
R.V. Nataraj, S. Selvan / Computing, 2009, Vol. 8, Issue 3, 105-113

 105

PARALLEL MINING OF LARGE MAXIMAL BICLIQUES USING ORDER
PRESERVING GENERATORS

R.V. Nataraj 1), S. Selvan 2)

1) PSG College of Technology, India, rvn@ieee.org, www.psgtech.edu

2) Francis Xavier Engg. College, India, drselvan@ieee.org

Abstract: In this paper, we propose a parallel algorithm for mining large maximal bicliques from graph datasets. We
propose POP-MBC (Parallel Order Preserving Maximal BiClique mining algorithm), a fast and memory efficient
parallel algorithm, which enumerates all the maximal bicliques independently and concurrently across several
processors without any synchronization between the processors. The POP-MBC algorithm is highly memory efficient
since it does not store the previously computed patterns in the main memory and requires only the dataset to be stored
in the memory. To enhance the load sharing among different nodes, POP-MBC uses a round robin strategy which
enables to achieve load balancing as high as 90%. We have also incorporated bit-vectors and numerous optimization
techniques exploiting the symmetric property of the graph dataset to reduce the memory consumption and overall
running time of the algorithm. Our comprehensive experimental analyses involving publicly available datasets show
that our algorithm distributes the load among the different processors equally and takes less memory, less running time
than other maximal biclique mining algorithms.

Keywords: Data mining, Knowledge Discovery, Maximal Bicliques, Mining Methods.

1. INTRODUCTION
The need for maximal biclique (complete

bipartite subgraph) mining from graph datasets has
been well discussed in the literature [1][4][5][6][8]
and has several applications in the field of data
mining including social network analysis and protein
interaction network analysis [1]. The problem is
stated as follows: Given a graph containing vertices
interaction, enumerate all the maximal row vertices
and column vertices pair of user specified size such
that each of the row vertices interacts with all the
column vertices. Large maximal biclique mining is a
computationally demanding task and requires more
computational resources to enumerate all the
bicliques of the given dataset and has been an active
area of research. Moreover, the complexity class of
maximal edge biclique problem has been proven to
be in NP-Complete [5]. Several algorithms have
been proposed in the literature including MICA [4],
Eppstein Algorithm [8] and LCM-MBC[1].
Eppstein’s algorithm (induced maximal biclique) has
a complexity of O(a3 22a n) where n is the number of
vertices and a is the arboricity of the graph. Alex et
al’s MICA algorithm (non induced maximal
bicliques) has a time complexity of O(n2 x N) and a
space complexity of O(N) where N is the number of
maximal bicliques. The major drawback of MICA

algorithm is that it requires the entire generated
maximal biclique subgraphs to be stored in main
memory for duplicate detection and runs out of
memory for most of the executions with large graph
datasets. Recently, the relationship between closed
patterns and maximal bicliques is reported in the
literature and closed pattern mining algorithms are
extended to enumerate maximal bicliques. G. Liu et.
al, extended LCM algorithm and proposed LCM-
MBC algorithm [1] for maximal biclique
enumeration. Unlike MICA, the LCM-MBC
algorithm does not store the already computed
bicliques in memory and hence the algorithm never
runs out of main memory. The time complexity of
LCM-MBC is O(mn x N) and the space complexity
is O(mn), where m is the number of edges of the
graph. LCM-MBC algorithm is based on the
following properties: (i) the number of closed
patterns of an symmetric adjacency matrix is even;
(ii) for every maximal biclique subgraph, there
exists a unique closed pattern pair which
corresponds to the vertex sets. The draw back of
LCM-MBC algorithm is that it is sequential and
takes large amount of running time for large and
dense graph datasets. It should be noted that closed
pattern mining in Boolean context is tractable if at
least one of the dimensions (either row or column) is
small with less pattern density [13]. Otherwise, the

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

R.V. Nataraj, S. Selvan / Computing, 2009, Vol. 8, Issue 3, 105-113

 106

mining task is extremely hard, i.e. the enumeration
of all patterns take huge amount of running time (for
a particular real dense dataset, the enumeration of all
patterns took 6-weeks [3] of running time). For
graph datasets, the number of rows and columns are
equal and for large dense datasets the running time
of an algorithm can be reduced only through
parallelized execution

Contributions: In this paper, we propose POP-
MBC algorithm which enumerates the large
maximal bicliques concurrently on several
processors without any synchronization. Compared
with previous maximal biclique mining algorithms,
we have made three key contributions. First, our
algorithm does not store the previously computed
patterns in the main memory for duplicate detection
and hence the algorithm is memory efficient.
Second, our algorithm requires no synchronization
between processors and hence the subtasks can be
executed independently without communication
overhead. Third, an efficient parallelization strategy
based on round robin partitioning of base vertex set
is proposed which achieves load balancing as high
as 90% in most cases.

The rest of the paper is organized as follows.
Section 2 presents the preliminaries associated with
this paper. In section 3, we present our subtask
generation method, the algorithm and its description
while section 4 analyzes the experimental results
comprehensively. In section 5, we conclude the
paper.

2. PRELIMINARIES

Let ςΡ denote a set of row vertices and ςΧ denote
a set of column vertices. In Boolean context, the
graph dataset is represented by a Boolean matrix, Μ,
of relation Θ Н ςΡ x ςΧ.

Galois Connection: Let R Н ςΡ, C Н ςΧ, f(R, Μ)
= { c О ςΧ | " r О R, (r,c) О Θ } and g(C,Μ)={r О
ςΡ | " c О C, (r,c) ОΘ }. The function f provides a
set of columns that are common to a set of rows and
the function g provides a set of rows that share a set
of columns. (f, g) is called Galois connection
between R and C and the Galois closure operators
are denoted as h = f o g and h′ = g o f [22].

Maximal Bicliques: (R : C), where R Н ςΡ and C
Н ςΧ, is called a maximal biclique in Μ when
R=g(C) in Μ and C=f(R) in Μ. A maximal biclique
is thus a maximal 1-rectangle in the Boolean matrix
of the given dataset. For more details on closure
operators, closed patterns and maximal bicliques,
readers may refer [1].

Large Maximal Bicliques: A maximal biclique
is said to be of size (p, q) if |R| ≥ p and |C| ≥ q,
where p and q are user specified size constraints.

Order preserving closed itemset generation
algorithm [3] is based on the following principle:

“every closed itemset is a superset to another closed
itemset”. The algorithm visits the search space (item
space) in the depth first manner and outputs the
closed itemsets. The procedure attempts to build
valid generators, which are subsets of another closed
itemset and all the valid generators lead to a closed
itemset. The order preserving algorithm takes three
parameters as input: closed_set, which is initially
empty, pre_set, which is initially empty and
post_set, which contains all the items. post_set
contains the set of items to be processed whereas
pre_set contains the processed items from post_set
that lead to valid generators. pre_set is updated
when the recursive call returns and it does not
change when the recursive call deepens. The
algorithm builds all the possible generators by
adding items from the post_set to closed_set. If the
supporting transactions of the generator is subset to
any one of the supporting transactions of the element
i О pre_set, then the generator is invalid i.e. the
closed itemset of the current generator has already
been generated while processing item i . The
algorithm finds all the valid generators and then
computes the closed itemsets. In the context of
graph’s adjacency matrix, an itemset may refer to
row vertex set or column vertex set.

Table 1. An Example Graph dataset, ∆, in Boolean

Context

 v1 v2 v3 v4 v5 v6 v7 v8 v9
v1 0 1 0 0 0 1 1 1 1
v2 1 0 1 0 0 1 1 1 0
v3 0 1 0 1 0 0 0 0 0
v4 0 0 1 0 0 1 0 1 1
v5 0 0 0 0 0 1 0 0 1
v6 1 1 0 1 1 0 1 1 0
v7 1 1 0 0 0 1 0 0 0
v8 1 1 0 1 0 1 0 0 1
v9 1 0 0 1 1 0 0 1 0

3. PARALLEL MAXIMAL BICLIQUE

MINING
In this section, we first present the subtask

generation framework for parallel maximal biclique
mining. We then present the POP-MBC pseudo code
and its description. In the first phase of POP-MBC,
the vertex space is partitioned into non overlapping
vertex sets and each non-overlapping vertex set is
called a Base vertex set. The number of items in
each base vertex set is determined by the Base
vertex set Length (BL) parameter. BL is a function of
number of available processors and the total number
of vertices. For example, if there are np processors
then BL = | ς | / np. The POP-MBC algorithm uses a
round robin partitioning strategy for creating base
vertex sets to achieve better load balancing among

R.V. Nataraj, S. Selvan / Computing, 2009, Vol. 8, Issue 3, 105-113

 107

the different processors. In round robin strategy, the
entire column vertex set is ordered with respect to
their individual row support and the base vertex sets
are created by picking every kth vertex, where k is
the Base vertex set Length. Once the first base
vertex set is filled with required number of items,
the subsequent vertices are assigned to the second
base vertex set and so on. For the example dataset
given in Table 1, assuming absolute row support
value as 2 and the number of available processors as
3, the row support ordered vertex set is { v6, v1, v2,
v8, v4, v9, v7, v3, v5 } and the base vertex sets are
B1={ v6 v8 v7 } B2 = { v1 v4 v3 } and B3= {v2 v9
v5}. The base vertex sets without using round robin
partitioning strategy are B1={ v6 v1 v2 } B2 = { v8 v4
v9 } and B3= {v7 v3 v5}. After creating the required
number of base vertex sets, the reduced vertex space
is created for each of the base vertex sets by
removing row vertices which do not contain at least
any one item of the corresponding base vertex set.
Also, the row vertices that do not interact with any
one of its other base vertex item for a minimum of q
number of times and the column vertices that do not
interact with any one of its row vertex for a
minimum of p number times are removed. It is to be
noted that, p is the minimum row size and q is the
minimum column vertex set size. This is because,
each subtask generates only patterns which contain
at least one item from its corresponding base vertex
set. Hence, a row vertex which does not interact with
any one of the item from the given subtask’s base
vertex set can be removed from the dataset of that
particular subtask since that particular row vertex
will not support any of the column patterns of that
subtask. This vertex space reduction improves the
mining efficiency. The reduced dataset for B1, B2
and B3 is given in Table 2, Table 3 and Table 4
respectively. In Table 2, v3 row vertex is removed
since it is not supported by v6, v7 and v8 column
vertices. Similarly, in Table 4, v2 is removed since
v2 does not interact with v2, v5 and v9 column
vertices. It should be noted that this technique
greatly reduces the running time of the algorithm for
sparse datasets.

Table 2. Reduced dataset for B1 Base vertex set

 v1 v2 v3 v4 v5 v6 v7 v8 v9
v1 0 1 0 0 0 1 1 1 1
v2 1 0 1 0 0 1 1 1 0
v4 0 0 1 0 0 1 0 1 1
v5 0 0 0 0 0 1 0 0 1
v6 1 1 0 1 1 0 1 1 0
v7 1 1 0 0 0 1 0 0 0
v8 1 1 0 1 0 1 0 0 1
v9 1 0 0 1 1 0 0 1 0

Table 3. Reduced dataset for B2 Base vertex set

 v1 v2 v3 v4 v5 v6 v7 v8 v9
v2 1 0 1 0 0 1 1 1 0
v3 0 1 0 1 0 0 0 0 0
v4 0 0 1 0 0 1 0 1 1
v6 1 1 0 1 1 0 1 1 0
v7 1 1 0 0 0 1 0 0 0
v8 1 1 0 1 0 1 0 0 1
v9 1 0 0 1 1 0 0 1 0

Table 4. Reduced dataset for B3 Base vertex set

 v1 v2 v3 v4 v5 v6 v7 v8 v9
v1 0 1 0 0 0 1 1 1 1
v3 0 1 0 1 0 0 0 0 0
v4 0 0 1 0 0 1 0 1 1
v5 0 0 0 0 0 1 0 0 1
v6 1 1 0 1 1 0 1 1 0
v7 1 1 0 0 0 1 0 0 0
v8 1 1 0 1 0 1 0 0 1
v9 1 0 0 1 1 0 0 1 0

At each subtask, we also further reduce the

dataset while mining maximal biclique patterns as
explained below. If a subtask’s base vertex set
contain n vertices, then maximal bicliques that start
with each of the n vertices in their column vertex set
are enumerated in that subtask. For example, for the
base vertex set B1, the maximal biclique that starts
with v6, v7 and v8 are generated. While enumerating
maximal bicliques that start with a particular vertex,
the dataset is further reduced by removing row
vertices that do not support that particular item.
Table 5 and Table 6 show the reduced dataset of v1
and v4 of second subtask whereas Table 7 shows the
reduced dataset for v5 of B3. This technique further
improves the mining efficiency at each of the
subtasks.

Table 5. Reduced dataset for v1 of B2

 v1 v2 v3 v4 v5 v6 v7 v8 v9
v2 1 0 1 0 0 1 1 1 0
v6 1 1 0 1 1 0 1 1 0
v7 1 1 0 0 0 1 0 0 0
v8 1 1 0 1 0 1 0 0 1
v9 1 0 0 1 1 0 0 1 0

Table 6. Reduced dataset for v4 of B2

 v1 v2 v3 v4 v5 v6 v7 v8 v9
v3 0 1 0 1 0 0 0 0 0
v6 1 1 0 1 1 0 1 1 0
v8 1 1 0 1 0 1 0 0 1
v9 1 0 0 1 1 0 0 1 0

R.V. Nataraj, S. Selvan / Computing, 2009, Vol. 8, Issue 3, 105-113

 108

Table 7. Reduced dataset for v5 of B3

 v1 v2 v3 v4 v5 v6 v7 v8 v9
v6 1 1 0 1 1 0 1 1 0
v9 1 0 0 1 1 0 0 1 0

The following explains why round robin

partitioning strategy results in high load balancing
among different processors. It should be noted that,
for a particular vertex c, the number of maximal
bicliques that start with c in their column vertex set
is determined by the number of elements that are
present in the post_set(c)[3]. If post_set(c) contain
large number of elements, then it is very likely that
more patterns that start with c would be generated.
Table 8 shows the pre_set elements and post_set
elements for each of the subtasks without round
robin strategy after mapping support ordered items
to continuous integers i.e. v6, v1, v2, v8, v4, v9, v7,
v3 and v5 are mapped to 1, 2, 3, 4, 5, 6, 7 and 8
respectively. Table 9 shows the pre_set and post_set
combination with round robin strategy. From Table
8 and Table 9, we can notice that round robin
strategy equally distributes the post_set elements
and hence results in high load balancing by
distributing maximal biclique patterns across all the
available processors.

Table 8. pre_set and post_set combination without

round robin strategy

Subtask 1 {pre_set} {post_set}
{ } { 1 2 3 4 5 6 7 8 9}
{ 1 } { 2 3 4 5 6 7 8 9}
{ 1 2 } { 3 4 5 6 7 8 9}

Subtask 2 {pre_set} {post_set}
{ 1 2 3 } { 4 5 6 7 8 9}
{ 1 2 3 4 } { 5 6 7 8 9}
{ 1 2 3 4 5 } { 6 7 8 9}

Subtask 3 {pre_set} {post_set}
{ 1 2 3 4 5 6 } { 7 8 9}
{ 1 2 3 4 5 6 7 } { 8 9}
{ 1 2 3 4 5 6 7 8 } { 9}

Table 9. pre_set and post_set combination with round

robin strategy

Subtask 1 {pre_set} {post_set}
{ } { 1 2 3 4 5 6 7 8 9}
{ 1 2 3 } { 4 5 6 7 8 9}
{ 1 2 3 4 5 6 } { 7 8 9}

Subtask 2 {pre_set} {post_set}
{ 1 } { 2 3 4 5 6 7 8 9}
{ 1 2 3 4 } { 5 6 7 8 9}
{ 1 2 3 4 5 6 7 } { 8 9}

Subtask 3 {pre_set} {post_set}
{ 1 2 } { 3 4 5 6 7 8 9}
{ 1 2 3 4 5 } { 6 7 8 9}
{ 1 2 3 4 5 6 7 8 } { 9}

3.1. POP-MBC PSEUDO CODE
INPUT: Dataset, ∆, p,q constraints and np,

number of processors
OUTPUT: Set of maximal bicliques satisfying the

p,q size constraint.

1. Compute Φ1 (set of column vertices of support) from
∆

2. Sort the items of Φ1 in their row support descending
order and map the items to continuous integer space

3. //Generate the Base vertex set using round robin
partitioning

4. BL=| Φ1 | / np
5. for (i=1; i<=np; i++)
6. for(j=0; j<BL; j++)
7. Bi = i +(np * j) ∪ Bi
8. endfor
9. endfor
10. //Generate the reduced datasets for Base vertex sets
11. for (k=1; k<=np; k++)
12. Rk={ r ∈ ςΡ | ∃ c∈ Bk, (r,c)=1 }
13. call Mine_Maximal_Bicliques(Bi,Rk) on kth

Processor
14. endfor

15. Mine_Maximal_Bicliquesi (Bi, Ri)
16. {
17. " c О Bi (ith subtask base vertex set)
18. pre_set = { c′ ОF1 | c′ f c }
19. closed_set = null
20. post_set =c ∪ { c′ ОF1 | c′ p c }
21. reorder the vertical bit-vector space such that
 supporting transactions of i are consecutive
 in its bit-vector space.
22. row_setc = { r ∈ Ri | (r,c)=1 }
23. Executei(post_set, closed_set, pre_set, row_setc)
24. }

25. Executei(post_set, closed_set, pre_set, row_setc)
26. {
27. while (post_set!=null)
28. z: c′′=min(post_set)
29. row_setg = row_setc ∩ g(c′′)
30. if |row_setg |>p &&
 (" jОpre_set, row_setg Л g(j))
31. write closed_set, post_set,
 pre_set ∪ c′′, row_setc to stack
32. closed_set=closed_set ∪ c′′
33. " kОpost_set
34. if row_setg Н g(k)
35. closed_set=closed_set ∪ k
36. post_set=post_set \k
37. endif
38. row_setc = row_setg
39. if |closed_set| > q
40. write row_setg:closed_set to disk
41. endif
42. else
43. if (post_set!=null) goto z: endif
44. endif

R.V. Nataraj, S. Selvan / Computing, 2009, Vol. 8, Issue 3, 105-113

 109

45. if (post_set==null && stack is not empty)
46. pop from stack to closed_set, pre_set,
 post_set and row_setc
47. endif
48. if (closed_set==null)
49. return
50. endif
51. endwhile
52. }

4. IMPLEMENTATION AND RESULT
ANALYSIS

We have implemented our algorithm using C
language and the code is compiled using 32 bit
Microsoft Visual C++ compiler. We have written
our own stub code to execute the subtasks on
different processors. Our implementation of POP-
MBC is as follows. We have used bit-vectors to
represent the dataset in main memory. Before the
subtasks are created, we compute the frequent-1-
column vertices and the elements are sorted with
respect to their row support and mapped to
continuous integers for ease of processing. All the
processing is done in the mapped space and we
remap the vertices while writing the maximal
bicliques to disk. We have used user defined stack to
store the information required for backtracking and
each stack element contains closed_set and its
associated post_set, pre_set and row_set. The
row_set is a bit-vector and we use bit-wise AND
operations for closure computation and duplicate
checking. While creating post_set and pre_set, we
adopt a particular ordering strategy proposed in [12]
to speed up the computation by reducing the bit-wise
operations required for closure checking and
duplicate detection i.e. the pre_set contain items
with higher support and the post_set contain items
with lower support and all the pre_set items are
ordered in ascending order of their support whereas
the items in the post_set are ordered in descending
order with respect to their support. This ordering
strategy facilitates fast duplicate checking and also
improves the efficiency of closure checking.

The datasets used in our experiments and their
characteristics are given in Table 10. All the datasets
are downloaded from DIMACS website
(ftp://dimacs.rutgers.edu/pub/challenge/graph/bench
marks). All the experiments were conducted on an
isolated pentium 4 machine with 1GB main memory
loaded with windows XP operating system.

Table 10. Datasets used

Dataset # vertices #edges
c-fat200-1 200 1534
c-fat200-2 200 3235
hamming6-2 64 1824
c-fat500-2 500 9139
Johnson16-2-4 120 5460

To get the accurate time to the extent possible,
we have made sure that no other programs were
running in the background while conducting the
experiments. All times shown include time for
reading data from disk and generating all the
patterns satisfying the given size constraints. To find
the accurate peak main memory usage and peak
page file usage, we have not used any specialized
software since it incurs much overhead. We have
written a small windows kernel based C program
using windows process library API that will fetch
the main memory usage statistics whenever a
process is terminated. Since we extract the needed
information from the windows kernel itself, the load
made by this program on the memory and the
processor is completely negligible. We have used
the concept of mean and standard deviation, for
calculating the load sharing percentage achieved
among different subtasks. We have computed the
actual standard deviation and maximal standard
deviation for the time taken by each of the subtasks.
It should be noted that if all the subtasks take equal
amount of time, then the actual standard deviation
value is zero and the maximum standard deviation
occurs, if one processor takes all the running time.
Also, the actual standard deviation value is always
less than maximal standard deviation value. Hence,
we compute the load sharing percentage as follows:
(1-(ASD/MSD)*100) where ASD is the actual standard
deviation and MSD is the maximal standard
deviation. It is to be noted that, the lower the value
of ASD is, the higher will be the load sharing among
different processors. We have done a large number
of experiments and shall present only representative
results here. The results shown in Table 11 compare
the load sharing percentage of POP-MBC algorithm
with and without round robin strategy for c-fat200-1
dataset. As shown, the round robin partitioning
strategy achieves better load sharing among different
processors. Similarly, Table 12 shows the result of
hamming6-2 dataset which shows that the round
robin strategy achieves better load balancing on the
average. Table 13 presents the results obtained for c-
fat200-2 dataset whereas Table 14 presents the
number of maximal biclique patterns that are
generated by each of the subtasks. As shown in the
results, the round robin strategy distributes the
patterns across different subtasks and hence reduces
the overall running time. Table 15 shows the result
of c-fat500-2 dataset whereas Table 16 and Table 17
show the results obtained from johnson16-2-4
datasets. Table 18 compares the memory usage of
POP-MBC with LCM-MBC and to make the
comparison fair, we have generated only one subtask
because the other algorithm is not a parallel
algorithm. The results clearly indicate that POP-
MBC takes less memory and less running time than

R.V. Nataraj, S. Selvan / Computing, 2009, Vol. 8, Issue 3, 105-113

 110

LCM-MBC algorithm. We have not compared with
MICA algorithm since LCM-MBC was proven to be
faster than MICA in [1].

Table 11. Load Sharing Percentage among different

subtasks for c-fat200-1 dataset

Load Sharing Percentage of POP-MBC
Without round robin

strategy

With round robin
strategy

size 4 Processors 8 Processors 4 Processors 8 Processors

1 23.26 52.62 69.35 87.24
2 26.8 56.39 74.44 87.10
3 43.22 56.89 77.89 79.94
4 33.38 54.67 79.41 74.33
5 51.16 58.03 80.6 78.13
6 20.41 29.45 98 62.16

Table 12. Load Sharing Percentage for hamming6-2

dataset

Load Sharing Percentage of POP-MBC
Without round robin

strategy

With round robin
strategy

Size 4 Processors 8 Processors 4 Processors 8 Processors

35 27.08 46.38 70.94 88.07
34 25.57 44.69 68.83 87.00
33 23.77 43.24 68.47 86.98
32 22.46 41.78 67.05 86.27
31 21.08 40.42 66.13 85.90
30 19.81 39.07 65.07 85.43

Table 13: Load Sharing Percentage among different

subtasks for c-fat200-2 dataset

Load Sharing Percentage of POP-MBC
Without round robin

strategy

With round robin
strategy

Size 4 Processors 8 Processors 4 Processors 8 Processors

5 41.71 47.24 60.37 72.91
6 40.78 46.45 60.07 73.48
7 40.81 46.94 60.1 73.10
8 43.73 50.57 60.21 72.77
9 44.47 52.61 60.12 71.57

10 44.57 53.73 59.87 70.74

The space complexity of POP-MBC algorithm is
O(mn) where m and n are number of row vertices
and column vertices respectively. The POP-MBC
algorithm explores the search space in depth first
manner and at any time only a path of the tree is

stored in memory. Also, bit vectors are used for
representing the dataset in memory as well as for
processing. Hence, POP-MBC algorithm is highly
memory efficient.

Table 14: Pattern distribution among different

subtasks for c-fat200-1 dataset

Distribution of Maximal Biclique patterns
among Different Subtasks

support Subtask 1 Subtask 2 Subtask 3 Subtask 4
 Without Round Robin Strategy

1 2583 56905 1159 19043
2 2533 56765 1109 18883
3 2280 55420 915 17607
4 1706 49794 583 13319
5 956 35824 198 5094
 With Round Robin Strategy

1 9542 31090 18415 20643
2 9492 30992 18317 20489
3 9185 30171 17539 19327
4 8069 26967 14868 15498
5 5530 19218 9266 8058

Table 15: Load Sharing Percentage for c-fat500-2
dataset

Load Sharing Percentage of POP-MBC
Without round robin

strategy

With round robin
strategy

Supp-ort
4 Processors 8

Processors
4 Processors 8

Processors
5 50.32 43.39 62.25 73.44
6 51.07 43.57 61.92 73.67
7 49.49 42.59 61.77 73.48
8 47.07 41.06 61.27 73.77
9 44.26 39.18 60.05 74.05

10 41.64 37.28 58.37 74.26

Table 16: Load Sharing Percentage for johnson16-2-4
dataset

Load Sharing Percentage of POP-MBC
Without round robin

strategy

With round robin
strategy

support 4 processors 4 Processors

1 22.61 54.76
2 22.18 53.75
3 22.2 53.12
4 21.06 52.67
5 20.42 51.29
6 19.83 50.9

R.V. Nataraj, S. Selvan / Computing, 2009, Vol. 8, Issue 3, 105-113

 111

Table 17: Pattern distribution among different
subtasks for johnson16-2-4 dataset

Distribution of Maximal Bicliques
among Different Subtasks

support Subtask 1 Subtask 2 Subtask 3 Subtask 4
 Without Round Robin Strategy

1 250 1817 10206 53229
2 220 1787 10176 53079
3 220 1787 10176 53079
4 163 1669 9997 52313
5 163 1669 9997 52313
 With Round Robin Strategy

1 6445 17380 4047 37630
2 6414 17336 4017 37495
3 6414 17336 4017 37495
4 6297 17083 3915 36847
5 6297 17083 3915 36847

Table 18: Peak main memory usage in bytes for

johnson16-2-4 dataset.

Running time in Seconds
and Peak Memory Usage in Bytes

Supp-
ort

LCM-MBC POP-MBC

Running

Time

Peak
Memory
Usage

Running
Time

Peak
Memory
Usage

1 5.125 811008 3.25 569344
2 5.109 811008 3.281 569344
3 5.125 811008 3.391 569344
4 5.125 811008 3.516 569344
5 5.11 811008 3.703 569344
6 5.109 811008 3.922 569344

5. CONCLUSION

Efficient mining of maximal bicliques from
graph datasets is a fundamental step to several
data mining applications and we have proposed a
fast and memory efficient parallel algorithm in
this paper. The POP-MBC algorithm adaptively
creates subtasks using round robin strategy which
achieves very high load sharing among different
processors. The POP-MBC algorithm is highly
memory efficient because it does not store the
previously computed patterns in main memory,
the search space is explored in depth first manner
and bit vectors are used for processing. The POP-
MBC algorithm is guaranteed to complete its
execution as long as the input dataset fits into the
main memory and any number of processors can
be used. Currently, we are investigating more
optimizations to further reduce the overall running
of the algorithm at each of the subtasks.

ACKNOWLEDGEMENTS
We wish to thank the authors of DCI_Closed

algorithm and LCM-MBC algorithm for
responding to our queries. We thank the people
supporting DIMACS website for providing the
synthetic dataset generator and benchmark graph
datasets.

6. REFERENCES

[1] Jinyan Li, Guimei Liu, Haiquan Li, Lim-
soon Wong. Maximal biclique subgraphs and
closed pattern pairs of the adjacency matrix: a
one-to-one correspondence and mining
algorithms. IEEE Transactions on Knowledge
and Data Engineering, Dec. 2007, Vol. 19,
No. 12, pp. 1625-1637.

[2] Liping Ji, Kian-Lee Tan, K. H. Tung. Com-
pressed hierarchical mining of frequent closed
patterns from dense data sets. IEEE Trans. on
Knowledge and Data Engineering, Sept 2007,
Vol 19, No. 9.

[3] C. Lucchese, S. Orlando and R. Perego. Fast
and memory efficient mining of frequent closed
itemsets. IEEE Transactions on Knowledge and
Data Engineering, January 2006, Vol. 18,
No. 1, p. 21-36.

[4] G. Alexe, S. Alexe, Y. Crama, S. Foldes,
P.L. Hammer and B. Simeone. Consensus
algorithms for the generation of all maximal
bicliques. Discrete Applied Mathematics, 2004,
145(1), pp. 11-21.

[5] René Peeters. The maximum edge biclique
problem is NP-complete. Discrete Applied
Mathematics, 2003, 131(3), pp. 651-654.

[6] V.M. Dias, C.M. de Figueiredo, and J. L. Sz-
warcfiter. Generating bicliques of a graph in
lexicographic order. Journal of Theoretical
Computer Science, 2005, Vol. 337, pp. 240-
248.

[7] K. Makino and T. Uno. New algorithms for
enumerating all maximal cliques, in
Proceedings of the 9th Scandinavian Workshop
on Algorithm Theory (SWAT 2004), Springer-
Verlag, 2004, pp. 260–272.

[8] D. Eppstein. Arboricity and bipartite subgraph
listing algorithms. Information processing
letters, 1994, Vol. 51, pp. 207-211.

[9] Mingjun Song, Sanguthevar Rajasekaran. A
transaction mapping algorithm for frequent
itemsets mining. IEEE Transactions on
Knowledge and Data Engineering, April 2006,
Vol. 18, No. 4, p. 472-481.

[10] G. Grahne, J. Zhu. Fast algorithms for frequent
itemset mining using FP-trees. IEEE
Transactions on Knowledge and Data

R.V. Nataraj, S. Selvan / Computing, 2009, Vol. 8, Issue 3, 105-113

 112

Engineering, October 2005, Vol. 17, No. 10,
p. 1347-1362.

[11] D. Burdick, M. Calimlim, J. Flannick,
J. Gehrke, Y. Yiu. MAFIA: a maximal frequent
itemset algorithm. IEEE Transactions on
Knowledge and Data Engineering, November
2005, Vol. 17, No. 11, p. 1490-1504.

[12] S. Selvan and R. V. Nataraj. Efficient mining
of maximal patterns using order preserving
generators, in proc. 16th Intl. Conf. on
Advanced Computing and Communications,
Chennai, India, Dec. 2008.

[13] J. Besson, C. Robardet, J.F. Boulicaut,
S. Rome. Constraint based concept mining and
its application to microarray data analysis.
Journal of Intelligent Data Analysis, 2005,
pp. 59-82.

[14] Ji Liping. Mining localized co-expressed gene
patterns from microarray data. PhD
dissertation, School of Computing, National
University of Singapore, June 2006.

[15] Ji Liping, K.L. Tan and A.K.H. Tung. Mining
frequent closed cubes in 3D datasets. Proc.
32nd int. conference on very large data-bases,
2006.

[16] Gao Cong, Kian-Lee Tan, A.K.H. Tung,
Feng Pan. Mining frequent closed patterns in
microarray data, ICDM’04, Nov 2004, Vol. 1,
Issue 4, p. 363-366.

[17] Jiawei Han, Jian Pei, Yiwen Yin,
Runying Mao. Mining frequent pattern without
candidate generation: a frequent pattern
approach. Journal of Data Mining and
Knowledge Discovery, 2004, Springer, p. 53-
87.

[18] R. Agrawal, T. Imielinski, and A. Swami.
Mining association rules between sets of items
in large databases, in Proceedings of the 1993
ACM SIGMOD International Conference on
Management of Data, Washington, DC, May
1993, p. 207-216.

[19] R. Agrawal and R. Srikant. Fast algorithms for
mining association rules, in Proceeding of Int.
Conf. Very Large Data Bases, Santiago, Chile,
September 1994, p. 487-499.

[20] S. Brin, R. Motwani, J.D. Ullman and S. Tsur.
Dynamic itemset counting and implication
rules for market basket data, SIGMOD Record,
June 1997, 6(2), p. 255-264.

[21] R. Agrawal and J.C. Shafer. Parallel mining of
association rules. IEEE Transactions on
Knowledge and Data Engineering, December
1996, Vol. 8, No. 6, p. 962-969.

[22] N. Pasquier, Y. Bastide, R. Taouil, and
L. Lakhal. Discovering frequent closed itemsets
for association rules, Proc. 7th Int. Conf.

Database Theory (ICDT’99), January 1999,
p. 398-416.

[23] J. Pei, J. Han, and R. Mao. CLOSET: an
efficient algorithm for mining frequent closed
itemsets, Proc. 2000 ACM-SIGMOD Int.
Workshop Data Mining and Knowledge
Discovery (DMKD’00), May 2000, p. 11-20.

[24] J. Wang, J. Han and J. Pei. CLOSET+:
searching for the best strategies for mining
frequent closed itemsets, Proc. 2003 ACM
SIGKDD Int. Conf. Knowledge Discovery and
Data Mining, August 2003, p. 236-245.

[25] M.J. Zaki, C.J. Hsiao. Efficient algorithms for
mining closed itemsets and their lattice
structure. IEEE Trans. on Knowledge and data
Engineering, April 2005, Vol. 17, No. 4,
p. 462-478.

[26] Ahmed Shakil, Frans Coenen, Paul Leng. Tree
based partitioning of data for association rule
mining. Knowledge and Information Systems,
Springer, October 2006, Vol. 10, No. 3, p. 315-
331.

[27] A. Veloso, M. Otey, S. Parthasarathy, and
W. Meira. Parallel and distributed frequent
itemset mining on dynamic datasets, in Proc. of
the High Performance Computing Conference,
HiPC, Hyderabad, India, December 2003.

[28] Yew-kwong Woon, Wee-keong Ng, Ee-
Peng Lim. A support-ordered tree for fast
frequent itemset discovery. IEEE Transactions
on Knowledge and Data Engineering, July
2004, Vol. 16, No. 7, p. 875-879.

[29] H.D.K. Moonesinghe, Samah Fodeh, P.N. Tan.
Frequent closed itemset mining using prefix
graphs with an efficient flow-based pruning
strategy. ICDM’06.

[30] Guimei Liu. Supporting efficient and scalable
frequent pattern mining. PhD Thesis, Hong
Kong University, May 2005.

[31] I. Rigoutsos and A. Floratos. Combinatorial
pattern discovery in biological sequences: the
teiresias algorithm. Bioinformatics, 1998,
Vol. 14, p. 55-67.

[32] Guizhen Yang. The complexity of mining
maximal frequent itemsets and maximal
frequent patterns, KDD’04, Seattle,
Washington, August 2004.

R.V. Nataraj, received the
bachelor degree in computer
science and engineering from
Bharatiyar University, Coimba-
tore, India, in 2002 and Master
degree in computer science from
SASTRA University, Tanjore,
India in 2004. He is currently

R.V. Nataraj, S. Selvan / Computing, 2009, Vol. 8, Issue 3, 105-113

 113

pursuing PhD in Computer Science at PSG College
of Technology, Anna University. He is a member of
IEEE.

His research interests include data mining, graph
theory, combinatorial optimization and high
performance computing.

S.Selvan received the B.E.
degree in electronics and
communication engineering and
the M.E. degree in com-
munication systems from the
University of Madras, Chennai,
India, in 1977 and 1979,
respectively, and the Ph.D.
degree in computer science and

engineering from the Madurai Kamaraj University,
Madurai, India, in 2001. He has 30 years of teaching
and research experience. He is currently working as
Principal and Professor of computer science and
engineering at St. Peter’s engineering college,
Chennai, India. He is a senior member of IEEE and
fellow of IE(I) and IETE. He has published more than
150 papers in international and national journals and
conference proceedings.

His areas of research include data mining, soft
computing, computer networks, signal processing,
image processing and network security.

