language
used for programming the majority of embedded
systems. It embodies the following features:

• execution on commercial resource-constrained
sensor platforms each one having a different
operating system;
• minimization of the amount of code that should
be replicated for each specific implementation;
• enabling C-developers (eventually C++) to
extend the SPINE2 framework without having to

G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, A. Guerrieri / Computing, 2010, Vol. 9, Issue 1, 80-89

 85

learn low-level details of specific sensor platforms
or without having to learn new programming
languages;
• enabling compiling and simulating the code by
using normal ANSI C tools.

SPINE LANGUAGE (C-Language)

TinyOS
Adaptation

Modules

SPINE PROGRAMS

SPINE CORE FRAMEWORK

TinyOS
(TelosB, MicaZ) EmberZNet Z-Stack

(TI Z-Stack)

EmberZNet
Adaptation

Modules

Z-Stack
Adaptation

Modules

Fig. 7 – SPINE2 based on the SL approach

While SPINE is centered on a programming

model based on functions, SPINE2 is based on a
task oriented programming model in order to best fit
the requirements of collaborative distributed
applications in resource-constrained environments.
Distributed and collaborative applications can then
be programmed as a dynamically schedulable and
reconfigurable set of tasks. Different tasks can be
assigned to each node of the network and tasks can
be controlled at execution time via proper message
exchange; in this way the network can overall adapt
to changes in context, in overall goals, in the state of
each single node, and it can better balance load and
task types between each element of the network.
Dynamic distribution of tasks also allows
preprocessing of sensed data directly on the node, a
significant reduction of data transmission and
battery consumption, and an overall increase of the
network lifetime. Thanks to task oriented
programming, application developers do not need to
program in tiny environments but only configure
tasks on the WBSN coordinator.

Fig. 8 shows the software architecture of
SPINE2. Basically, it consists of the similar
functional parts previously discussed for the
versions 1.x, but it is important to observe that,
according to the adopted SL approach, most of the
framework components are implemented in C.
Focusing attention on the changed parts, because of
the new task oriented programming model, the
TaskManager takes the place of the
FunctionManager (see Fig. 1 and Fig. 4). Moreover
it relies on the platform-specific TaskScheduler
which provides scheduling functionalities for the
tasks activated on the node. The BufferPool allows
storage capabilities for sensed data and task results.
It is an active component because it consists not only

of a set of buffers, but provides a simple API in
order to safely access them. Finally, due to its
programming model, the communication protocol
has been redesigned and new message types have
been introduced so that to allow task management
on SPINE2 nodes, such as task creation and
configuration. Nevertheless, to maintain backward
compatibility, a SPINE1.x/2 software
communication bridge has been also implemented.

It is quite clear that if programmers want to
extend the SPINE2 framework for supporting other
C-like sensor platforms, the only components that
they have to develop are few adapter modules that
interface the SPINE2 core (the C modules) to the
platform-specific hardware resources, such as radio,
sensors and timers.

Platforms:
TinyOS / EmberZNet / Z-Stack

SPINE2 C modules

Platform-specific adaptation modules

Platform-specific modules

C-like platforms environment

SPINE2 runtime system

Radio Interface Sensor Interface

CommManager

SPINEApplication

TaskManagerSensorManager

RadioController

BufferPool Tasks

TaskScheduler

Timer Interface

SensorAdapter

Fig. 8 – The SPINE2 node side framework

Currently, the program execution control

implemented in SPINE2 is based on a timer-driven
approach [13]. Differently from others approaches,
like the data-flow-driven or the event-driven, each
single task composing a user application is activated
by a timer. Therefore, the developer not only has to
establish relationships among tasks, but also set their
timers in a properly way, such that they are kept
synchronized. For example, a data manipulation task
working on a buffered sensed data should be
associated to a timer so that it fires only when all
data are available, and this depends on settings of
the timer related to the task associated to the sensing
operation.

According to the new programming model a
timed task is defined as a C-struct as reported in Fig.
9. In particular, taskID is a unique identifier,
taskType is the type of the task, status holds
information about the task status (created, active,
paused), timer contains the task firing time,
timerScale contains the measurement unit of the

G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, A. Guerrieri / Computing, 2010, Vol. 9, Issue 1, 80-89

 86

timer, isPeriodic signals if the timed task is periodic
or one-shot, and parameters contains parameters
specific to the taskType. The currently available
taskTypes are sensing, featureExtraction, and
aggregation&sending.

typedef struct timedTaskDescription {
unsigned char taskID; unsigned char
taskType; unsigned char status; unsigned
long timer;
 unsigned char timerScale;
 unsigned char isPeriodic;
 parameters[TASK_PARAMETER_LENGTH];
}timedTaskDescription;
Fig. 9 – The SPINE2 timed task definition

Fig. 10 shows a SPINE2 net formed by different

sensor platforms. According to this new framework,
not only the SPINE coordinator can interact with
heterogeneous nodes, but also developers can
program nodes in homogeneous way.

TN

TN

TN

ZN

ZN

EN

EN

SPINE
Coordinator

TN ZNEN

SPINE2 Sensor Node
Programming

TN TinyOS node (TelosB, MicaZ, Shimmer)

EmberZNet nodeEN

ZN Z-Stack node

Fig. 10 – A SPINE2 heterogeneous network

In fact, the node side SPINE2 core is

implemented through a high-level programming
approach and this code is the same for each platform
supported by SPINE2. This also allows a simpler
and more rapid approach (compared to version 1.x)
for framework extension, for example when a new
sensor or a new functionality is to be added because
of user application needs.

After having described the new characteristics of
version 2 of the SPINE framework, an analysis of its
performance compared to the performances of the
previous versions is presented to show which
implications the use of the Software Layering
approach involves. In particular, time performance
evaluations related to the execution of specific
features on the two different types of nodes are
reported in Table 2. As one can see, the SPINE2

software architecture does not induce any sort of
performance penalties but, on the contrary, exhibits
small improvements. Furthermore, in the Z-Stack
environment there are no differences between
SPINE and SPINE2, because in both versions, calls
to functions are based on the C language.

Table 2. Performance comparison of features

extraction evaluated on 100 data samples among
SPINE (1.x) and SPINE2

4. ACTIVITY MONITORING BASED ON
HETEROGENEOUS WBSNs

To test the effectiveness of the SPINE (versions
1.x and 2) frameworks and their capability on
managing a heterogeneous network, a human
Activity Monitoring System (AMS) [3] has been
reverse engineered and made heterogeneous.

AMS is able to recognize postures (e.g. lying,
sitting or standing still) and a few movements (e.g.
walking and jumping) of a person; furthermore it
can detect if the monitored person has fallen or
unable to stand up. Fig. 11 shows the entire software
design of the system, which consists of a
coordinator-side application and two node-side
applications.

The former is implemented in Java (in Fig. 11 is
represented as “Application on SPINE”) and
contains classifiers that use the gathered pre-
elaborated data coming from the sensors, for
performing recognition of movements and postures
defined in a training phase. This application runs on
top of the SPINE Manager, enclosed in the
coordinator part of the SPINE framework. This
manager can exploit distinctive communication
modules for interacting with different types of
sensor communication protocols.

The node-side application is deployed on two
sensor nodes, one located on the thigh and the other
on the waist of the person, and running on top of the
SPINE 1.x/2 node runtime system. Both of them rely
on sensed data coming from an accelerometer, but
no raw data are sent to the coordinator because they
are pre-elaborated by some processing functions
(features extraction) before their transmission. The
two sensor node applications differ regarding the
way sensor data are pre-processed and transmitted.
In particular, the thigh node application consists of
sending to the coordinator the result of the Min
feature extracted from the X-axis data of the

G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, A. Guerrieri / Computing, 2010, Vol. 9, Issue 1, 80-89

 87

accelerometer. The application residing on the waist
node takes data from all the three axes of the
accelerometer and split them for the computation of
three different features: the Mean from all axes, the
Min and the Max from only the X-axis. Afterwards,
all the computed features are aggregated together
and sent to the coordinator.

Each feature has two main parameters that have
to be set for a correct application definition: window
and shift. The window value represents the number
of sampled data on which the feature is evaluated,
whereas the shift value represents how many new
samples data are necessary for a new computation of
the same feature.

It is very important to consider that the
application design in Fig. 11 has been represented
following the SPINE2 task-oriented approach, but
the application specifications are not, however,
strictly feasible only for an implementation on the
SPINE2 node runtime system. In fact, the AMS
application has been implemented and tested,
separately, both with the SPINE1.x and with the
SPINE2 framework.

Sensing on
Accelerometer Split AccXYZ

Max Min Mean

AccXYZ

Aggr. Sending to
Coordinator

Max(AccX) Mean(AccXYZ) Min(AccX)

<Max(AccX),
Mean(AccXYZ),

Min(AccX)>

WAIST Node

Sensing on
Accelerometer

AccXYZ Min

Sending to
Coordinator

Min(AccX)

THIGH Node

COORDINATOR

SPINE Listener

SPINE Manager

Application on SPINE

Fig. 11 – The Activity Monitoring application

In Fig. 12 the complete SPINE 1.x Activity

Monitoring System is shown. The network
architecture is composed of a TelosB node (running
the SPINE 1.3 runtime) placed on a thigh of a person
and a Z-Stack node (running the SPINE for Z-Stack
runtime) placed on the waist of the same person. In

section 2.3 we have already discussed about the
possibility of having different types of sensor in the
same SPINE net and this real application
demonstrates the feasibility in managing a
heterogeneous WBSN using the SPINE1.x
framework. The coordinator (running on a notebook)
has been interfaced with the WSN through other two
nodes connected via USB cable which provide the
necessary radio communication capability.

Fig. 12 – The SPINE1.x Activity Monitoring System

As mentioned before, the system has also been

tested with the version 2 of the SPINE framework.
The system architecture, depicted in Fig. 13, is the
same as the previous except that in such a case, the
different types of nodes run the same SPINE2 core
runtime system plus the particular adaptation code
related to the particular node platforms. Moreover,
the SPINE2 Over-the-Air communication protocol is
necessary because of the new task oriented
programming model adopted in SPINE2.

Fig. 13 – The SPINE2 Activity Monitoring System

To show the SPINE2 programming of the

sensors, the waist node application (see Fig. 11) is
considered. The definition of the timed tasks (see
Fig. 9) is reported in Fig. 14. For the other two
feature extraction tasks (Max and Min), parameters
settings are similar to the Mean task, except for the
FEX_FEATURE and the
FEX_CHANNEL_BITMASK which is 0x08,

G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, A. Guerrieri / Computing, 2010, Vol. 9, Issue 1, 80-89

 88

indicating that only data from axis X of the
accelerometer have to be considered. The timed
tasks on the thigh node are defined in a similar way.

(sensTask)->taskID = 1;
(sensTask)->taskType = TASKTYPE_SENSING;
(sensTask)->timer = 50;
(sensTask)->timerScale = TIMER_SCALE_MSEC;
(sensTask)->isPeriodic = TRUE;
(sensTask)->parameters[ACQ_SENSOR_ID] = ACCELEROMETER;
(sensTask)->parameters[ACQ_CHANNEL_BITMASK] = 0x0E;
 //XYZ channels
(sensTask)->parameters[ACQ_BUFFER_ID_1] = 0;
(sensTask)->parameters[ACQ_BUFFER_ID_2] = 1;
(sensTask)->parameters[ACQ_BUFFER_ID_3] = 2;

(a)
(meanTask)->taskID = 2;
(meanTask)->taskType = TASKTYPE_FEATURE_EXTRACTION;
(meanTask)->timer = 500; //every 10 new samples
(meanTask)->timerScale = TIMER_SCALE_MSEC;
(meanTask)->isPeriodic = TRUE;
(meanTask)->parameters[FEX_FEATURE] = MEAN;
(meanTask)->parameters[FEX_CHANNEL_BITMASK] = 0x0E;
(meanTask)->parameters[FEX_WINDOW] = 20;
(meanTask)->parameters[FEX_BUFFER_ID_1] = 0;
(meanTask)->parameters[FEX_BUFFER_ID_2] = 1;
(meanTask)->parameters[FEX_BUFFER_ID_3] = 2;
(meanTask)->parameters[FEX_SENSOR_ID]=ACCELEROMETER;
(meanTask)->parameters[FEX_AGGR_ID] = 1;

(b)
(aggrSendTask)->taskID = 5;
(aggrSendTask)->taskType = TASKTYPE_AGGR_AND_SEND;
(aggrSendTask)->timer = 550;
(aggrSendTask)->timerScale = TIMER_SCALE_MSEC;
(aggrSendTask)->isPeriodic = FALSE;
(aggrSendTask)->parameters[AGG_ID] = 1;
(aggrSendTask)->parameters[AGG_FEATURES_TO_WAIT_FOR]=3;

(c)

Fig. 14 – The definition of tasks for the waist sensor
node: (a) sensing task, (b) feature extraction (Mean)

task, (c) aggregation&sending task.

The application on the coordinator is responsible

for gathering pre-elaborated data taken from the
accelerometer sensors of the nodes and relies on a
classifier that recognizes postures and movements
defined in a training phase. In particular, the
application integrates two different classifiers: one
based on the K-Nearest Neighbor algorithm [14] and
the other based on J48 Decision Tree [15]. They
were setup through a training phase and tested
considering the following settings for the sensors
data acquisition: the sample time was set to 50ms,
the window to 20, whereas the shift to 10. This
means that the features in Fig. 11 (Min, Max and
Mean) are evaluated on 20 sampled data (1 sec
acquisition) and computed every new 10 samples
(500ms) acquired by the sensors. See Table 3 for the
obtained classification accuracy results.

Table 3. Classification accuracy for classifiers based

on K-Nearest Neighbor and J48 Decision Tree

5. CONCLUSION
In the context of the rapid development of

WBSN applications, this paper has introduced the
main features of the SPINE and SPINE2
frameworks. They can be effectively used for
enabling the development of signal processing
applications on heterogeneous WBSNs. In
particular, the approach based on SPINE relies on
the capability of the WBSN coordinator to interact
with a network composed of heterogeneous sensor
nodes on which a platform specific porting of the
SPINE framework is installed. In the second
approach based on SPINE2, the WBSN coordinator
is still able to interact with heterogeneous nodes but,
in this case, on each sensor node the same SPINE2
core is installed so allowing sensor node
homogeneous programming. Results obtained from
the performance evaluation of the SPINE
frameworks show that SPINE2 performs better than
SPINE1.3 on TelosB sensor nodes in terms of speed
for feature computation.

On-going work aims to: (i) complete the
implementation of SPINE2 for the Ember sensor
platform and designing a version for ContikiOS
[16], (ii) develop a SPINE2 coordinator based on a
task-oriented protocol to program and control
SPINE2 sensor nodes, (iii) design a flexible event-
based architecture for SPINE2 to increase
programming effectiveness and avoid an excessive
use of timers, and (iv) extend SPINE2 for general
collaborative WSN applications (not only centered
on star-based networks).

6. ACKNOWLEDGMENTS
Authors wish to thank Luigi Buondonno and

Antonio Giordano for their implementation efforts
on porting SPINE on the Z-Stack platform and Fabio
L. Bellifemine and Marco Sgroi for their precious
contributions to the SPINE project in terms of ideas,
discussions and useful suggestions. The SPINE
project is partially funded by Telecom Italia.

7. REFERENCES
[1] O. Gama, C. Figueiredo, P. Carvalho, P. M.

Mendes. Towards a Reconfigurable Wireless
Sensor Network for Biomedical Applications.
IEEE International Conference on Sensor
Technologies and Applications (SensorComm),
Valencia (Spain), 2007.

[2] V. Shnayder, B. Chen, K. Lorincz, T.R.F.
Fulford-Jones, and M. Welsh. Sensor networks
for medical care. Technical Report TR-08-05,
Division of Engineering and Applied Sciences,
Harvard University, 2005.

[3] R. Gravina, A. Guerrieri, G. Fortino, F.

G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, A. Guerrieri / Computing, 2010, Vol. 9, Issue 1, 80-89

 89

Bellifemine, R. Giannantonio, M. Sgroi.
Development of body sensor network
applications using SPINE. In Proc. of IEEE
International Conference on “Systems, Man,
and Cybernetics (SMC2008), Singapore, Oct.
12-15, 2008.

[4] C. Lombriser, N.B. Bharatula, D. Roggen. On-
body activity recognition in a dynamic sensor
network. In Proc. of 2nd Int. Conference on
Body Area Networks (BodyNets 2007),
Florence, Italy, June 11-13 2007.

[5] S. Iyengar, F. Tempia Bonda, R. Gravina, A.
Guerrieri, G. Fortino, A. Sangiovanni-
Vincentelli. A framework for creating
healthcare monitoring applications using
wireless body sensor networks. In the Proc. of
the 3rd International Conference on Body
Area Networks (BodyNets’08), Tempe (AZ),
USA, Mar. 13-15, 2008.

[6] SPINE documents and software.
http://spine.tilab.com

[7] TinyOS Web Site. http://www.tinyos.net
[8] Z-Stack – ZigBee Protocol Stack –

http://focus.ti.com/docs/toolsw/folders/print/z-
stack.html

[9] ZigBee Alliance – http://www.zigbee.org/
[10] Giancarlo Fortino, Antonio Guerrieri, Fabio

Bellifemine, Roberta Giannantonio. Platform-
independent development of collaborative
Wireless Body Sensor Network applications:
SPINE2. In Proc. of 2009 IEEE International
Conference on Systems, Man, and Cybernetics
(SMC2009), San Antonio (TX) USA, Oct. 11-
14, 2009.

[11] Ember Web Site. http://www.ember.com
[12] B. Selic. The Pragmatics of Model-Driven

Development. IEEE Software, vol. 20, no. 5,
pp. 19-25, Sep./Oct. 2003.

[13] G. Fortino, A. Guerrieri, R. Giannantonio, F.
Bellifemine. SPINE2: developing BSN
applications on heterogeneous sensor nodes. In
Proc. of IEEE Symposium on Industrial
Embedded Systems (SIES’09), special session
on wireless health, Lausanne (Switzerland), 8-
10 July 2009.

[14] T. Cover, P. Hart. Nearest neighbor pattern
classification. In IEEE Trans. Inform. Theory,
Vol. 13, pp. 21-27, January 1967.

[15] R. Quinlan. C4.5: Programs for Machine
Learninge. Morgan Kaufmann Publishers. San
Mako, CA, 1993.

[16] Contiki, documentation and software
http://www.sics.se/contiki.

Giancarlo Fortino, is an
Associate Professor of computer
science at the Department of
Electronics, Informatics, and
Systems of the University of
Calabria, Italy. His research
interests include distributed
computing, wireless sensor
networks, multimedia systems,

agent-oriented technology and systems, and applied
software engineering. He received a Laurea degree
and a PhD in Computer Engineering from the
University of Calabria.

Stefano Galzarano, is a Master
Student in Computer Engineering
at the University of Calabria. His
research interests are focused on
high-level programming methods
for wireless sensor networks. He
received a Bachelor degree in
Computer Engineering from the
University of Calabria.

Roberta Giannantonio, is a
Researcher at the Telecom Italia
Lab, Torino, Italy. Her research
interests are mainly focused on
wireless technology, particularly
wireless sensor networks. She
received a Laurea degree in
Telecommunication Engineering
from Politecnico di Torino.

Raffaele Gravina, is a PhD
Student in Computer Engineering
at the University of Calabria. His
research interests are focused on
high-level programming methods
for wireless sensor networks. He
received a Bachelor and Master
degrees in Computer Engineering
from the University of Calabria.

Antonio Guerrieri, is a PhD
Student in Computer Engineering
at the University of Calabria. His
research interests are focused on
high-level programming methods
for wireless sensor networks. He
received a Bachelor and Master
degrees in Computer Engineering
from the University of Calabria.

