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Abstract: Wireless sensor networks (WSNs) are a novel technology enabling new classes of applications and systems 
for ubiquitous and pervasive computing. In particular, WSNs for the human body, also known as Wireless Body Sensor 
Networks (WBSNs), will enable not only continuous, multi-purpose monitoring of people but also will support social 
interaction among people coming into physical contact. In these contexts, applications demand a wide range of 
functionalities, in terms of sensor types, processing performance, communication capabilities. Moreover the 
development of such applications has to deal with the issue of handling heterogeneous WBSNs since different kinds of 
sensor node architectures could be necessary to fulfill all the application requirements. This paper proposes an 
approach based on the SPINE frameworks (SPINE1.x and SPINE2) for the programming of signal processing 
applications on heterogeneous wireless sensor platforms. In particular, two integrable approaches based on the 
proposed frameworks are described that allow the development of applications for WBSNs constituted by 
heterogeneous sensor nodes. The approaches are exemplified through a human activity recognition system based on a 
WBSN composed of two types of sensor nodes, heterogeneous with respect to base software and hardware. 
 
Keywords: Wireless body sensor networks, software development methodology, task-oriented programming, 
distributed signal processing, SPINE. 

 
 

1. INTRODUCTION 
Wireless body sensor networks (WBSNs) have 

great potential to enable a broad variety of assisted 
living applications such as health and activity 
monitoring, and emergency detection. It is therefore 
important to provide design methodologies and 
programming frameworks which enables rapid 
prototyping of collaborative WBSN applications [1]. 
Although several effective application development 
frameworks already exist for WBSNs based on 
specific sensor platforms (e.g. CodeBlue [2], SPINE 
[6], Titan [4]), effective methods for platform-
independent development of WBSN applications 
which would enable rapid development of multi-
platform applications and fast application porting 
from one platform to another, are still missing or in 
their infancy. In fact, the aforementioned 
frameworks can be only used to effectively develop 
WBSN applications for TinyOS-based sensor 
platforms. Thus, to develop applications for new 
sensor platforms, such frameworks should be 
implemented for each new sensor platform to be 

exploited. This not only increases development 
efforts but also enforces developers to become 
skilled on the low-level programming abstractions 
provided by a new employed sensor platform. 

In this article we propose two integrable 
approaches for tackling the development of signal 
processing applications on heterogeneous WBSNs. 
Such approaches are based on SPINE and SPINE2, 
two software frameworks which allow a quick 
prototyping of WBSN applications. In particular, in 
the first approach the WBSN coordinator can 
interact with heterogeneous sensor nodes on which a 
particular SPINE porting is implemented. In the 
second approach the WBSN coordinator interacts 
with heterogeneous nodes each of which is 
programmed using a same SPINE2 core framework. 

The first approach will be presented in the 
section 2 of this article, while the second approach 
will be explained in the section 3. In section 4 a real 
application deployed on a heterogeneous WBSN is 
described. In the end some brief final considerations 
will be provided. 
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2. THE SPINE FRAMEWORK 
SPINE (Signal Processing in Node Environment) 

[3, 6] is a software framework for the design of 
collaborative Wireless Body Sensor Network 
(WBSN) applications. It provides programming 
abstractions, APIs and libraries of protocols, utilities 
and data processing functions which simplify 
development of distributed signal processing 
algorithms for the analysis and the classification of 
sensor data. SPINE [6] is distributed in Open Source 
under the LGPL license to facilitate establishing a 
broad community of users and developers that 
contribute to the scientific evolution of the 
framework with new capabilities and applications. 

SPINE framework is constituted by two 
distinctive parts: a node side runtime system residing 
on the sensor nodes and a Java application, the 
coordinator, residing on a PC and having 
functionalities such as nodes configuration and 
control, data gathering and data analysis. 

To date, two releases of SPINE are available: 
• The TinyOS release (version 1.3) which 

supports different kinds of sensor platforms running 
the TinyOS [7] operating system (supported 
platforms are TelosB, MicaZ, Shimmer). 

• The Z-Stack release (version 1.0) allows the 
development of WBSN applications on the Z-Stack 
platform [8] according to the ZigBee standard [9]. In 
particular, Z-Stack is the implementation of the 
ZigBee stack carried out by Texas Instruments. 

In the following subsections the characteristics of 
each version of SPINE and the feasibility of 
integrating both of them into a single heterogeneous 
WBSN are explained in details. 

2.1. SPINE 1.3 
The software architecture of the node side part of 

the framework is reported in Fig. 1. It is composed 
of a set of nesC components forming the runtime 
system which relies on the components provided by 
TinyOS for accessing the hardware resources, such 
as radio, sensors and timers. More specifically, the 
SPINEApplication is the core of the framework and 
is responsible for managing the overall system. The 
PacketManager allows the reception/parsing and the 
formatting/sending of application-level messages 
over the network through the RadioController that, 
in turn, relies on the communication interfaces 
(Radio Interface) of TinyOS. The BufferPool takes 
charge of providing a set of buffers in which sensed 
data and function results are stored. The 
SensorBoardController provides access to the 
integrated sensors of the node, whereas the 
FunctionManager provides processing capabilities 
for data pre-elaborations, useful for avoiding battery 
consumption due to the excessive raw data 

transmission. This component manages a set of 
functions already implemented in the release [6], but 
it is possible to easily extend the framework with 
other ones, on the basis of the user application 
requirements. 

 
TinyOS environment

SPINE 1.3  runtime system

Radio Interface Sensor
Interface

PacketManager

SPINEApplication

FunctionManagerSensorBoard
Controller

RadioController
Functions

Timer
Interface

BufferPool

FeatureEngine

SPINE 1.3 nesC components

TinyOS nesC components  
Fig. 1 – The SPINE 1.3 node side framework 

 
module FeatureEngineP {  provides {     interface 
Function;     interface FeatureEngine;  } 
  uses { 
   interface Boot; 
   interface Feature as Features[uint8_t featureID]; 
   interface BufferPool; 
  } 
} 
implementation { 
  ..... 
  void calculateFeature(uint8_t featureCode,  
                        uint8_t windowSize,  
                        uint16_t* bufferPoolCopy) { 
   ..... 
   call Features.calculate[featureCode]( 
                       (int16_t **)buffer, windowSize); 
   result = call Features.getResultSize[featureCode](); 
   ..... 
  } 
} 

Fig. 2 – The module code of the SPINE1.3 
FeatureEngine component 

 
A particular set of functions handled by the 

FunctionManager is enclosed into the 
FeatureEngine subcomponent. It is in charge of 
calling appropriate feature calculation on the basis of 
the computational operations needed on sensed data. 
A sample code skeleton of the FeatureEngine is 
reported in Fig. 2 and in Fig. 3. Like any other nesC 
component, the FeatureEngine is composed of a 
“module” and a “configuration” [7]. The former acts 
as a feature dispatcher depending on the featureCode 
parameter while the latter includes all necessary 
wiring operations for components that actual 
implement every feature extraction operation. 
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configuration FeatureEngineC { 
  provides interface FeatureEngine;     
  uses interface Feature  
                 as Features[uint8_t featureID]; 
} 
implementation { 
  components MainC, BufferPoolP, FeatureEngineP;       
  // declared feature components 
  components MaxC, MinC, RangeC, MeanC, AmplitudeC,  
  RmsC, StandardDeviationC, TotalEnergyC, VarianceC,   
  ModeC, MedianC, RawDataC, PitchRollC,    
  VectorMagnitudeC; 
     
  FeatureEngineP.FeatureEngine = FeatureEngine; 
  FeatureEngineP.BufferPool -> BufferPoolP; 
  FeatureEngineP.Boot -> MainC.Boot; 
  FeatureEngineP.Features = Features; 
 
  // wiring of the declared components 
  FeatureEngineP.Features[MAX] -> MaxC; 
  FeatureEngineP.Features[MIN] -> MinC; 
  FeatureEngineP.Features[RANGE] -> RangeC; 
  FeatureEngineP.Features[MEAN] -> MeanC; 
  FeatureEngineP.Features[AMPLITUDE] -> AmplitudeC; 
  FeatureEngineP.Features[RMS] -> RmsC; 
  FeatureEngineP.Features[ST_DEV] ->  
                                StandardDeviationC; 
  FeatureEngineP.Features[TOTAL_ENERGY] ->  
                                TotalEnergyC; 
  FeatureEngineP.Features[VARIANCE] -> VarianceC; 
  FeatureEngineP.Features[MODE] -> ModeC; 
  FeatureEngineP.Features[MEDIAN] -> MedianC; 
  FeatureEngineP.Features[RAW_DATA] -> RawDataC; 
  FeatureEngineP.Features[PITCH_ROLL] -> PitchRollC; 
  FeatureEngineP.Features[VECTOR_MAGNITUDE] ->  
                                VectorMagnitudeC; 
} 

Fig. 3 – The configuration code of the SPINE1.3 
FeatureEngine component 

 
2.2. SPINE FOR Z-STACK 

The framework architecture of the SPINE for Z-
Stack is shown in Fig. 4. It consists of components 
having different names from the ones of the version 
1.3, but having same functionalities because, 
obviously, the framework has to offer the same 
interface to the high level application running on 
top of it. 

The implementation of these components, in C 
language, is dependent on the services provided by 
the Z-Stack system [8]. One of its parts is the 
Operating System Application Layer (OSAL) which 
is not, strictly speaking, considered an Operating 
System, because of its very limited functionality. 
However, it offers APIs for: tasks managing 
(initialization, scheduling, synchronization and 
message passing), interrupts handling, timers 
managing and memory allocation. All these 
functionalities are represented in Fig. 4 as different 
blocks: Task Creation System, Task Synch System, 
Timers and Memory Management. 

Every Z-Stack application has to be defined as a 
set of tasks, each of which has to implement proper 
routines for initialization and management of 
events, like timeouts, interrupts or incoming 

messages from other tasks. So, the application 
lifecycle depends on how tasks are configured and 
how tasks interact with each others through 
messages exchange. 

All the framework components are implemented 
as tasks running upon the OSAL infrastructure. 

Z-Stack environment

SPINE for Z-Stack  runtime system

ZigBee
compliant stack

Timers

Communication

SPINEApplication

FunctionManagerSensorManager

Task Creation
System

Sensor
Drivers

Task Synch.
System

BufferPool

Memory
Management

SPINE for Z-Stack components

Z-Stack components

Functions

FeatureEngine

 

Fig. 4 – The SPINE for Z-Stack node side framework 

 
The SensorManager relies on the Task Creation 

System for the creation of the necessary tasks 
responsible for sensing operations.  

A limitation of the Z-Stack environment is that 
it supports the creation of tasks only at the system 
start-up, but this is not compliant to the framework 
which should manage sensing tasks at runtime. So, 
it was necessary to directly modify a part of the Z-
Stack specification, for having the possibility to 
add new tasks on running system. 

Moreover, the stack does not offer APIs for 
accessing physical sensor, simply because the 
board comes without installed sensors. For this 
reason, an accelerometer has been interfaced to the 
microcontroller and a proper driver has been 
implemented for providing a direct access to it. In 
the future other physical sensors and relative 
drivers could be added to the framework. The 
SensorManager is responsible for managing sensor 
drivers and associates them to the sensing tasks. 

Every acquisition operation is associated to a 
sampling time and for this purpose the Timers 
component offers a simple way for associating a 
particular timeout event of a timer to the execution 
of a task. It suffices that a sensing task calls the 
timer allocation function and the OSAL will be in 
charge of signaling, with an event, the execution of 
the task after the timer expiration. This approach 
differs from the one adopted in SPINE1.3, where 
an explicit association to the timer and the 
consequent sensing operation execution compete to 
the programmer. The part of the framework that 
substantially differs in the two versions is related to 
the communication management. In fact, in order to 
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be executed on the Z-Stack environment, the 
framework has to be ZigBee compliant. So, all the 
application-level messages have to be encapsulated 
in a message packet formatted according to the 
protocol stack specifications. This is performed 
through the use of APIs provided by the ZigBee 
Device Object of the Z-Stack system. 

The FunctionManager manages the processing 
functions on the node and makes use of the Task 
Synch System to request result transmission to an 
appropriate communication task. The BufferPool 
has the same functionality as the BufferPool of 
SPINE1.3. As in SPINE1.3, the FunctionManager 
handles the FeatureEngine subcomponent for 
sensed data pre-elaboration. Its sample C code is 
shown in Fig. 5. Differently from the SPINE1.3 
version of the FeatureEngine, the version for Z-
Stack consists of a series of explicit case statements 
depending on the unique code of the requesting 
feature.  

 
2.3. HETEROGENEOUS PROGRAMMING 

The SPINE coordinator, which runs at the base 
station side, is able to interact both with TinyOS 
sensor nodes and Z-Stack sensor nodes (as shown 
in Fig. 6). This allows building a WBSN composed 
of heterogeneous nodes which however should be 
programmed by using the node side SPINE 
implementation for each specific node. So, while 
this approach allows using heterogeneous sensors 
in the same WBSN, different types of sensors must 
be differently programmed. In order to perform its 
functionalities, the coordinator has to be interfaced, 
via USB cable, to one of each sensor type (TinyOS 
and Z-Stack) using the appropriate radio 
communication capabilities for communicating 
with two different parts of the WBSN (it is worth 
noting that TinyOS sensor platforms supported by 
SPINE 1.3 use the IEEE 802.15.4 standard while Z-
Stack uses the ZigBee standard). Nevertheless the 
high-level communication service is the same as it 
uses a unique format for application-level messages 
used for nodes configuration and information 
exchange. 

Furthermore, the coordinator can be either local 
or remote; in fact, a new implementation of the 
coordinator supports multi-user remote application 
control through RMI technology. When it is needed 
to use different types of sensors within a WBSN 
application, it is important to know how much the 
framework performs differently on them. A 
performance comparison between SPINE 1.3 on 
TelosB nodes and SPINE for Z-Stack nodes, 
concerning the processing of specific features 
computed on different sizes (50, 100) of data 
samples, is reported in Table 1. 

 
uint8 featureEngine_calculateFeature( 
              functionParameter_t* par,  
              active_feature* activeFeatureList,  
              uint8 actFeatsIndex, FEspace* workspace){ 
 ..... 
   callFeature( 
        activeFeatureList[actFeatsIndex].FeatureCode,  
        par->ch, activeFeatureList[actFeatsIndex].mask,  
        par->windowSize, result);   
 .....   

buildResult(workspace->result, result,    
       activeFeatureList[actFeatsIndex].FeatureCode,  
       activeFeatureList[actFeatsIndex].mask);  

 ..... 
} 
 
uint8 callFeature(FeatureCodes code, int16** ch,  
           uint8 mask, uint8 length, uint16** result){ 
 
 uint8 op_result = OP_ERROR; 
 
 switch(code){ 
  case MAX:{ 
   op_result= feature_Max(ch,mask,length,result); 
   break; 
  } 
  case MIN:{ 
   op_result= feature_Min(ch,mask,length,result); 
   break; 
  } 
  case RAW_DATA:{ 
   op_result=feature_RawData(ch,mask,length,result); 
   break; 
  } 
  case MEAN:{ 
   op_result=feature_Mean(ch,mask,length,result); 
   break; 
  } 
  case AMPLITUDE:{ 
   op_result=feature_Amplitude(ch,mask,length,result) 
   break; 
  } 
  case RMS:{ 
   op_result= feature_Rms(ch,mask,length,result); 
   break; 
  } 
  case ST_DEV:{ 

op_result=feature_StandardDeviation(ch,mask,length, 
                                    result); 

    break; 
  } 
  case VARIANCE:{ 

op_result=feature_Variance(ch,mask,length,result); 
break; 

  } 
  case MEDIAN:{ 
   op_result=feature_Median(ch,mask,length,result); 
   break; 
  } 
  case PITCH_ROLL:{ 

op_result=feature_PitchRoll(ch,mask,length,result); 
    break; 
  } 
  case VECTOR_MAGNITUDE:{ 

op_result=feature_VectorMagnitude(ch,mask,length, 
                                  result); 

    break; 
  } 
  case MODE:{ 

op_result=feature_Mode(ch,mask,length,result); 
break; 

  } 
  case TOTAL_ENERGY:{ 

op_result=feature_TotalEnergy(ch,mask,length, 
                              result); 
break; 

  } 
  default:break; 
 } 
 return op_result; 
} 

Fig. 5 – The code of the FeatureEngine component of 
SPINE for Z-Stack 
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Fig. 6 – A SPINE heterogeneous network 

 
As can be noted, a Z-Stack node provides better 

performance than TelosB (obviously, because of its 
different and higher performance hardware), so it is 
more desirable to use Z-Stack nodes to accomplish 
complex and time-consuming processing task. 

 

Table 1. Performance comparison between SPINE 1.3 
(on TelosB sensor nodes) and SPINE for Z-Stack 

 
 

3. THE SPINE2 FRAMEWORK 
The SPINE2 framework [10] is an evolution of 

SPINE based on the C-language for reaching a very 
high platform independency for C-like 
programmable sensor platforms (e.g. TinyOS, 
Ember [11], Z-Stack) and so raising the level of the 
provided programming abstractions from platform-
specific to platform-independent. 
To develop platform-independent WSN applications, 
several approaches, defined for platform-
independent software development in conventional 
distributed platforms, can be effectively adopted: 

• Model-driven Development (MDD). MDD is an 
approach which provides a set of guidelines for 
structuring specifications expressed as models 
and, then, translating such models into platform-
dependent code [12]. In particular, MDD defines 
system functionality using a platform-independent 
model (PIM) through an appropriate domain-
specific language (DSL); then, given a platform 

definition model (PDM) corresponding to 
CORBA, .NET, the Web, etc., the PIM is 
transformed into one or more platform-specific 
models (PSMs) that computers can run. The PSM 
may use different DSLs or general purpose 
languages (e.g. Java, C#, PHP, Python). 
Moreover, automated tools generally perform this 
transformation. 
• Virtual Machine (VM). A VM runs as a normal 
application inside an OS. Its purpose is to provide 
a platform-independent programming environment 
that abstracts away details of the underlying 
hardware or operating system, and allows a 
program to execute in the same way on any 
platform. 
• Software Layering (SL). Software layering has 
been largely used for the development of 
communication protocol suites to hide network 
heterogeneity. Therefore to hide heterogeneity of 
different platforms a basic software layer (or core 
framework), which provides basic functionality, is 
defined for a set of heterogeneous platforms based 
on a similar programming language and adapted to 
each different platforms through platform specific 
modules. Code development is carried out through 
such common programming language according to 
the defined core framework. 
Although MDD approach is very flexible and 

effective for platform-independent software 
development, a major problem is that automatic 
translation may introduce overhead in terms of 
generated code size and execution speed. The VM 
approach is effective for providing platform 
independence, but the deployment of a VM on node 
able to execute the SPINE language can be very 
expensive in terms of execution speed and used 
resources (e.g. memory). According to the SL 
approach, a SPINE2 core framework can be defined 
through a language used by the majority of sensor 
platform and, then, adapted to such different 
platforms through platform specific software 
modules. With this approach the core framework can 
be accurately defined and implemented and kept 
highly efficient. However, it fits only sensor 
platforms programmed through compatible 
languages.  

SPINE2 was founded on an SL approach based 
on the C language (see Fig. 7), which is the language 
used for programming the majority of embedded 
systems. It embodies the following features: 

• execution on commercial resource-constrained 
sensor platforms each one having a different 
operating system; 
• minimization of the amount of code that should 
be replicated for each specific implementation; 
• enabling C-developers (eventually C++) to 
extend the SPINE2 framework without having to 
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learn low-level details of specific sensor platforms 
or without having to learn new programming 
languages; 
• enabling compiling and simulating the code by 
using normal ANSI C tools. 

SPINE LANGUAGE (C-Language) 

TinyOS 
Adaptation 

Modules 

SPINE PROGRAMS 

SPINE CORE FRAMEWORK 

TinyOS 
(TelosB, MicaZ) EmberZNet  Z-Stack 

(TI Z-Stack ) 

EmberZNet 
Adaptation 

Modules 

Z-Stack 
Adaptation 

Modules 

 
Fig. 7 – SPINE2 based on the SL approach 

 
While SPINE is centered on a programming 

model based on functions, SPINE2 is based on a 
task oriented programming model in order to best fit 
the requirements of collaborative distributed 
applications in resource-constrained environments. 
Distributed and collaborative applications can then 
be programmed as a dynamically schedulable and 
reconfigurable set of tasks. Different tasks can be 
assigned to each node of the network and tasks can 
be controlled at execution time via proper message 
exchange; in this way the network can overall adapt 
to changes in context, in overall goals, in the state of 
each single node, and it can better balance load and 
task types between each element of the network. 
Dynamic distribution of tasks also allows 
preprocessing of sensed data directly on the node, a 
significant reduction of data transmission and 
battery consumption, and an overall increase of the 
network lifetime. Thanks to task oriented 
programming, application developers do not need to 
program in tiny environments but only configure 
tasks on the WBSN coordinator. 

Fig. 8 shows the software architecture of 
SPINE2. Basically, it consists of the similar 
functional parts previously discussed for the 
versions 1.x, but it is important to observe that, 
according to the adopted SL approach, most of the 
framework components are implemented in C. 
Focusing attention on the changed parts, because of 
the new task oriented programming model, the 
TaskManager takes the place of the 
FunctionManager (see Fig. 1 and Fig. 4). Moreover 
it relies on the platform-specific TaskScheduler 
which provides scheduling functionalities for the 
tasks activated on the node. The BufferPool allows 
storage capabilities for sensed data and task results. 
It is an active component because it consists not only 

of a set of buffers, but provides a simple API in 
order to safely access them. Finally, due to its 
programming model, the communication protocol 
has been redesigned and new message types have 
been introduced so that to allow task management 
on SPINE2 nodes, such as task creation and 
configuration. Nevertheless, to maintain backward 
compatibility, a SPINE1.x/2 software 
communication bridge has been also implemented. 

It is quite clear that if programmers want to 
extend the SPINE2 framework for supporting other 
C-like sensor platforms, the only components that 
they have to develop are few adapter modules that 
interface the SPINE2 core (the C modules) to the 
platform-specific hardware resources, such as radio, 
sensors and timers. 

Platforms:
TinyOS / EmberZNet / Z-Stack

SPINE2 C modules

Platform-specific adaptation modules

Platform-specific modules

C-like platforms environment

SPINE2  runtime system

Radio Interface Sensor Interface

CommManager

SPINEApplication

TaskManagerSensorManager

RadioController

BufferPool Tasks

TaskScheduler

Timer Interface

SensorAdapter

 
Fig. 8 – The SPINE2 node side framework 

 
Currently, the program execution control 

implemented in SPINE2 is based on a timer-driven 
approach [13]. Differently from others approaches, 
like the data-flow-driven or the event-driven, each 
single task composing a user application is activated 
by a timer. Therefore, the developer not only has to 
establish relationships among tasks, but also set their 
timers in a properly way, such that they are kept 
synchronized. For example, a data manipulation task 
working on a buffered sensed data should be 
associated to a timer so that it fires only when all 
data are available, and this depends on settings of 
the timer related to the task associated to the sensing 
operation. 

According to the new programming model a 
timed task is defined as a C-struct as reported in Fig. 
9. In particular, taskID is a unique identifier, 
taskType is the type of the task, status holds 
information about the task status (created, active, 
paused), timer contains the task firing time, 
timerScale contains the measurement unit of the 
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timer, isPeriodic signals if the timed task is periodic 
or one-shot, and parameters contains parameters 
specific to the taskType. The currently available 
taskTypes are sensing, featureExtraction, and 
aggregation&sending. 

typedef struct timedTaskDescription {  
unsigned char taskID;  unsigned char 
taskType;  unsigned char status;  unsigned 
long timer; 
  unsigned char timerScale; 
  unsigned char isPeriodic; 
  parameters[TASK_PARAMETER_LENGTH]; 
}timedTaskDescription; 
Fig. 9 – The SPINE2 timed task definition 

 
Fig. 10 shows a SPINE2 net formed by different 

sensor platforms. According to this new framework, 
not only the SPINE coordinator can interact with 
heterogeneous nodes, but also developers can 
program nodes in homogeneous way.  

TN

TN

TN

ZN

ZN

EN

EN

SPINE
Coordinator

TN ZNEN

SPINE2 Sensor Node
Programming

TN TinyOS node (TelosB, MicaZ, Shimmer)

EmberZNet nodeEN

ZN Z-Stack node

 
Fig. 10 – A SPINE2 heterogeneous network 

 
In fact, the node side SPINE2 core is 

implemented through a high-level programming 
approach and this code is the same for each platform 
supported by SPINE2. This also allows a simpler 
and more rapid approach (compared to version 1.x) 
for framework extension, for example when a new 
sensor or a new functionality is to be added because 
of user application needs. 

After having described the new characteristics of 
version 2 of the SPINE framework, an analysis of its 
performance compared to the performances of the 
previous versions is presented to show which 
implications the use of the Software Layering 
approach involves. In particular, time performance 
evaluations related to the execution of specific 
features on the two different types of nodes are 
reported in Table 2. As one can see, the SPINE2 

software architecture does not induce any sort of 
performance penalties but, on the contrary, exhibits 
small improvements. Furthermore, in the Z-Stack 
environment there are no differences between 
SPINE and SPINE2, because in both versions, calls 
to functions are based on the C language. 

 
Table 2. Performance comparison of features 

extraction evaluated on 100 data samples among 
SPINE (1.x) and SPINE2 

 
 

4. ACTIVITY MONITORING BASED ON 
HETEROGENEOUS WBSNs 

To test the effectiveness of the SPINE (versions 
1.x and 2) frameworks and their capability on 
managing a heterogeneous network, a human 
Activity Monitoring System (AMS) [3] has been 
reverse engineered and made heterogeneous. 

AMS is able to recognize postures (e.g. lying, 
sitting or standing still) and a few movements (e.g. 
walking and jumping) of a person; furthermore it 
can detect if the monitored person has fallen or 
unable to stand up. Fig. 11 shows the entire software 
design of the system, which consists of a 
coordinator-side application and two node-side 
applications.   

The former is implemented in Java (in Fig. 11 is 
represented as “Application on SPINE”) and 
contains classifiers that use the gathered pre-
elaborated data coming from the sensors, for 
performing recognition of movements and postures 
defined in a training phase. This application runs on 
top of the SPINE Manager, enclosed in the 
coordinator part of the SPINE framework. This 
manager can exploit distinctive communication 
modules for interacting with different types of 
sensor communication protocols.  

The node-side application is deployed on two 
sensor nodes, one located on the thigh and the other 
on the waist of the person, and running on top of the 
SPINE 1.x/2 node runtime system. Both of them rely 
on sensed data coming from an accelerometer, but 
no raw data are sent to the coordinator because they 
are pre-elaborated by some processing functions 
(features extraction) before their transmission. The 
two sensor node applications differ regarding the 
way sensor data are pre-processed and transmitted. 
In particular, the thigh node application consists of 
sending to the coordinator the result of the Min 
feature extracted from the X-axis data of the 



G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, A. Guerrieri / Computing, 2010, Vol. 9, Issue 1, 80-89 
 

 87

accelerometer. The application residing on the waist 
node takes data from all the three axes of the 
accelerometer and split them for the computation of 
three different features: the Mean from all axes, the 
Min and the Max from only the X-axis. Afterwards, 
all the computed features are aggregated together 
and sent to the coordinator.  

Each feature has two main parameters that have 
to be set for a correct application definition: window 
and shift. The window value represents the number 
of sampled data on which the feature is evaluated, 
whereas the shift value represents how many new 
samples data are necessary for a new computation of 
the same feature. 

It is very important to consider that the 
application design in Fig. 11 has been represented 
following the SPINE2 task-oriented approach, but 
the application specifications are not, however, 
strictly feasible only for an implementation on the 
SPINE2 node runtime system. In fact, the AMS 
application has been implemented and tested, 
separately, both with the SPINE1.x and with the 
SPINE2 framework. 

Sensing on  
Accelerometer Split AccXYZ 

Max Min Mean 

AccXYZ 

Aggr. Sending to 
Coordinator 

Max(AccX) Mean(AccXYZ) Min(AccX)

<Max(AccX),  
Mean(AccXYZ), 

Min(AccX)> 

WAIST Node

Sensing on  
Accelerometer 

AccXYZ Min 

Sending to 
Coordinator 

Min(AccX) 

THIGH Node

COORDINATOR

SPINE Listener 

SPINE Manager 

Application on SPINE 

 
Fig. 11 – The Activity Monitoring application 

 
In Fig. 12 the complete SPINE 1.x Activity 

Monitoring System is shown. The network 
architecture is composed of a TelosB node (running 
the SPINE 1.3 runtime) placed on a thigh of a person 
and a Z-Stack node (running the SPINE for Z-Stack 
runtime) placed on the waist of the same person. In 

section 2.3 we have already discussed about the 
possibility of having different types of sensor in the 
same SPINE net and this real application 
demonstrates the feasibility in managing a 
heterogeneous WBSN using the SPINE1.x 
framework. The coordinator (running on a notebook) 
has been interfaced with the WSN through other two 
nodes connected via USB cable which provide the 
necessary radio communication capability. 

 
Fig. 12 – The SPINE1.x Activity Monitoring System 

 
As mentioned before, the system has also been 

tested with the version 2 of the SPINE framework. 
The system architecture, depicted in Fig. 13, is the 
same as the previous except that in such a case, the 
different types of nodes run the same SPINE2 core 
runtime system plus the particular adaptation code 
related to the particular node platforms. Moreover, 
the SPINE2 Over-the-Air communication protocol is 
necessary because of the new task oriented 
programming model adopted in SPINE2. 

 
Fig. 13 – The SPINE2 Activity Monitoring System 
 
To show the SPINE2 programming of the 

sensors, the waist node application (see Fig. 11) is 
considered. The definition of the timed tasks (see 
Fig. 9) is reported in Fig. 14. For the other two 
feature extraction tasks (Max and Min), parameters 
settings are similar to the Mean task, except for the 
FEX_FEATURE and the 
FEX_CHANNEL_BITMASK which is 0x08, 
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indicating that only data from axis X of the 
accelerometer have to be considered. The timed 
tasks on the thigh node are defined in a similar way. 

 
(sensTask)->taskID = 1; 
(sensTask)->taskType = TASKTYPE_SENSING; 
(sensTask)->timer = 50; 
(sensTask)->timerScale = TIMER_SCALE_MSEC; 
(sensTask)->isPeriodic = TRUE; 
(sensTask)->parameters[ACQ_SENSOR_ID] = ACCELEROMETER; 
(sensTask)->parameters[ACQ_CHANNEL_BITMASK] = 0x0E;  
                                        //XYZ channels 
(sensTask)->parameters[ACQ_BUFFER_ID_1] = 0; 
(sensTask)->parameters[ACQ_BUFFER_ID_2] = 1; 
(sensTask)->parameters[ACQ_BUFFER_ID_3] = 2; 

(a) 
(meanTask)->taskID = 2; 
(meanTask)->taskType = TASKTYPE_FEATURE_EXTRACTION; 
(meanTask)->timer = 500; //every 10 new samples 
(meanTask)->timerScale = TIMER_SCALE_MSEC; 
(meanTask)->isPeriodic = TRUE;  
(meanTask)->parameters[FEX_FEATURE] = MEAN; 
(meanTask)->parameters[FEX_CHANNEL_BITMASK] = 0x0E; 
(meanTask)->parameters[FEX_WINDOW] = 20; 
(meanTask)->parameters[FEX_BUFFER_ID_1] = 0; 
(meanTask)->parameters[FEX_BUFFER_ID_2] = 1; 
(meanTask)->parameters[FEX_BUFFER_ID_3] = 2; 
(meanTask)->parameters[FEX_SENSOR_ID]=ACCELEROMETER; 
(meanTask)->parameters[FEX_AGGR_ID] = 1; 

(b) 
(aggrSendTask)->taskID = 5; 
(aggrSendTask)->taskType = TASKTYPE_AGGR_AND_SEND; 
(aggrSendTask)->timer = 550; 
(aggrSendTask)->timerScale = TIMER_SCALE_MSEC; 
(aggrSendTask)->isPeriodic = FALSE;  
(aggrSendTask)->parameters[AGG_ID] = 1; 
(aggrSendTask)->parameters[AGG_FEATURES_TO_WAIT_FOR]=3; 

(c) 

Fig. 14 – The definition of tasks for the waist sensor 
node: (a) sensing task, (b) feature extraction (Mean) 

task, (c) aggregation&sending task. 

 
The application on the coordinator is responsible 

for gathering pre-elaborated data taken from the 
accelerometer sensors of the nodes and relies on a 
classifier that recognizes postures and movements 
defined in a training phase. In particular, the 
application integrates two different classifiers: one 
based on the K-Nearest Neighbor algorithm [14] and 
the other based on J48 Decision Tree [15]. They 
were setup through a training phase and tested 
considering the following settings for the sensors 
data acquisition: the sample time was set to 50ms, 
the window to 20, whereas the shift to 10. This 
means that the features in Fig. 11 (Min, Max and 
Mean) are evaluated on 20 sampled data (1 sec 
acquisition) and computed every new 10 samples 
(500ms) acquired by the sensors. See Table 3 for the 
obtained classification accuracy results. 

 
Table 3. Classification accuracy for classifiers based 

on K-Nearest Neighbor and J48 Decision Tree 

 
 

5. CONCLUSION 
In the context of the rapid development of 

WBSN applications, this paper has introduced the 
main features of the SPINE and SPINE2 
frameworks. They can be effectively used for 
enabling the development of signal processing 
applications on heterogeneous WBSNs. In 
particular, the approach based on SPINE relies on 
the capability of the WBSN coordinator to interact 
with a network composed of heterogeneous sensor 
nodes on which a platform specific porting of the 
SPINE framework is installed. In the second 
approach based on SPINE2, the WBSN coordinator 
is still able to interact with heterogeneous nodes but, 
in this case, on each sensor node the same SPINE2 
core is installed so allowing sensor node 
homogeneous programming. Results obtained from 
the performance evaluation of the SPINE 
frameworks show that SPINE2 performs better than 
SPINE1.3 on TelosB sensor nodes in terms of speed 
for feature computation. 

On-going work aims to: (i) complete the 
implementation of SPINE2 for the Ember sensor 
platform and designing a version for ContikiOS 
[16], (ii) develop a SPINE2 coordinator based on a 
task-oriented protocol to program and control 
SPINE2 sensor nodes, (iii) design a flexible event-
based architecture for SPINE2 to increase 
programming effectiveness and avoid an excessive 
use of timers, and (iv) extend SPINE2 for general 
collaborative WSN applications (not only centered 
on star-based networks). 
 

6. ACKNOWLEDGMENTS 
Authors wish to thank Luigi Buondonno and 

Antonio Giordano for their implementation efforts 
on porting SPINE on the Z-Stack platform and Fabio 
L. Bellifemine and Marco Sgroi for their precious 
contributions to the SPINE project in terms of ideas, 
discussions and useful suggestions. The SPINE 
project is partially funded by Telecom Italia. 
 

7. REFERENCES 
[1] O. Gama, C. Figueiredo, P. Carvalho, P. M. 

Mendes. Towards a Reconfigurable Wireless 
Sensor Network for Biomedical Applications. 
IEEE International Conference on Sensor 
Technologies and Applications (SensorComm), 
Valencia (Spain), 2007. 

[2] V. Shnayder, B. Chen, K. Lorincz, T.R.F. 
Fulford-Jones, and M. Welsh. Sensor networks 
for medical care. Technical Report TR-08-05, 
Division of Engineering and Applied Sciences, 
Harvard University, 2005. 

[3] R. Gravina, A. Guerrieri, G. Fortino, F. 



G. Fortino, S. Galzarano, R. Giannantonio, R. Gravina, A. Guerrieri / Computing, 2010, Vol. 9, Issue 1, 80-89 
 

 89

Bellifemine, R. Giannantonio, M. Sgroi. 
Development of body sensor network 
applications using SPINE. In Proc. of IEEE 
International Conference on “Systems, Man, 
and Cybernetics (SMC2008), Singapore, Oct. 
12-15, 2008. 

[4] C. Lombriser, N.B. Bharatula, D. Roggen. On-
body activity recognition in a dynamic sensor 
network. In Proc. of 2nd Int. Conference on 
Body Area Networks (BodyNets 2007), 
Florence, Italy, June 11-13 2007. 

[5] S. Iyengar, F. Tempia Bonda, R. Gravina, A. 
Guerrieri, G. Fortino, A. Sangiovanni-
Vincentelli. A framework for creating 
healthcare monitoring applications using 
wireless body sensor networks. In the Proc. of 
the 3rd  International Conference on Body 
Area Networks (BodyNets’08), Tempe (AZ), 
USA, Mar. 13-15, 2008. 

[6] SPINE documents and software. 
http://spine.tilab.com 

[7] TinyOS Web Site. http://www.tinyos.net  
[8] Z-Stack – ZigBee Protocol Stack – 

http://focus.ti.com/docs/toolsw/folders/print/z-
stack.html  

[9] ZigBee Alliance – http://www.zigbee.org/ 
[10] Giancarlo Fortino, Antonio Guerrieri, Fabio 

Bellifemine, Roberta Giannantonio. Platform-
independent development of collaborative 
Wireless Body Sensor Network applications: 
SPINE2. In Proc. of 2009 IEEE International 
Conference on Systems, Man, and Cybernetics 
(SMC2009), San Antonio (TX) USA, Oct. 11-
14, 2009. 

[11] Ember Web Site. http://www.ember.com 
[12] B. Selic. The Pragmatics of Model-Driven 

Development. IEEE Software, vol. 20, no. 5, 
pp. 19-25, Sep./Oct. 2003. 

[13] G. Fortino, A. Guerrieri, R. Giannantonio, F. 
Bellifemine. SPINE2: developing BSN 
applications on heterogeneous sensor nodes. In 
Proc. of IEEE Symposium on Industrial 
Embedded Systems (SIES’09), special session 
on wireless health, Lausanne (Switzerland), 8-
10 July 2009. 

[14] T. Cover, P. Hart. Nearest neighbor pattern 
classification. In IEEE Trans. Inform. Theory, 
Vol. 13, pp. 21-27, January 1967. 

[15] R. Quinlan. C4.5: Programs for Machine 
Learninge. Morgan Kaufmann Publishers. San 
Mako, CA, 1993. 

[16] Contiki, documentation and software 
http://www.sics.se/contiki. 

 
 
 
 

Giancarlo Fortino, is an 
Associate Professor of computer 
science at the Department of 
Electronics, Informatics, and 
Systems of the University of 
Calabria, Italy. His research 
interests include distributed 
computing, wireless sensor 
networks, multimedia systems, 

agent-oriented technology and systems, and applied 
software engineering. He received a Laurea degree 
and a PhD in Computer Engineering from the 
University of Calabria. 
 

Stefano Galzarano, is a Master 
Student in Computer Engineering 
at the University of Calabria. His 
research interests are focused on 
high-level programming methods 
for wireless sensor networks. He 
received a Bachelor degree in 
Computer Engineering from the 
University of Calabria. 

 
 

Roberta Giannantonio, is a 
Researcher at the Telecom Italia 
Lab, Torino, Italy. Her research 
interests are mainly focused on 
wireless technology, particularly 
wireless sensor networks. She 
received a Laurea degree in 
Telecommunication Engineering 
from Politecnico di Torino. 
 
Raffaele Gravina, is a PhD 
Student in Computer Engineering 
at the University of Calabria. His 
research interests are focused on 
high-level programming methods 
for wireless sensor networks. He 
received a Bachelor and Master 
degrees in Computer Engineering 
from the University of Calabria. 

 
Antonio Guerrieri, is a PhD 
Student in Computer Engineering 
at the University of Calabria. His 
research interests are focused on 
high-level programming methods 
for wireless sensor networks. He 
received a Bachelor and Master 
degrees in Computer Engineering 
from the University of Calabria. 

 




