
Silvano R. Rossi, Alexandre C. Rodrigues da Silva, Tércio A. dos Santos Filho / Computing, 2009, Vol. 8, Issue 3, 6-13

 6

IEEE 1451.2-BASED SENSOR SYSTEM WITH JAVA-TEDS SOFTWARE
TOOL

Silvano R. Rossi 1), Alexandre C. Rodrigues da Silva 2), Tércio A. dos Santos Filho 2)

1) Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina,

srossi@fio.unicen.edu.ar, http://www.fio.unicen.edu.ar/investigacion/intelymec/index.html
2) Universidade Estadual Paulista, Brazil,

acrsilva@dee.feis.unesp.br, http://www.dee.feis.unesp.br

Abstract: This work presents the implementation of a microcontroller-based Smart Transducer Interface Module based
on the IEEE 1451.2 standard and a Java-TEDS software tool development to generate the electronic data for each
transducer channel implemented in the smart module. The module, with two transducer channels was implemented with
a PIC16F876A® microcontroller and programmed in C language. A software support resource has been developed in
order to generate the data for the Transducer Electronic Data Sheet descriptive memory. This software resource is fully
based on Java language. When generated, the TEDS data blocks can be stored in the program memory module of the
microcontroller. Methodology and results are presented and discussed.

Keywords: Microcontroller, Transducer, Interface, IEEE1451, STIM, TEDS.

1. INTRODUCTION
In the last years, several concepts associated with

computer networks were progressively gaining
ground in measurement and control systems.
Nowadays, many technologies closely related to
Internet, such as WWW, Java, TCP/IP protocols and
Ethernet, play a significant role in the
instrumentation arena [1], [2].

 Within this context, distributed measurement and
control systems are composed of a set of sensors and
actuators interconnected via a control network, for
monitoring and controlling the physical variables
involved, for instance, in an industrial process. Thus,
networked smart transducers facilitate the reliability
and performance of the system.

There are many interconnection technologies
such as sensorbus, devicebus, and fieldbus available
in different network levels [3], [4]. From the
beginning of 1980s until now there were many
normalization efforts; nevertheless, it is still evident
the lack of a universally accepted standard to
simplify the implementation of networked smart
transducers [5]. Probably one of the most important
efforts in this respect is the advent of the IEEE 1451
Smart Transducers Interface Standards, toward the
end of 1990s. The IEEE 1451 specification can be
applied in order to address the interfacing
problematic [6], [7]. By using IEEE 1451.1 and
IEEE 1451.2 standards it is possible to implement a

network node comprised by a Network Capable
Application Processor (NCAP) based on an object
model of a networked smart transducer, and a Smart
Transducer Interface Module (STIM) containing up
to 255 transducer channels, each with its own
channel Transducer Electronic Data Sheet (TEDS)
stored in a nonvolatile memory. Two objectives are
possible to attain with this approach: a) transducer-
to-network interoperability, and b) plug and play
operation mode at the transducer level.

Pioneer researchers in demonstrative IEEE
1451.2 applications have used an on-chip acquisition
system based on 8051 compatible MCU [8]. These
solutions have also been used in the last years [9-
11]. There are similar options for implementing
STIMs, for instance, by using a Rabbit 3000®

microprocessor [12]. An attractive alternative for
STIM implementation is the utilization of
microcontrollers, due to its low relative cost and the
availability of different embedded peripherals.

There are many microcontroller-based IEEE
1451 applications. A Complete IEEE 1451.1-1451.2
node was implemented for a CAN network, with a
STIM based on a Phillips 87C752® microcontroller
[13]. A STIM implementation with a mid-range
microcontroller is also possible [14]. An IEEE 1451-
based smart module for in-vehicle networking
systems was implemented in [15], using a
PIC16F877® microcontroller.

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Scientific

Journal of Computing

Silvano R. Rossi, Alexandre C. Rodrigues da Silva, Tércio A. dos Santos Filho / Computing, 2009, Vol. 8, Issue 3, 6-13

 7

In accordance with previous approaches related
to the current work, a minimal STIM based on a
low-cost MC68HC908QY4® microcontroller is also
possible, in this case, using a device with a small
quantity of I/O pins [16].

Another interesting option is the utilization of
Programmable Logic Devices (PLD). Through this
technology it is possible to perform parallel
processing; nevertheless, PLDs can become an
expensive alternative when they are compared with
microcontroller-based applications. There are IEEE
1451-related experimental works based on
programmable logic, using PLDs of different
manufacturers and developed through hardware
description languages [17-19], multi-core [20], and
soft-core technologies [21].

In this work, an IEEE 1451-based sensor system
with a STIM module based on the PIC16F876A®
microcontroller is presented. This application was
created because of two reasons: a) to test an
additional novel software resource fully based on
Java and developed with the aim of easily generating
the transducer electronic data, specified by the
standard, and b) to test the 10-wire TII functionality
in accordance with IEEE 1451.2 defined in 1997.

Although the initial intention of the NIST-IEEE
was to create a universal interface among
transducers and network nodes, its acceptance in the
industrial context is still incipient. This fact can be
attributed to the 10-wire TII, which has been
considered to be complex by several users and
sensor manufacturers. Some effort was made to
search for methods of simplifying and checking the
mentioned interface to customize it to others, for
instance, RS232 and USB, which use fewer wires
[22-24]. This is particularly interesting to support
the IEEE 1451.0-2007 Standard [25]. Nevertheless,
the authors of this work believe that is necessary to
continue working with the TII definition, because it
was initially created to implement a reliable
connection-oriented communication protocol.

Once generated by means of Java-TEDS tool,
TEDS information can be stored in the program
memory of the implemented module. Furthermore
another software tool based on Java2D was
developed to verify the STIM functionality and the
protocol communication over the TII interface. To
achieve this goal, the parallel port of a conventional
PC was used.

The rest of the paper is structured as follows;
section 2 introduces a brief commentary about IEEE
1451.2 standard; section 3 focuses on the proposed
system development; section 4 and 5 present the
STIM implementation and the Java-TEDS tool
respectively, and section 6 describes the simulation
and experimental results. The conclusions are
presented in section 7.

2. IEEE 1451.2
A networked smart sensor system can be

partitioned into two parts using the IEEE 1451.1 and
IEEE 1451.2 smart transducer interface standards, as
can be seen in Fig. 1. The first one is the Network
Capable Application Processor (NCAP) that
performs the major data processing and control
actions, establishing the link between the transducer
application and the network, through an object
model of a networked smart transducer defined by
IEEE 1451.1. Moreover, it is necessary to obtain the
data from the transducers in order to carry out the
data processing. This second part is defined by IEEE
1451.2 standard, introducing the concept of Smart
Transducer Interface Module.

The STIM performs the data acquisition for each
transducer channel and the control of the Transducer
Independent Interface (TII) in order to communicate
with the NCAP. Besides, according to the IEEE
1451.2 standard, the STIM must be capable of
containing some essential characteristics such as
auto-identification of the transducer channels, and
hot-swap capability. The auto-identification is
achieved through the Transducer Electronic Data
Sheet (TEDS) blocks.

TEDS formats are stored in a non volatile
memory that are part of the STIM to achieve
network auto-identification and plug and play
operation mode of the transducer application.

The STIM can contain up to 255 different
transducer channels on account of the 8 bits data
processing. Analogue signals from the transducers
are converted to digital format by means of an
analog-to-digital converter. The ADC and signal
conditioning circuits are also part of the STIM. The
communication over the TII is based on the
standardized protocol defined by IEEE 1451.2.

The TII is composed of ten lines with the
following functions: a) address and data transport,
data transport framing signals and acknowledge, and
clock (DIN, DOUT, NIOE, NACK, DCLK), b)
triggering (NTRIG), c) request service by the STIM
from the NCAP (NINT), and e) power supply and
support (POWER, COMMON and NSDET).

Fig. 1 – STIM-NCAP connection

Silvano R. Rossi, Alexandre C. Rodrigues da Silva, Tércio A. dos Santos Filho / Computing, 2009, Vol. 8, Issue 3, 6-13

 8

3. DEVELOPMENT
Before the STIM hardware implementation based

on a microcontroller it is useful to gather the
following information for storing the TEDS: a)
number of transducer channels to be implemented,
b) transducer channel type, c) physical properties to
be measured, and d) other relevant information, e.g.,
the acquisition time.

Thus, the data is coded in electronic format in
different TEDS blocks for each channel considered
into the STIM, and one Meta-TEDS structure
considering the STIM as a whole. Channel-TEDS
and META-TEDS are the two mandatory TEDS
formats according to IEEE 1451.2.

The STIM hardware requires basically a
synchronous serial port, an ADC, and a non-volatile
storage [26].

In this work a microcontroller-based STIM with
two transducer channels was used. One of them
contains a general-purpose integrated temperature
sensor model LM35, and the other channel contains
a circuit that sets in motion a cooler.

4. STIM IMPLEMENTATION

The utilization of a microcontroller to implement
the STIM is an attractive alternative due to its
relative low cost and the availability of embedded
peripherals as ADCs and high performance
memories. A PIC16F876A® microcontroller from
Microchip, with 28 pines, Harvard architecture and a
Reduced Instruction Set Computer [27], was chosen
for the STIM implementation.

This device has 368-B of RAM memory, 256-B
of EEPROM and 8-kB of program memory. Besides,
it is possible to work with clock frequencies of
20MHz. Thus, it is a suitable option for
implementing the functionality of the STIM, to
easily designate the pines for the I/O TII
assignments, and to store the TEDS information.

In agreement with the standard, the mandatory
TEDS formats require 96-B for each channel-TEDS
block and 80-B for the Meta-TEDS. Fig. 2 shows the
TII lines mapped into the chosen microcontroller.

On the other hand, the microcontroller is
composed of an embedded 10-bits ADC, which is
very useful for the current application, since it
eliminates the requirement of an external circuit for
such a purpose. In addition, the module is capable to
interrupt the CPU, enabling the STIM software
optimization, because polling algorithms to control
the module are unnecessary.

The STIM software is based on the approach
presented in [8] and was conceptually designed
according to the diagram depicted in Fig. 3 that
shows the software blocks to implement the module.

Fig. 2 – STIM hardware

Fig. 3 – Conceptual view of the STIM software

A central routine was included to manage the
program flow, the memory for storing the TEDS
formats, the interface with the transducers, the
control of the TII, and the address and function
blocks. In order to introduce more flexibility in the
code, C language was chosen for programming the
microcontroller.

In terms of STIM functionality, the software can
be considered to be divided in modules, each of
which can be thought as a state machine. Fig. 4a
shows a diagram to illustrate the above-mentioned
concept. Microcontroller’s ports and interrupts are
configured during the initialization stage. The NCAP
establishes the handshake with the STIM, thus, the
NIOE line is asserted, the variables associated with
the STIM and the rest of its state machines are
initialized, A/D module configuration is completed,
and NACK line is asserted. Subsequently it is waited
until the NCAP negates NIOE line. In this situation
the STIM negates NACK in order to complete the
handshake process. Afterward, the STIM is ready to
start the communication, performing an infinite loop
as shown in Fig. 4b.

Fig. 5 depicts a simplified diagram of the trigger
state machine, which serves as controller of other
machines. The initial state for the trigger machine is
inactive, waiting for a trigger event performed by the
NCAP or the end of a data transfer between NCAP
and STIM.

The trigger process begins when the NCAP
asserts the NTRIG line at low logic level. In this
manner, the STIM starts the data acquisition and the
machine assumes the triggered state. While the state

Silvano R. Rossi, Alexandre C. Rodrigues da Silva, Tércio A. dos Santos Filho / Computing, 2009, Vol. 8, Issue 3, 6-13

 9

machine is in this situation, A/D conversion is
performed at the same time or the output that drives
the cooler is updated. If the NCAP negates NTRIG
before finishing the analog to digital conversion, the
STIM passes to the quiescent state. Afterwards this
conversion NACK is enabled and the machine goes
on to the trigger acknowledged state. Here it is
waited that the NCAP negates the NTRIG signal to
go on to the quiescent state, in order to carry out the
data transport.

The acquisition machine performs the A/D
conversion for all the different channels. The
hardware of the microcontroller indicates the end of
acquisition through interruptions.

The acquisition machine obtains the data
necessary to update actuator outputs and dispatch
data for using in other parts of the program, by
means of a data buffer. Afterwards the sensor data
reading process, buffer must be updated.

The function state machine interacts with the data
transport machine, indicating whether corresponds a
data input or output, how many data must be
processed, and wherefrom to obtain them or where
to send them. Initially the function machine
indicates to the transport machine that should
receive the bytes and should store them in a variable
that contains the functional address normalized by
IEEE 1451.2. Subsequently checks that this one is a
valid address, then to continue with the
corresponding reading or writing process.

Fig. 4 – STIM functionality

Fig. 5 – Trigger state machine

In the case of the actuator channel a resolution of
one byte is used, since this is equivalent to the
switched off or switched on state of the cooler
attached to the mentioned channel. If the requested
operation is a TEDS’s reading, the information of
the length of every TEDS data block is available,
facilitating the data transport through the TII.

The data transport machine receives or sends
each of the bytes in a serial synchronous fashion,
carrying out the data reception in the positive-going
edge of the clock and the sending in the negative-
going edge. Finally, the data transport machine
delimits each of the 8-bit frames, inverting the
NACK signal for every transferred byte. If the
NCAP tries to triggers the STIM or aborts the data
transfer by negating NIOE line during the
transmission, any data transfer is cancelled and then,
a hardware error flag is established in the standard
status register of the STIM.

Fig. 6 shows the STIM prototype implemented in
laboratory.

Fig. 6 – STIM prototype

5. Java-TEDS TOOL
Java-TEDS is a software tool developed to easily

implement the TEDS data blocks in microcontroller-
based STIMs that use C programming. By using a
friendly graphic interface introduced by the above-
mentioned resource it is possible to create and
modify the TEDS blocks for its subsequent
utilization in the STIM.

This resource is broken down in three parts: a)
TedIO, b) TEDS, and c) GraphicInterface.

TedIO package contains all the data types defined
by the standard such as: U8, U16, U32, LANG,
STRING, UUID (Universal Unique Identifier), and
UNITS, among others. These classes implement an
interface named ToByte that allows converting the
values into binary format. There is also an interface
U8E that represents enumeration and constant types,
defined by the standard too. TedIO package also

Silvano R. Rossi, Alexandre C. Rodrigues da Silva, Tércio A. dos Santos Filho / Computing, 2009, Vol. 8, Issue 3, 6-13

 10

performs binary data input and output, using
TedOutputStream and TedInputStream classes.
These classes extend from OutputStream and
InputStream from java.io, that belongs to JSDK
(Java Standard Development Kit) and they are used
in all the input and output data. On the other hand,
FormatCOutputStream class was created for writing
the content of the TEDS in the format used by C to
define the byte matrix, this is, writing all the bytes of
the structure between {} and separated between
commas. The classes TedChecksum and
GarbageCollector also were created. The first one is
used by a specialized OutputStream to perform the
TEDS checksum. The second one is an
OutputStream in which everything that enter is
discarded, because to write in a file for calculating
the checksum is unnecessary.

For the sake of simplicity only a few part of the
Java code is depicted in Fig. 7, due to the extensive
size of the classes diagram. The figure shows a part
of the code related to TedDataInputStream, which
extends of DataInputStream.

TEDS formats are saved and managed by the
second package, named TEDS, using the data
formats implemented in TedIO, as well as the classes
for data input and output, and for the checksum. The
structure is composed of a class named GroupTEDS
that contains: a) a metaTeds class representing Meta-
TEDS, and b) a channelTeds class representing the
Channel-TEDS data block, both defined by the IEEE
1451.2 standard.

Fig. 7 – Java code example. TedDataInputStream class

It is important to notice that an object
GroupTEDS can contain only one object metaTeds
and more than one object channelTeds. Each of the
classes metaTeds and channelTeds are composed of
classes that represent the sub-blocks of the Meta-
TEDS and Channel-TEDS data blocks, respectively.
At the same time these ones are composed of classes
that represent the primitive data types defined by
IEEE 1451.2.

The GraphicInterface package is based on
java.swing, and constitutes the graphic interface of
the TEDS package, allowing users to browse each
data block in a simple way, to make modifications,
and even to save and open these TEDS in different
formats. This resource is comprised by a class
gWindow, containing the main sub-window and the
most important menus to work with the TEDS. At
the same time, this one contains a class GroupTeds
and a class that represents the visualization of the
metaTeds and channelTeds.

A software tool that tries to simulate the basic
actions of a NCAP has been created for testing the
STIM, allowing users to verify the TII functionality
and communication protocols, by means of the
utilization of the parallel port of a conventional PC.
Java2D was used for developing the test tool, which
allowed for the creation of timing diagrams to show
the behaviour of signals over the TII.

Parport package was used for the managing of
the parallel port. Parport is a Java class for reading
and writing bytes to and from the parallel port and
can be installed on Windows and Linux platforms,
enabling the communication with the parallel port
using Java [28].

Java’s multithreading processing capability was
exploited, using a thread for managing the parallel
port and a thread for the graphic interface.

6. RESULTS

STIM functionality was verified through the test
program created with such a purpose. With this
resource it is possible to control a circuit connected
to the PC’s parallel port, where the TII physical
interface is connected to the STIM. The results are
given in qualitative way, using the above-mentioned
software tool.

The first case, depicted in Fig. 8, corresponds to
the handshake between STIM and NCAP, via TII
interface obtained by using the software tool. The
initial state for all triggering, read and write frame
protocols is with the NTRIG, NACK, and NIOE
lines negated, therefore after STIM detection the
NTRIG, NACK and NIOE lines are at high logic
level. The NCAP puts the NIOE line at low logic
level and the STIM replies starting the initialization
process, and then negating NIOE line. In such

Silvano R. Rossi, Alexandre C. Rodrigues da Silva, Tércio A. dos Santos Filho / Computing, 2009, Vol. 8, Issue 3, 6-13

 11

moment the NINT line is enabled too, since a STIM
operational bit is set, remembering the fact that the
bits of the standard interrupt mask are all one when
the STIM is initialized. The second case in Fig. 8
corresponds to a trigger event after finishing the
handshake. The NCAP asserts the NTRIG line, and
the STIM asserts NACK, after finishing the A/D
conversion. Afterwards, the NCAP negates the
NTRIG and the STIM negates the NACK, according
to the triggering protocol, defined in IEEE 1451.2.
From that moment on, when the NCAP asserts
NIOE line, the serial data is transferred via DIN or
DOUT and controlled by the DCLK line.

Fig. 9 shows a data reading related to transducer
channel #1 that contains an environmental
temperature sensor. As can be seen, the code 12810
(100000002) that corresponds to read transducer data
functional address is sent from NCAP to STIM,
addressed to the channel 1 (000000012). The code
representing the environmental temperature is
obtained via DOUT line and NACK signal delimits
every byte transferred. After finishing the data
transmission, the NCAP negates NIOE line and the
NACK goes on to zero logic level.

Fig. 10 shows a data reading associated with the
global standard status register. The code 13010
(100000102) that corresponds to read global standard
status functional address is sent from NCAP to
STIM, addressed to the channel zero.

The value of the standard status register obtained
through DOUT line is 010316, signalling: a) The
STIM is operative, b) the trigger was acknowledged
by the STIM, and c) there is a global service request.

The implementation under test is presented in Fig
11, showing the STIM connected to an interface
circuitry with the PC’s parallel, via TII, that allows
using the Java-TEDS software.

Fig. 8 – Handshake process and trigger event

Fig. 9 – Reading data of transducer channel #1

Fig. 10 – Reading data of standard status register

Fig. 11 – Implementation under test

Java-TEDS is a software tool that allows the

creation and modification of the TEDS fields
necessary for an IEEE 1451.2-based
implementation. Fig. 12 shows the graphic interface
presented by the program. The above-mentioned
sub-window is broken down into several tabs, one
for Meta-TEDS data block and one more for every
implemented Channel-TEDS data block.

Fig. 12 – Java-TEDS tool

7. CONCLUSION
An IEEE 1451.2-based sensor system with Java-

TEDS software tool has been presented. The STIM
was implemented with a low-cost microcontroller
and programmed in C language. The system
implementation needed the managing of different
technologies and was broken down into three stages:
a) creation of the Java-TEDS resource in order to

Silvano R. Rossi, Alexandre C. Rodrigues da Silva, Tércio A. dos Santos Filho / Computing, 2009, Vol. 8, Issue 3, 6-13

 12

easily work with TEDS formats, b) developing of
the microcontroller-based STIM, and c) creation of a
test tool simulating an NCAP for checking the
system functionality over the TII.

By means of the created resources, the
employment of a general-purpose microcontroller
appears as an attractive option for STIM’s
implementation, facilitating the use of the TII
interface defined by IEEE 1451.2 – 1997.

8. REFERENCES
[1] K. B. Lee and R. D. Schneeman. Distributed

measurement and control based on the IEEE
1451 Smart Transducer Interface Standards,
Trans. Instrumentation and Measurement 49
(3) (2000). pp. 621-627.

[2] M. Sveda and R. Vrba. Sensor networking.
Proceedings of IEEE International Conf. and
Workshop on Engineering of Computer Based
Systems (ECBS 2001), Washington, 17-20
April 2001, pp. 262-268.

[3] K. Lee. Sensor networking and interface
standardization. Proceedings of IEEE
Instrumentation and Measurement Technology
Conference, Budapest, 21-23 May 2001, vol. 1,
pp. 147-152.

[4] M. Felser and T. Sauter. The fieldbus war:
history or short break between battles?
Proceedings of 4th IEEE International
Workshop on Factory Communication Systems,
Sweden, 28-30 Aug. 2002, pp. 73-80.

[5] D. Wobschall. IEEE 1451 – a universal
transducer protocol standard. Proceedings of
42th IEEE Annual Systems Readiness
Technology Conference (Autotestcon 2007),
Baltimore, 17-20 September 2007, pp. 359-363.

[6] IEEE Std 1451.2. IEEE Standard for a Smart
Transducer Interface for Sensors and Actuators
– Transducer to Microprocessor Com-
munication Protocols and Transducer Data
Sheet (TEDS) Formats. IEEE Standards Board.
USA, 1997, pp. 1-114.

[7] IEEE Std 1451.1. IEEE Standard for a Smart
Transducer Interface for Sensors and Actuators
– Network Capable Application Processor
(NCAP) Information Model. IEEE Standards
Board. USA, 1999, pp. 1-341.

[8] P. Conway, D. Heffernan, B. O’Mara, P.
Burton, T. Miao. IEEE 1451.2: an
interpretation and example implementation.
Proceedings of IEEE Instrumentation and
Measurement Technology Conference,
Baltimore, 1-4 May 2000, vol. 2, pp. 535-540.

[9] D. Wobschall and W. S. Poh. A smart RTD
temperature sensor with a prototype IEEE
1451.2 internet interface implementation.

Proceedings of ISA/IEEE-Sensor for Industry
Conf., New Orleans, 27-29 January 2004, pp.
183-186.

[10] S. Guanming, S. Aiguo and H. Weiyi. A new
distributed measurement architecture for
applications of networked smart sensors.
Proceedings of IEEE Instrumentation and
Measurement Technology Conference, Ottawa,
17-19 May 2005, vol. 3, pp. 2131-2135.

[11] M. Sveda and R. Vrba. Embedded systems with
IEEE 1451.1 on internet. Proceedings of 3th
International Conf. on Information and
Communications, Cairo, 5-6 December 2005,
pp. 539-550.

[12] R. Wall and A. Ekpruke. Developing an IEEE
1451.2 compliant sensor for real-time
distributed measurement and control in
autonomous log skidder. Proceedings of the
29th Industrial Electronics Society Conference,
Virginia, 2003, vol. 3, pp. 2482-2487.

[13] L. Cámara, O. Ruiz, J. Samitier. Complete
IEEE 1451 node, STIM and NCAP,
implemented for a CAN network. Proceedings
of IEEE Instrumentation and Measurement
Technology Conference, Baltimore, 1-4 May
2000, vol. 2, pp. 541-545.

[14] R. L. Fischer and J. Burch. The PICmicro®
MCU as an IEEE 1451.2 compatible Smart
Transducer Interface Module (STIM).
Microchip Technology Inc., AN214. USA,
2000, pp. 1-62.

[15] K. C. Lee, M. H. Kin, H. H. Lee. IEEE-1451-
based smart module for in-vehicle networking
systems of intelligent vehicles, Trans.
Industrial Electronics 51 (6) (2004). p. 1150-
1158.

[16] E. M. Martins, S. R. Rossi, A. A. de Carvalho,
A. C. R. da Silva. Implementação de um
módulo de interface para transdutores
inteligentes utilizando microcontrolador.
Proceedings of “XV Congresso Brasileiro de
Automática (XV CBA)”, Salvador-Brazil, 3-6
October 2006, pp. 1656-1661.

[17] A. Castro, T. Riesgo, E. de la Torre, J. Uceda.
Custom hardware IEEE 1451.2 implementation
for smart transducers. Proceedings of 28th
Industrial Electronics Conference (IECON
2002), Sevilla, June 2002, pp. 2752-2757.

[18] P. Ferrari, A. Flammini, D. Marioli, A. Taroni.
VHDL implementation of a IEEE 1451.2 smart
sensor. Proceedings of IEEE Instrumentation
and Measurement Technology Conference,
Vail, 20-22 May 2003, pp. 716-719.

[19] S. R. Rossi, E. D. Moreno, A. A. Carvalho, A.
C. R. da Silva, E. A. Batista, T. A. Prado, T. A.
Santos Filho. A VHDL-based protocol
controller for NCAP processors, Journal

Silvano R. Rossi, Alexandre C. Rodrigues da Silva, Tércio A. dos Santos Filho / Computing, 2009, Vol. 8, Issue 3, 6-13

 13

Computer Standards & Interfaces 31 (2)
(2009). p. 515-522.

[20] C. Girerd, S. Gardien, J. Burch, S. Katsanevas,
J. Marteau. Ethernet network-based DAQ and
smart sensors for the OPERA long-baseline
neuterino experiment. Proceedings of Nuclear
Science Symposium Conference, Lyon, 15-20
October 2000, pp. 111-115.

[21] H. Cheng and H. Qin. A design of IEEE 1451.2
compliant smart sensor based on the Nios soft-
core processor. Proceedings of International
Conference on Vehicular Electronics and
Safety, Xi’an, 14-16 October 2005, pp.193-198.

[22] R. N. Johnson and S. P. Woods. Proposed
enhancement to the IEEE 1451.2 standard for
smart transducers. Sens. Mag. 18 (9) (2001). p.
74-87.

[23] L. Bissi, A. Scorzoni, P. Placidi, L. Marrocchi,
M. Bennati, S. Zampolli, L. Masini, I. Elmi, G.
C. Cardinali. A low-cost distributed
measurement system based on gas smart
sensors for environmental monitoring.
Proceedings of International Conference on
Sensing Technology, Palmerston North, 2005,
pp. 301-306.

[24] H. M. Ramos, P. M. Ramos, and P. Paces.
Development of a IEEE 1451 standard
compliant smart transducer network with time
synchronization protocol. Proceedings of IEEE
Instrum. Meas. Technol. Conf., May 2007, pp.
1-6.

[25] E. Y. Song and K. B. Lee. Sensor network
based on IEEE 1451.0 and IEEE p1451.2-
RS232. Proceedings of IEEE International
Instrum. Meas. Technol. Conf., Victoria,
Vancouver Island, 12-15 May 2008, pp. 1-6.

[26] R. D. Smith. Building IEEE 1451.2 Smart
Transducer Interface Modules (STIMs).
Telemonitopr Inc., Columbia, pp. 1-11.

[27] PIC16F87X. Data Sheet. Microchip
Technology Inc., USA, 2001. pp. 1-218.

[28] J. G. del Cid Portillo. Parallel Printer Access
Through Java. Available:
http://www.geocities.com/Juanga69/parport/ind
ex.html.

Silvano R. Rossi received
the B.Sc. degree in
electromechanical engineer-
ing from the Universidad
Nacional del Centro de la
Provincia de Buenos Aires
(UNCPBA), Olavarria, Argen-
tine, and the Ph.D. degree in
electrical engineering from

the São Paulo State University (UNESP), Ilha

Solteira, Brazil, in 1999 and 2005, respectively.
He is currently involved with instrumentation

systems and IEEE 1451 standard applications.
He is a Professor with the Department of
ElectroMechanical Engineering, UNCPBA.

His research interests include
instrumentation systems and measurements,
smart transducer networks, autonomous
vehicles, and digital systems.

Alexandre C. Rodrigues da
Silva received the B.Sc.
degree in electrical engi-
neering from the University
of Mogi das Cruzes, Mogi
das Cruzes, Brazil, in 1984,
the M.Sc. and Ph.D. degrees
in electrical engineering from
the University of Campinas,

Campinas, Brazil, in 1989 and 2003,
respectively, and the degree of Free Lecture
from the São Paulo State University (UNESP),
Ilha Solteira, Brazil, in 2003. In 2007, he
developed postgraduate stage at the University
of Limerick, Limerick, Ireland.

He is currently involved with synthesis tools
for mixed-signal circuits, embedded systems,
and IEEE 1451 standard applications. He is an
Associate Professor and a Researcher with the
Department of Electrical Engineering, College
of Engineering (FEIS), UNESP.

His research interests include synthesis of
mixed-signal circuits, embedded systems,
smart transducer networks, HDLs, and Petri
Net.

Tércio A. dos Santos Filho
received the degree in
computer science in 2004
from the University of Rio
Verde, Rio Verde, Brazil,
and the M.Sc. degree in
electrical engineering in
2007 from the São Paulo
State University (UNESP),

Ilha Solteira, Brazil, where he is currently
working toward the Ph.D. degree in the area of
electronic instrumentation and control.

His research interests include operational
systems and computer networks, embedded
systems, and sensor networks.

