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Abstract: In this paper, we propose a parallel algorithm for mining large maximal bicliques from graph datasets. We 
propose POP-MBC (Parallel Order Preserving Maximal BiClique mining algorithm), a fast and memory efficient 
parallel algorithm, which enumerates all the maximal bicliques independently and concurrently across several 
processors without any synchronization between the processors. The POP-MBC algorithm is highly memory efficient 
since it does not store the previously computed patterns in the main memory and requires only the dataset to be stored 
in the memory. To enhance the load sharing among different nodes, POP-MBC uses a round robin strategy which 
enables to achieve load balancing as high as 90%. We have also incorporated bit-vectors and numerous optimization 
techniques exploiting the symmetric property of the graph dataset to reduce the memory consumption and overall 
running time of the algorithm. Our comprehensive experimental analyses involving publicly available datasets show 
that our algorithm distributes the load among the different processors equally and takes less memory, less running time 
than other maximal biclique mining algorithms. 
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1. INTRODUCTION 
The need for maximal biclique (complete 

bipartite subgraph) mining from graph datasets has 
been well discussed in the literature [1][4][5][6][8] 
and has several applications in the field of data 
mining including social network analysis and protein 
interaction network analysis [1]. The problem is 
stated as follows: Given a graph containing vertices 
interaction, enumerate all the maximal row vertices 
and column vertices pair of user specified size such 
that each of the row vertices interacts with all the 
column vertices. Large maximal biclique mining is a 
computationally demanding task and requires more 
computational resources to enumerate all the 
bicliques of the given dataset and has been an active 
area of research. Moreover, the complexity class of 
maximal edge biclique problem has been proven to 
be in NP-Complete [5]. Several algorithms have 
been proposed in the literature including MICA [4], 
Eppstein Algorithm [8] and LCM-MBC[1]. 
Eppstein’s algorithm (induced maximal biclique) has 
a complexity of O(a3 22a n) where n is the number of 
vertices and a is the arboricity of the graph. Alex et 
al’s MICA algorithm (non induced maximal 
bicliques) has a time complexity of O(n2 x N) and a 
space complexity of O(N) where N is the number of 
maximal bicliques. The major drawback of MICA 

algorithm is that it requires the entire generated 
maximal biclique subgraphs to be stored in main 
memory for duplicate detection and runs out of 
memory for most of the executions with large graph 
datasets. Recently, the relationship between closed 
patterns and maximal bicliques is reported in the 
literature and closed pattern mining algorithms are 
extended to enumerate maximal bicliques. G. Liu et. 
al, extended LCM algorithm and proposed LCM-
MBC algorithm [1] for maximal biclique 
enumeration. Unlike MICA, the LCM-MBC 
algorithm does not store the already computed 
bicliques in memory and hence the algorithm never 
runs out of main memory. The time complexity of 
LCM-MBC is O(mn x N) and the space complexity 
is O(mn), where m is the number of edges of the 
graph. LCM-MBC algorithm is based on the 
following properties: (i) the number of closed 
patterns of an symmetric adjacency matrix is even; 
(ii) for every maximal biclique subgraph, there 
exists a unique closed pattern pair which 
corresponds to the vertex sets. The draw back of 
LCM-MBC algorithm is that it is sequential and 
takes large amount of running time for large and 
dense graph datasets. It should be noted that closed 
pattern mining in Boolean context is tractable if at 
least one of the dimensions (either row or column) is 
small with less pattern density [13]. Otherwise, the 
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mining task is extremely hard, i.e. the enumeration 
of all patterns take huge amount of running time (for 
a particular real dense dataset, the enumeration of all 
patterns took 6-weeks [3] of running time). For 
graph datasets, the number of rows and columns are 
equal and for large dense datasets the running time 
of an algorithm can be reduced only through 
parallelized execution 

Contributions: In this paper, we propose POP-
MBC algorithm which enumerates the large 
maximal bicliques concurrently on several 
processors without any synchronization. Compared 
with previous maximal biclique mining algorithms, 
we have made three key contributions. First, our 
algorithm does not store the previously computed 
patterns in the main memory for duplicate detection 
and hence the algorithm is memory efficient. 
Second, our algorithm requires no synchronization 
between processors and hence the subtasks can be 
executed independently without communication 
overhead. Third, an efficient parallelization strategy 
based on round robin partitioning of base vertex set 
is proposed which achieves load balancing as high 
as 90% in most cases. 

The rest of the paper is organized as follows. 
Section 2 presents the preliminaries associated with 
this paper. In section 3, we present our subtask 
generation method, the algorithm and its description 
while section 4 analyzes the experimental results 
comprehensively. In section 5, we conclude the 
paper.  

 
2. PRELIMINARIES 

Let ςΡ denote a set of row vertices and ςΧ  denote 
a set of column vertices. In Boolean context, the 
graph dataset is represented by a Boolean matrix, Μ, 
of relation Θ Н  ςΡ x ςΧ. 

Galois Connection: Let R Н  ςΡ, C Н  ςΧ, f(R, Μ) 
= { c О   ςΧ | " r О  R, (r,c) О  Θ } and g(C,Μ)={r О  
ςΡ | " c О  C, (r,c) ОΘ }. The function f provides a 
set of columns that are common to a set of rows and 
the function g provides a set of rows that share a set 
of columns. (f, g) is called Galois connection 
between R and C and the Galois closure operators 
are denoted as h = f o g and h′ = g o f [22]. 

Maximal Bicliques: (R : C), where R Н  ςΡ and C 
Н  ςΧ, is called a maximal biclique in Μ when 
R=g(C) in Μ and C=f(R) in Μ. A maximal biclique 
is thus a maximal 1-rectangle in the Boolean matrix 
of the given dataset. For more details on closure 
operators, closed patterns and maximal bicliques, 
readers may refer [1]. 

Large Maximal Bicliques: A maximal biclique 
is said to be of size (p, q) if |R| ≥ p and |C| ≥ q, 
where p and q are user specified size constraints.  

Order preserving closed itemset generation 
algorithm [3] is based on the following principle: 

“every closed itemset is a superset to another closed 
itemset”. The algorithm visits the search space (item 
space) in the depth first manner and outputs the 
closed itemsets. The procedure attempts to build 
valid generators, which are subsets of another closed 
itemset and all the valid generators lead to a closed 
itemset. The order preserving algorithm takes three 
parameters as input: closed_set, which is initially 
empty, pre_set, which is initially empty and 
post_set, which contains all the items. post_set 
contains the set of items to be processed whereas 
pre_set contains the processed items from post_set 
that lead to valid generators. pre_set is updated 
when the recursive call returns and it does not 
change when the recursive call deepens. The 
algorithm builds all the possible generators by 
adding items from the post_set to closed_set. If the 
supporting transactions of the generator is subset to 
any one of the supporting transactions of the element 
i О  pre_set, then the generator is invalid i.e. the 
closed itemset of the current generator has already 
been generated while processing item i . The 
algorithm finds all the valid generators and then 
computes the closed itemsets. In the context of 
graph’s adjacency matrix, an itemset may refer to 
row vertex set or column vertex set. 

 
Table 1. An Example Graph dataset, ∆, in Boolean 

Context 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 
v1 0 1 0 0 0 1 1 1 1 
v2 1 0 1 0 0 1 1 1 0 
v3 0 1 0 1 0 0 0 0 0 
v4 0 0 1 0 0 1 0 1 1 
v5 0 0 0 0 0 1 0 0 1 
v6 1 1 0 1 1 0 1 1 0 
v7 1 1 0 0 0 1 0 0 0 
v8 1 1 0 1 0 1 0 0 1 
v9 1 0 0 1 1 0 0 1 0 

 
3. PARALLEL MAXIMAL BICLIQUE 

MINING 
In this section, we first present the subtask 

generation framework for parallel maximal biclique 
mining. We then present the POP-MBC pseudo code 
and its description. In the first phase of POP-MBC, 
the vertex space is partitioned into non overlapping 
vertex sets and each non-overlapping vertex set is 
called a Base vertex set. The number of items in 
each base vertex set is determined by the Base 
vertex set Length (BL) parameter. BL is a function of 
number of available processors and the total number 
of vertices. For example, if there are np processors 
then BL = | ς | / np. The POP-MBC algorithm uses a 
round robin partitioning strategy for creating base 
vertex sets to achieve better load balancing among 
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the different processors. In round robin strategy, the 
entire column vertex set is ordered with respect to 
their individual row support and the base vertex sets 
are created by picking every kth vertex, where k is 
the Base vertex set Length. Once the first base 
vertex set is filled with required number of items, 
the subsequent vertices are assigned to the second 
base vertex set and so on. For the example dataset 
given in Table 1, assuming absolute row support 
value as 2 and the number of available processors as 
3, the row support ordered vertex set is { v6, v1, v2, 
v8, v4, v9, v7, v3, v5 } and the base vertex sets are 
B1={ v6 v8 v7 } B2 = { v1 v4 v3 } and B3= {v2 v9 
v5}. The base vertex sets without using round robin 
partitioning strategy are B1={ v6 v1 v2 } B2 = { v8 v4 
v9 } and B3= {v7 v3 v5}. After creating the required 
number of base vertex sets, the reduced vertex space 
is created for each of the base vertex sets by 
removing row vertices which do not contain at least 
any one item of the corresponding base vertex set. 
Also, the row vertices that do not interact with any 
one of its other base vertex item for a minimum of q 
number of times and the column vertices that do not 
interact with any one of its row vertex for a 
minimum of p number times are removed. It is to be 
noted that, p is the minimum row size and q is the 
minimum column vertex set size. This is because, 
each subtask generates only patterns which contain 
at least one item from its corresponding base vertex 
set. Hence, a row vertex which does not interact with 
any one of the item from the given subtask’s base 
vertex set can be removed from the dataset of that 
particular subtask since that particular row vertex 
will not support any of the column patterns of that 
subtask. This vertex space reduction improves the 
mining efficiency. The reduced dataset for B1, B2 
and B3 is given in Table 2, Table 3 and Table 4 
respectively. In Table 2, v3 row vertex is removed 
since it is not supported by v6, v7 and v8 column 
vertices. Similarly, in Table 4, v2 is removed since 
v2 does not interact with v2, v5 and v9 column 
vertices. It should be noted that this technique 
greatly reduces the running time of the algorithm for 
sparse datasets. 

 
Table 2. Reduced dataset for B1 Base vertex set 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 
v1 0 1 0 0 0 1 1 1 1 
v2 1 0 1 0 0 1 1 1 0 
v4 0 0 1 0 0 1 0 1 1 
v5 0 0 0 0 0 1 0 0 1 
v6 1 1 0 1 1 0 1 1 0 
v7 1 1 0 0 0 1 0 0 0 
v8 1 1 0 1 0 1 0 0 1 
v9 1 0 0 1 1 0 0 1 0 

 

Table 3. Reduced dataset for B2 Base vertex set 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 
v2 1 0 1 0 0 1 1 1 0 
v3 0 1 0 1 0 0 0 0 0 
v4 0 0 1 0 0 1 0 1 1 
v6 1 1 0 1 1 0 1 1 0 
v7 1 1 0 0 0 1 0 0 0 
v8 1 1 0 1 0 1 0 0 1 
v9 1 0 0 1 1 0 0 1 0 

 

Table 4. Reduced dataset for B3 Base vertex set 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 
v1 0 1 0 0 0 1 1 1 1 
v3 0 1 0 1 0 0 0 0 0 
v4 0 0 1 0 0 1 0 1 1 
v5 0 0 0 0 0 1 0 0 1 
v6 1 1 0 1 1 0 1 1 0 
v7 1 1 0 0 0 1 0 0 0 
v8 1 1 0 1 0 1 0 0 1 
v9 1 0 0 1 1 0 0 1 0 

 
At each subtask, we also further reduce the 

dataset while mining maximal biclique patterns as 
explained below. If a subtask’s base vertex set 
contain n vertices, then maximal bicliques that start 
with each of the n vertices in their column vertex set 
are enumerated in that subtask. For example, for the 
base vertex set B1, the maximal biclique that starts 
with v6, v7 and v8 are generated. While enumerating 
maximal bicliques that start with a particular vertex, 
the dataset is further reduced by removing row 
vertices that do not support that particular item. 
Table 5 and Table 6 show the reduced dataset of v1 
and v4 of second subtask whereas Table 7 shows the 
reduced dataset for v5 of B3. This technique further 
improves the mining efficiency at each of the 
subtasks. 

 
Table 5. Reduced dataset for v1 of B2 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 
v2 1 0 1 0 0 1 1 1 0 
v6 1 1 0 1 1 0 1 1 0 
v7 1 1 0 0 0 1 0 0 0 
v8 1 1 0 1 0 1 0 0 1 
v9 1 0 0 1 1 0 0 1 0 

 
Table 6. Reduced dataset for v4 of B2 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 
v3 0 1 0 1 0 0 0 0 0 
v6 1 1 0 1 1 0 1 1 0 
v8 1 1 0 1 0 1 0 0 1 
v9 1 0 0 1 1 0 0 1 0 
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Table 7. Reduced dataset for v5 of B3 

 v1 v2 v3 v4 v5 v6 v7 v8 v9 
v6 1 1 0 1 1 0 1 1 0 
v9 1 0 0 1 1 0 0 1 0 

 
The following explains why round robin 

partitioning strategy results in high load balancing 
among different processors. It should be noted that, 
for a particular vertex c, the number of maximal 
bicliques that start with c in their column vertex set 
is determined by the number of elements that are 
present in the post_set(c)[3]. If post_set(c) contain 
large number of elements, then it is very likely that 
more patterns that start with c would be generated. 
Table 8 shows the pre_set elements and post_set 
elements for each of the subtasks without round 
robin strategy after mapping support ordered items 
to continuous integers i.e. v6, v1, v2, v8, v4, v9, v7, 
v3 and v5 are mapped to 1, 2, 3, 4, 5, 6, 7 and 8 
respectively. Table 9 shows the pre_set and post_set 
combination with round robin strategy. From Table 
8 and Table 9, we can notice that round robin 
strategy equally distributes the post_set elements 
and hence results in high load balancing by 
distributing maximal biclique patterns across all the 
available processors. 

 
Table 8. pre_set and post_set combination without 

round robin strategy 

Subtask 1 {pre_set}  {post_set} 
{ }  { 1 2 3 4 5 6 7 8 9} 
{ 1 }  { 2 3 4 5 6 7 8 9} 
{ 1 2 }  { 3 4 5 6 7 8 9} 

Subtask 2 {pre_set}  {post_set} 
{ 1 2 3 }  { 4 5 6 7 8 9} 
{ 1 2 3 4 }  { 5 6 7 8 9} 
{ 1 2 3 4 5 }  { 6 7 8 9} 

Subtask 3 {pre_set}  {post_set} 
{ 1 2 3 4 5 6 }  { 7 8 9} 
{ 1 2 3 4 5 6 7 }  { 8 9} 
{ 1 2 3 4 5 6 7 8 }  { 9} 

 
Table 9. pre_set and post_set combination with round 

robin strategy 

Subtask 1 {pre_set}  {post_set} 
{ }  { 1 2 3 4 5 6 7 8 9} 
{ 1 2 3 }  { 4 5 6 7 8 9} 
{ 1 2 3 4 5 6 }  { 7 8 9} 

Subtask 2 {pre_set}  {post_set} 
{ 1 }  { 2 3 4 5 6 7 8 9} 
{ 1 2 3 4 }  { 5 6 7 8 9} 
{ 1 2 3 4 5 6 7 }  { 8 9} 

Subtask 3 {pre_set}  {post_set} 
{ 1 2 }  { 3 4 5 6 7 8 9} 
{ 1 2 3 4 5 }  { 6 7 8 9} 
{ 1 2 3 4 5 6 7 8 }  { 9} 

 

3.1. POP-MBC PSEUDO CODE 
INPUT: Dataset, ∆, p,q constraints and np, 

number of processors 
OUTPUT: Set of maximal bicliques satisfying the 

p,q size constraint. 
 

1. Compute Φ1 (set of column vertices of support) from 
∆ 

2. Sort the items of Φ1 in their row support descending 
order and map the items to continuous integer space 

3. //Generate the Base vertex set using round robin 
partitioning 

4. BL=| Φ1 | / np 
5. for (i=1; i<=np; i++) 
6.      for(j=0; j<BL;  j++) 
7.           Bi = i +(np * j) ∪ Bi 
8.      endfor 
9. endfor 
10. //Generate the reduced datasets for Base vertex sets 
11. for (k=1; k<=np; k++) 
12.       Rk={ r ∈ ςΡ  | ∃ c∈ Bk, (r,c)=1 } 
13.       call Mine_Maximal_Bicliques(Bi,Rk) on kth 

Processor 
14. endfor 
 
15. Mine_Maximal_Bicliquesi (Bi, Ri) 
16. { 
17.      " c О Bi (ith subtask base vertex set) 
18.        pre_set = { c′ ОF1 | c′ f c } 
19.        closed_set = null 
20.        post_set =c  ∪ { c′ ОF1 | c′ p  c } 
21.        reorder the vertical bit-vector space such that 
                supporting transactions of i are consecutive 
                in its bit-vector space. 
22.        row_setc = { r ∈  Ri |  (r,c)=1 } 
23.        Executei(post_set, closed_set, pre_set, row_setc) 
24. } 
 
25. Executei(post_set, closed_set, pre_set, row_setc) 
26. { 
27.      while (post_set!=null) 
28. z:     c′′=min(post_set) 
29.         row_setg = row_setc ∩ g(c′′) 
30.         if |row_setg |>p && 
                  ( " jОpre_set,  row_setg Л g(j))   
31.             write closed_set, post_set,  
                           pre_set ∪ c′′, row_setc to stack 
32.             closed_set=closed_set ∪  c′′ 
33.            " kОpost_set 
34.                 if row_setg Н g(k)    
35.                      closed_set=closed_set ∪ k 
36.                      post_set=post_set \k 
37.                endif 
38.             row_setc = row_setg 
39.             if |closed_set| > q 
40.                 write row_setg:closed_set to disk  
41.             endif 
42.         else 
43.              if    (post_set!=null)  goto z:   endif 
44.         endif 
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45.         if  (post_set==null && stack is not empty)  
46.                  pop from stack to closed_set, pre_set, 
                                                post_set and row_setc 
47.         endif 
48.         if (closed_set==null)   
49.                 return   
50.         endif 
51.     endwhile 
52. } 
 

4. IMPLEMENTATION AND RESULT 
ANALYSIS 

We have implemented our algorithm using C 
language and the code is compiled using 32 bit 
Microsoft Visual C++ compiler. We have written 
our own stub code to execute the subtasks on 
different processors. Our implementation of POP-
MBC is as follows. We have used bit-vectors to 
represent the dataset in main memory. Before the 
subtasks are created, we compute the frequent-1-
column vertices and the elements are sorted with 
respect to their row support and mapped to 
continuous integers for ease of processing. All the 
processing is done in the mapped space and we 
remap the vertices while writing the maximal 
bicliques to disk. We have used user defined stack to 
store the information required for backtracking and 
each stack element contains closed_set and its 
associated post_set, pre_set and row_set. The 
row_set is a bit-vector and we use bit-wise AND 
operations for closure computation and duplicate 
checking. While creating post_set and pre_set, we 
adopt a particular ordering strategy proposed in [12] 
to speed up the computation by reducing the bit-wise 
operations required for closure checking and 
duplicate detection i.e. the pre_set contain items 
with higher support and the post_set contain items 
with lower support and all the pre_set items are 
ordered in ascending order of their support whereas 
the items in the post_set are ordered in descending 
order with respect to their support. This ordering 
strategy facilitates fast duplicate checking and also 
improves the efficiency of closure checking.  

The datasets used in our experiments and their 
characteristics are given in Table 10. All the datasets 
are downloaded from DIMACS website 
(ftp://dimacs.rutgers.edu/pub/challenge/graph/bench
marks). All the experiments were conducted on an 
isolated pentium 4 machine with 1GB main memory 
loaded with windows XP operating system.  

 

Table 10. Datasets used 

Dataset # vertices #edges 
c-fat200-1 200 1534 
c-fat200-2 200 3235 
hamming6-2 64 1824 
c-fat500-2 500 9139 
Johnson16-2-4 120 5460 

To get the accurate time to the extent possible, 
we have made sure that no other programs were 
running in the background while conducting the 
experiments. All times shown include time for 
reading data from disk and generating all the 
patterns satisfying the given size constraints. To find 
the accurate peak main memory usage and peak 
page file usage, we have not used any specialized 
software since it incurs much overhead. We have 
written a small windows kernel based C program 
using windows process library API that will fetch 
the main memory usage statistics whenever a 
process is terminated. Since we extract the needed 
information from the windows kernel itself, the load 
made by this program on the memory and the 
processor is completely negligible. We have used 
the concept of mean and standard deviation, for 
calculating the load sharing percentage achieved 
among different subtasks. We have computed the 
actual standard deviation and maximal standard 
deviation for the time taken by each of the subtasks. 
It should be noted that if all the subtasks take equal 
amount of time, then the actual standard deviation 
value is zero and the maximum standard deviation 
occurs, if one processor takes all the running time. 
Also, the actual standard deviation value is always 
less than maximal standard deviation value. Hence, 
we compute the load sharing percentage as follows: 
(1-(ASD/MSD)*100) where ASD is the actual standard 
deviation and MSD is the maximal standard 
deviation. It is to be noted that, the lower the value 
of ASD is, the higher will be the load sharing among 
different processors. We have done a large number 
of experiments and shall present only representative 
results here. The results shown in Table 11 compare 
the load sharing percentage of POP-MBC algorithm 
with and without round robin strategy for c-fat200-1 
dataset. As shown, the round robin partitioning 
strategy achieves better load sharing among different 
processors. Similarly, Table 12 shows the result of 
hamming6-2 dataset which shows that the round 
robin strategy achieves better load balancing on the 
average. Table 13 presents the results obtained for c-
fat200-2 dataset whereas Table 14 presents the 
number of maximal biclique patterns that are 
generated by each of the subtasks. As shown in the 
results, the round robin strategy distributes the 
patterns across different subtasks and hence reduces 
the overall running time. Table 15 shows the result 
of c-fat500-2 dataset whereas Table 16 and Table 17 
show the results obtained from johnson16-2-4 
datasets. Table 18 compares the memory usage of 
POP-MBC with LCM-MBC and to make the 
comparison fair, we have generated only one subtask 
because the other algorithm is not a parallel 
algorithm. The results clearly indicate that POP-
MBC takes less memory and less running time than 
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LCM-MBC algorithm. We have not compared with 
MICA algorithm since LCM-MBC was proven to be 
faster than MICA in [1].  

 
Table 11. Load Sharing Percentage among different 

subtasks for c-fat200-1 dataset 

Load Sharing Percentage of POP-MBC 
Without round robin 

strategy 
 

With round robin 
strategy 

 
size 4 Processors 8 Processors 4 Processors 8 Processors

1 23.26 52.62 69.35 87.24 
2 26.8 56.39 74.44 87.10 
3 43.22 56.89 77.89 79.94 
4 33.38 54.67 79.41 74.33 
5 51.16 58.03 80.6 78.13 
6 20.41 29.45 98 62.16 

 
Table 12. Load Sharing Percentage for hamming6-2 

dataset 

Load Sharing Percentage of POP-MBC 
Without round robin 

strategy 
 

With round robin 
strategy 

 
Size 4 Processors 8 Processors 4 Processors 8 Processors

35 27.08 46.38 70.94 88.07 
34 25.57 44.69 68.83 87.00 
33 23.77 43.24 68.47 86.98 
32 22.46 41.78 67.05 86.27 
31 21.08 40.42 66.13 85.90 
30 19.81 39.07 65.07 85.43 

 
Table 13: Load Sharing Percentage among different 

subtasks for c-fat200-2 dataset 

Load Sharing Percentage of POP-MBC 
Without round robin 

strategy 
 

With round robin 
strategy 

 
Size 4 Processors 8 Processors 4 Processors 8 Processors

5 41.71 47.24 60.37 72.91 
6 40.78 46.45 60.07 73.48 
7 40.81 46.94 60.1 73.10 
8 43.73 50.57 60.21 72.77 
9 44.47 52.61 60.12 71.57 

10 44.57 53.73 59.87 70.74 
 

The space complexity of POP-MBC algorithm is 
O(mn) where m and n are number of row vertices 
and column vertices respectively. The POP-MBC 
algorithm explores the search space in depth first 
manner and at any time only a path of the tree is 

stored in memory. Also, bit vectors are used for 
representing the dataset in memory as well as for 
processing. Hence, POP-MBC algorithm is highly 
memory efficient.  

 
Table 14: Pattern distribution among different 

subtasks for c-fat200-1 dataset 

Distribution of Maximal Biclique patterns 
among Different Subtasks 

support Subtask 1 Subtask 2 Subtask 3 Subtask 4
 Without Round Robin Strategy 

1 2583 56905 1159 19043 
2 2533 56765 1109 18883 
3 2280 55420 915 17607 
4 1706 49794 583 13319 
5 956 35824 198 5094 
 With Round Robin Strategy 

1 9542 31090 18415 20643 
2 9492 30992 18317 20489 
3 9185 30171 17539 19327 
4 8069 26967 14868 15498 
5 5530 19218 9266 8058 

 

Table 15: Load Sharing Percentage for c-fat500-2 
dataset 

Load Sharing Percentage of POP-MBC 
Without round robin 

strategy 
 

With round robin 
strategy 

 

Supp-ort
4 Processors 8 

Processors 
4 Processors 8 

Processors
5 50.32 43.39 62.25 73.44 
6 51.07 43.57 61.92 73.67 
7 49.49 42.59 61.77 73.48 
8 47.07 41.06 61.27 73.77 
9 44.26 39.18 60.05 74.05 

10 41.64 37.28 58.37 74.26 
 

Table 16: Load Sharing Percentage for johnson16-2-4 
dataset 

Load Sharing Percentage of POP-MBC
Without round robin 

strategy 
 

With round robin
strategy 

 
support 4 processors 4 Processors 

1 22.61 54.76 
2 22.18 53.75 
3 22.2 53.12 
4 21.06 52.67 
5 20.42 51.29 
6 19.83 50.9 
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Table 17: Pattern distribution among different 
subtasks for johnson16-2-4 dataset 

Distribution of Maximal Bicliques  
among Different Subtasks 

support Subtask 1 Subtask 2 Subtask 3 Subtask 4
 Without Round Robin Strategy 

1 250 1817 10206 53229 
2 220 1787 10176 53079 
3 220 1787 10176 53079 
4 163 1669 9997 52313 
5 163 1669 9997 52313 
 With Round Robin Strategy 

1 6445 17380 4047 37630 
2 6414 17336 4017 37495 
3 6414 17336 4017 37495 
4 6297 17083 3915 36847 
5 6297 17083 3915 36847 

 
Table 18: Peak main memory usage in bytes for 

johnson16-2-4 dataset. 

Running time in Seconds 
and Peak Memory Usage in Bytes 

Supp- 
ort 

LCM-MBC POP-MBC 

 
Running 

Time 

Peak 
Memory 
Usage 

Running 
Time 

Peak 
Memory
Usage 

1 5.125 811008 3.25 569344
2 5.109 811008 3.281 569344
3 5.125 811008 3.391 569344
4 5.125 811008 3.516 569344
5 5.11 811008 3.703 569344
6 5.109 811008 3.922 569344

 
5. CONCLUSION 

Efficient mining of maximal bicliques from 
graph datasets is a fundamental step to several 
data mining applications and we have proposed a 
fast and memory efficient parallel algorithm in 
this paper. The POP-MBC algorithm adaptively 
creates subtasks using round robin strategy which 
achieves very high load sharing among different 
processors. The POP-MBC algorithm is highly 
memory efficient because it does not store the 
previously computed patterns in main memory, 
the search space is explored in depth first manner 
and bit vectors are used for processing. The POP-
MBC algorithm is guaranteed to complete its 
execution as long as the input dataset fits into the 
main memory and any number of processors can 
be used. Currently, we are investigating more 
optimizations to further reduce the overall running 
of the algorithm at each of the subtasks.  
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