
Axel Sikora / Computing, 2010, Vol. 9, Issue 1, 31-36

 31

WEB2.0 TECHNOLOGY FOR AN EMBEDDED WEB-BASED GATEWAY
PLATFORM FOR SPATIALLY DISTRIBUTED WIRELESS NETWORKS

Axel Sikora

Baden-Württemberg Cooperative State University Lörrach, Hangstraße 46-50. 79539 Lörrach, Germany

sikora@dhbw-loerrach.de, http://www.dhbw-loerrach.de

Abstract: A novel communication platform is presented, which helps in the monitoring and deployment of distributed
wireless networks. Its major part is based on distributed embedded web servers connected to RF-communication heads.
The web servers act as distributed communication hubs and exchange data via XML-feeds with web2.0-capable clients.

The first implementations are concentrating on the monitoring direction, as this approach eases supervision of
spatially distributed wireless networks, and also allows seamless remote monitoring. But it is also capable to feed data
frames into the wireless network.

The platform already supports protocols like Wireless M-Bus and EnOcean Radio Protocol (ERP), but is flexible to
integrate arbitrary protocols. In addition, this is - to the very best knowledge of the authors - the very first AJAX
implementation on a very lean embedded web server.

Keywords: Wireless Networks, Sniffer, Web2.0, AJAX, Embedded Internet, Gateway

1. INTRODUCTION
The test of wireless protocols is always a hurdle,

because of the wide variety of states and parameters
at the different nodes to be tested. This especially
holds true, if the main objective of the test is in the
distributed functionality of the wireless network.
Those networks might come not only with tens, but
potentially with hundreds of individual nodes, which
might be the case with wireless sensor networks for
ambient intelligence [1]. In this case, problems may
occur not only during programming, but also during
commissioning and operation [2].

Sniffer and commissioning tools are widely
available. There can be found three categories of
those tools:
1. proprietary tools with support for only one

protocol. Those are mostly delivered from the
manufacturers of proprietary wireless protocols.
Examples are available from [3] or [12], although
not being listed as standard products.

2. commercial tools with support for one more than
one standard protocol [5].

3. open-source tools with generic support for
arbitrary protocols. Best and presumably most
widespread example is Wireshark [6].
In addition, we see different layers, where those

tools work:
1. There are tools working on the physical level to

support physical dislocation of the nodes.1
2. Other tools perform logical decoding and support

network analysis.
All those tools are based on fat client

architectures. Thus they require a PC or PDA
equipped with an RF-frontend, where the sniffer tool
is installed. Consequently, mostly local monitoring
can be supported.

2. STATE OF THE ART

The In the field of wireless testbeds, we are
aware of mainly two approaches. On the one hand, a
variety of commercial testbeds concentrate on the
RF-characteristics of the nodes and the channel.
They allow prototype measurements and production
tests. On the other hand, academic publications in
the field of testbeds mainly deal with the provision
of generic hardware platforms, e.g. [7] [8] [9].

However, these approaches do not sufficiently
target the communication aspects of the network
nodes, but concentrate on the sensing and processing
aspects.

There is only a small number of publications

1 The development of this platform is partially supported
from the Federal Ministry of Economics and Technology
(BMWi) within the DEMAX project („Decentralized
Energy and Network Management Using Flexible Energy
Prices“), 16IN0594.

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Axel Sikora / Computing, 2010, Vol. 9, Issue 1, 31-36

 32

known to the authors, that monitor and control the
architectural aspects of distributed wireless
networks:
• [10] presents moteLab, an environment using

networked “backchannel” interfaces for remote
reprogramming and monitoring the sensor nodes,
and a centralized web server.

• [2] describes SNIF, which uses a deployment
support network (DSN) [11], a wireless network
that is temporarily installed alongside the actual
sensor network during the deployment process,
selection algorithms, and a graphical user
interface.

3. OBJECTIVES & REQUIREMENTS
Our system shall fulfill the following

requirements:
• It shall reliably support spatially distributed

monitoring and commissioning with a direct and
bidirectional access to the wireless nodes.

• It shall be low cost in terms of hardware and
installation efforts.

• It shall support long-term monitoring with or
without online connectivity.

• It shall support remote access via wide-area
networks.

• It shall be comfortable to use and make all
available functionality be easily accessible.

4. SOLUTION
Physical Testbed
Our testbed installation includes the following

elements, which are shown in Fig. 1:
• management nodes (M in Fig. 1), which allow to

monitor and control the network. All kinds of
management can be supported: passive
observation (passive sniffing), semi-active
observation (additional management frame
exchange with the network node) and active
injection of management or data frames into the
network. The management nodes come with a
novel web approach described below.

• server nodes (S’ and S in Fig. 1), which collect
the data from the management node, or the other
server nodes,

• a client computer (C in Fig. 1) that accesses the
input from the management nodes. As
management traffic is pure http and XML, there
is only a single requirement to the client
computer: It shall be capable to run a JavaScript
enabled web client. Tests were performed with
PC platforms, but also with portable
communication devices, such as PDAs and
iPhones.

Fig. 1 – Monitoring nodes (M) are connected to servers

(S), which collects the data exchanged between the
wireless nodes (N)

During the development phase, two types of
installations were used:
• a physical test bed with spatially distributed

nodes, where the communication channels are
guided along wired RF-links and controlled by
attenuation elements. Fig. 2 shows the test bed,
which was used for prototyping and automated
test runs.

• real life test installations in various office
buildings.

Fig. 2 – Physical testbed for automated verification of

routing mechanisms

For ease of development and testing, two further
elements were established
• automatic test scripting in support of regression

testing. Those scripts are included into the
firmware of the network nodes.

• a rich-client management tool to observe and to
control the distributed nodes. The functionality of
this tool is now transferred to the web based
management nodes. However, this tool already
was connected to the distributed management
nodes via TCP/IP, but uses a proprietary

Axel Sikora / Computing, 2010, Vol. 9, Issue 1, 31-36

 33

application protocol.

AJAX for Embedded
Although, web servers on embedded devices are

around for more than one decade [14] [15], it is still
worth mentioning that the integration into a
standardized client server architecture allows
decisive advantages. This is mainly due to the fact
that a thin web client can be used and all the
functionality can be downloaded from the server
without further installations at the client computer.

It is especially this advantage, which is extended
with client-side scripting, as not only html-code, but
functional scripts can be transferred online to the
client and executed there. Thus all performance
intensive computing is transferred onto the client
platform while remaining completely platform
independent.

In addition, web2.0 comes with further
advantages, which makes it suitable for use in
embedded internetworking. From a technical point
of view, Web2.0 is based on AJAX (Asynchronous
JavaScript and XML) and the architecture shown in
Fig. 3. It additionally allows dynamic loading of
single XML-fields via XMLHttpRequest and thus
significantly may help to reduce traffic volume.
Usually Ajax toolkits are used to accomplish these
tasks.

Fig. 3 – Software architecture of embedded web2.0

web server in radio networks

During a product scouting for a suitable
JavaScript toolkit [16], which would be lean enough
to be located at the embedded web server and
compatible with the JavaScript interpreters of
modern web browsers, two toolkits were identified:
• MooTools [17] [18] is a compact, modular,

object-oriented JavaScript framework,
• jQuery [19] is a fast and concise JavaScript

Library that simplifies HTML document
traversing, event handling, animating, and Ajax
interactions for rapid web development.

Both showed good performance, while allowing
compiled libraries sizes of around 17 kBytes
(minified and compressed). On the other hand these
libraries provide a lot of functionality that is not
needed. The last and most important argument for
not taking advantage of existing JavaScript toolkits
is their size. Although 17 kB for a JavaScript library
(like JQuery or MooTools) is small, it would have
more than doubled the size of our whole JavaScript
code.

Therefore, it was decided implement small
custom methods. They are designed to be easily
adaptable to new protocols and concentrate around
sorting and filtering.

Consequently, cost can be kept low, and web
technology can be used at every single management
node, and not only at one central database server, as
compared to [6].

Hardware Platform
A PCB was developed to operate the system. It is

shown in Fig. 4 and contains the following elements:
• a ColdFire MCF52235 microcontroller [20],

which features 256KB Flash, 32KB RAM, a
10/100Mbit/s Ethernet and three RS232
interfaces. It has a clock rate of 60MHz and a
Real-Time-Clock with a resolution of 31.25 µs,
which is high enough to generate a unique
timestamp for every telegram in the ring buffer.
The ring buffer is also implemented on this
controller as a temporary storage for up to 256
telegrams.

Fig. 4 – PCB for gateway platform

• Interfaces to wireless modules to get access to the
wireless network. The interfaces are connected
via SPI. As for some wireless protocols, more
than RF-frequency, as for example with EnOcean
Radio Protocol [12] or Wireless M-Bus [13].
Therefore, two wireless modules can be
connected to act simultaneously, which can also
be seen in Fig. 2.

• Serial interfaces can also be used to connect to
DSN network. Available modules include
WLAN for easy-to-install local infrastructure and

Axel Sikora / Computing, 2010, Vol. 9, Issue 1, 31-36

 34

GPRS for remote and wide-area-network access.
• USB on the-go allows “infinite” local storage of

monitored data.

Software Architecture
The software architecture from the Coldfire

MCU contains the following elements:
• The heart is the emBetter embedded web server

[21];
• A UART-handler which reads and writes the data

to the wireless modules.
• The web server software gains access to these

telegrams via an exposed API, which allows for
retrieval of specific telegrams as well as
initialization of the buffers and deletion of the
content.

• The data is retrieved from a web-client via
HTTP. Whereas the whole web page including
the Java Script Libs has to be downloaded at the
first run, after that it is only the XML-Feeds that
follow. Thus, the communication channel can be
kept very lean. It should be highlighted that all
functionality is performed on the client, i.e.
display, sorting, filtering, storing.

Figs. 5, 6 and 7 give an impression on the

functionality of the generated web pages. Additional
features, such as filtering, sorting and export of
captured frames are supported within the JavaScript-

engine of the client and leave the embedded web-
server without this additional load.

The practical experience during the use of the
testbed and in various test campaigns was very
positive. It allowed excellent visibility of the states
and frames during the development of firmware for
various wireless protocols, and enabled extended
and remote monitoring capabilities during the
operation of the networks.

In addition, it could be observed that the data rate
of the connections amongst the sniffers was as low
as anticipated, i.e. data frames plus http and xml
overhead.

5. OUTLOOK
The gateway platform is now being used in real

installation for Wireless M-Bus and EnOcean Radio
Protocol. Further work will include extension to
other protocols, use of WLAN for the DSN, and
time synchronization for improved filtering in
spatially distributed networks.

The main challenges remain with the security of
the intellectual property of protocols, as those details
will be readable from the JavaScript code.

In addition, JavaScript does not allow access to
multiple servers for security reasons. Consequently,
a JavaScript based portal server is not at hand.

Fig. 5 – Screenshot of the packet mode web-site for Wireless M-Bus protocol

Axel Sikora / Computing, 2010, Vol. 9, Issue 1, 31-36

 35

Fig. 6 – Screenshot of the table mode web-site for Wireless M-Bus protocol

Fig. 7 – Screenshot of the packet mode web-site, showing details using “mouse-over” for Wireless M-Bus
protocol

Axel Sikora / Computing, 2010, Vol. 9, Issue 1, 31-36

 36

5. ACKNOWLEDGEMENTS

The author thanks his team of Steinbeis
Innovation Center Embedded Design and
Networking [22] for the brilliant work around the
capt²web hardware and software platform.

The author is also grateful for the support from
BMWi within the DEMAX project.

6. REFERENCES
[1] “Pervasive Computing: Trends and Impacts”,

Federal Office for Information Security,
ISBN 3-922746-76-4, 2006.

[2] M. Ringwald, K. Römer, "Deployment of
Sensor Networks: Problems and Passive
Inspection", Proc. of the 5th Workshop on
Intelligent Solutions in Embedded Systems
(WISES '07), Madrid, June 2007.

[3] http://www.elero.de/en.htm
[4] http://www.enocean.com/
[5] http://www.daintree.net/
[6] http://www.wireshark.org
[7] P. Havinga, S. Etalle, H. Karl, C. Petrioli, M.

Zorzi, H. Kip, T. Lentsch, “EYES - Energy
Efficient Sensor Networks”, in: IFIP-TC6 8th
International Conference on Personal Wireless
Communications, (PWC), Sep. 2003, Venice.

[8] U. Kumar, A. Ranjan, V. Jalan, P. Mundra, P.
Ranjan, “CENSE : A modular sensor network
testbed”, National Conference on Embedded
Systems Feb 2006, Mumbai (India).

[9] E. Mackensen, W. Kuntz, C. Muller, “Smart
wireless autonomous microsystems (SWAMs)
for sensor actuator networks”, Sensors for
Industry Conference, Proc. ISA/IEEE, 2004.

[10] G. Werner-Allen, P. Swieskowski, M. Welsh,
“MoteLab: A Wireless Sensor Network
Testbed”, in: Proc. 4th Int’l Conf. on
Information Processing in Sensor Networks
(IPSN'05), Special Track on Platform Tools and
Design Methods for Network Embedded
Sensors (SPOTS), April 2005.

[11] J. Beutel, M. Dyer, L. Meier, L. Thiele,
“Scalable Topology Control for Deployment-
Sensor Networks”, in Proc. 4th Int'l Conf.
Information Processing in Sensor Networks
(IPSN '05), IEEE, Piscataway, NJ, April, 2005.

[12] F. Schmidt, G. Scholl, A. Anders, H.-J. Körber,
H. Wattar, „RF-Embedding of Energy-
Autonomous Sensors and Actuators into

Wireless Sensor Networks”. In: Multifunctional
Structures / Integration of Sensors and
Antennas”, Meeting Proceedings RTO-MP-
AVT-141, Paper 3. Neuilly-sur-Seine, France.

[13] T. Gubisch, A. Sikora, "New Developments for
Wireless M-Bus", Embedded World Conference
2009, Nuremberg, Germany.

[14] B. DeMuth, “Designing Embedded Internet
Devices”, Newnes, 2002.

[15] P. Brügger, A. Sikora, "Using Embedded Web-
servers in Industrial Applications", embedded
world 2005 Conference, Nuremberg.

[16] L. Möllendorf, „Implementierung eines Sniffers
für EnOcean Funknetze“, Practical Thesis,
Dpmt. Information Technology, DHBW
Lörrach, 2008.

[17] A. Newton, “MooTools Essentials: The Official
MooTools Reference for JavaScript™ and Ajax
Development”, Apress, 2008.

[18] http://mootools.net/
[19] http://jquery.com/
[20] http://www.freescale.com/files/dsp/doc/

prod_brief/ MCF5272PB.pdf?fsrch=1
[21] http://www.embetter.de
[22] http://www.stzedn.de

Axel Sikora, holds a
diploma degree in electrical
engineering and a diploma
degree in business
engineering, both from
RWTH Aachen Technical
University, Germany. His
Ph.D. was in the field of
digital circuit design at
Fraunhofer Institute IMS,
Duisburg, Germany.

After several positions in telecommunications and
semiconductor industry, he was appointed Professor
at Baden-Württemberg Cooperative State University
Lörrach in 1999. There, he is now heading the
Information Technology department.

In 2002, he founded Steinbeis Innovation Center
Embedded Design and Networking (sizedn), which
concentrates on algorithm development, protocol
development, protocol implementation, simulation
and test in the field of wired and wireless
networking.

