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Abstract: This paper presents the analysis of the 2-sum problem and the spectral algorithm. The spectral algorithm 
was proposed by Barnard, Pothen and Simon in [1]; its heuristic properties have been advocated by George and 
Pothen in [4] by formulation of the 2-sum problem as a Quadratic Assignment Problem. In contrast to that analysis 
another approach is proposed: permutations are considered as vectors of Euclidian space. This approach enables one 
to prove the bound results originally obtained in [4] in an easier way. The geometry of permutations is considered in 
order to explain what are ‘good’ and ‘pathological’ situations for the spectral algorithm. Upper bounds for 
approximate solutions generated by the spectral algorithm are proved. The results of numerical computations on 
(graphs of) large sparse matrices from real-world applications are presented to support the obtained results and 
illustrate considerations related to the ‘pathological’ cases. 
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1. INTRODUCTION 
The 2-sum problem (to be defined in section 2) is 

one of the graph enumeration problems (also known 
as graph layout problems). Besides its purely 
theoretical interest, it was used as an approximation 
for large-scale graph labeling problems, that are 
important in numerical computations using large 
sparse matrices. Barnard, Pothen and Simon 
proposed spectral algorithm for envelope reduction 
of sparse matrices [1]. In fact, their algorithm yields 
an approximate solution of a 2-sum problem, which 
itself is used as an approximation for reducing 
envelope and envelope-related parameters of large 
sparse matrices. The spectral approach has also been 
used in the graph partitioning for finding the 
pseudoperipheral nodes of graphs, and other similar 
or related problems (e.g. [5,8]).  

Fiedler studied the properties of the second 
Laplacian eigenvalue and eigenvector (also called 
Fiedler vector, i.e. eigenvector of Laplacian of a 
connected graph that corresponds to the second 
smallest eigenvalue). He observed that the 
differences between the components of this 
eigenvector are an approximate measure of the 
distance between the vertices [2,3]. Juvan and 
Mohar advocated the use of this eigenvector to 
compute bandwidth and p -sum (more general 
problem then 2-sum) reducing orderings [6]. [7] is a 

survey of the applications of Laplacian spectra to 
different combinatorial problems. 

An approximate solution computed by spectral 
algorithm, generally, is only a heuristic 
approximation as the 2-sum problem was proved to 
be NP-complete [4]. Nevertheless, solutions 
generated by spectral algorithm are known to be 
quite good for minimizing the envelope of many 
real-world large sparse matrices [1]. 

In the paper [4], which is companion-paper for 
[1], George and Pothen provide analysis of spectral 
algorithm via Quadratic Assignment Problem 
(QAP). They formulate 2-sum problem as QAP, and 
analyze it utilizing permutation matrices. In this 
paper a different approach is presented (section 3) 
which instead considers permutations as Euclidian 
space vectors. Additionally, we present analysis of 
how effective or ineffective spectral algorithm can 
be for minimizing the 2-sum problem itself (not 
necessarily for envelope-reduction); as well as 
considerations leading to ‘pathological’ cases are 
provided. In section 4, computational results are 
presented to illustrate and test ideas from section 3 
on Laplacians of graphs associated with real-world 
large sparse matrices. 

The following notation is used throughout the 
paper: the underscore symbol  indicates that the 
underlined letter is a column-vector (for example 
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x ); u  is a column-vector all of whose components 
are 1. 

If otherwise not mentioned, all vectors 
considered are non-zero column-vectors with 
dimension n ; 3n ≥ ; some of the following 
considerations may not be correct for degenerate 
dimensions 1n =  and 2n = . The distance between 
vectors is as per Euclidian norm. 

 
2. 2-SUM PROBLEM AND SPECTRAL 

ALGORITHM 
In this section spectral algorithm is presented 

mainly following Barnard, Pothen and Simon’s 
original work [1]; and as advocated by George and 
Pothen in [4]. 

We will consider connected and undirected 
graphs. Any graph of this type is associated with a 
symmetric matrix according to the following rule: 
there is an edge in the associated graph between 
vertices i  and j  if and only if the element ija  of 
matrix A  is nonzero. We will consider only 
matrices that have connected associated graphs. 

Let us denote the column indices of the nonzero 
elements in the lower triangular part of the i -th row: 

{ }( ) : 0 1ijrow i j a and j i= ≠     ≤ ≤ .  

In these terms the 2-sum problem can be 
formulated as follows: 

2 2
2

1 ( )

( )
n

i j row i

i jσ
= ∈

= −∑ ∑   (2.1) 

i.e. the sum of squares of the differences between 
the vertices numbers which are in pairs that share a 
common edge in the corresponding associated graph. 
Hereinafter, the 2-sum problem will denote the 
problem of finding enumeration of graph vertices 
that minimizes (2.1). Obviously, the set of possible 
solutions to this problem is a set of permutations; let 
P  denote the set of all permutations with length n . 

The Laplacian matrix Q  of an undirected graph 
G  is the n n×  matrix ( )D B−  where D  is the 
diagonal degree matrix, and B  is the adjacency 

matrix of G . Laplacian matrix Q  could be defined 
directly in terms of matrix A  as: 

 

1

1, 0

0, 0

,

ij

ij ij

n
j ij
j i

i j and a

q i j and a

q i j=
≠

⎧
−    ≠    ≠⎪

⎪=        ≠     =⎨
⎪

−    =⎪
⎩

∑
  (2.2) 

The eigenvalues of Q  are the Laplacian 
eigenvalues of G , and we list them as 

1 2 nλ λ λ≤ ≤ ≤K . An eigenvector corresponding to 

kλ  will be denoted by kx , and called a k -th 
eigenvector of Q . It is well-known that Q  is a 
singular M-matrix, and hence its eigenvalues are 
nonnegative. Thus, 1 0λ = , and the corresponding 
eigenvector is any nonzero constant vector. If G  is 
connected, then Q  is irreducible, and 2 0λ >  (in the 
following we suppose that G  is connected, 
otherwise 2-sum problem could be solved separately 
on each connected component). 

Note the following properties of matrix Q  that 
are used later, but not separately specified there: 

1. T Tx Q y y Qx=  (as Q  is symmetrical); 

2. 0TQu u Q= =  (by the definition of Q ). 
The idea is to consider the related 2-sum 

problem, and then show that a second Laplacian 
eigenvector 2x  solves a continuous relaxation of the 
problem. Then it will be proved that the permutation 
vector, computed by spectral algorithm, is the 
closest vector among the permutation vectors to 
eigenvector 2x . In [1] the following considerations 
have been proposed. 

For odd n , let T  denote the set of vectors whose 
components are permutations of 
{ ( 1) / 2, , 1,0,1, , ( 1) / 2}n n− − − −K K . For even n , 
let T  denote vectors that are permutations of 
{ / 2, , 1, 1, , / 2}n n− − +K K . Consider the 2-sum of 
a symmetric matrix A , defined with respect to 
vectors in T : 

2 2
2

0

1 ( ) min ,
2

ij

i j
a

t t t Tσ
≠

= − →     ∈∑     (2.3) 

Note that any t T∈  satisfies 0Tt u =  and 
2( /12)( 1)Tl t t n n≡ = −  for odd n , and 

( /12)( 1)( 2)Tl t t n n n≡ = + +  for even n . Given a 
vector nx R∈ , let us define permutation vector t 
induced by x  by the rule i jt t≤  if and only if 

i jx x≤ . Hence, to obtain a continuous relaxation of 
the discrete problem, consider the set of vectors 

nx R∈  satisfying 0, 0Tx x u≠ =  and Tx x l= . This 
becomes the continuous optimization problem: 

2

0

1 min ( )
2

ij

i jx X a
x x

∈
≠

− =∑     

2

1
0

min 2

ij

n

i i i jx X i j i
a

d x x x
∈

= <
≠

⎞⎛
⎟⎜= − ⎟⎜⎜ ⎟⎝ ⎠

∑ ∑
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min minT T T

x X x X
x Dx x Bx x Qx

∈ ∈
= − =

   
2 2 2 2 .Tx x lλ λ= =    (2.4) 

Hence, a second Laplacian eigenvector 2x  solves 
the continuous approximation of the 2-sum problem. 

Spectral Algorithm (for 2-sum problem): 
Step 1. Given a graph G , generate the Laplacian 

matrix Q . 
Step 2. Compute a second eigenvector 2x  of Q . 
Step 3. Generate a permutation induced by 2x . 
Consider inducing more generally. Vectors x  

and y  are in an inducing relation, (or equivalently: 

x  induces y , or y  induces x ) if i jy y≤  if and 

only if i jx x≤ ; and at the same time, there are no 
additional restrictions on vectors introduced by this 
inducing relation. Obviously, inducing relation 
introduces reflexive, symmetric and transitive 
properties i.e. it is the equivalence relation on a set 
of vectors, none of which have identical 
components. 

Lemma 2.1. Let there be vector y  and a set Z  
that consists of !n  vectors, representing all possible 
permutations of any fixed set of components. 

Then, vector z Z∈ , induced by vector y , is 

closest to y  among all vectors of set Z . If vector 

y  induces several vectors from Z , then all of them 

will be at the same distance from y . 
Proof. By the definition of Euclidian norm:  

2T T Ty z y y z z y z− = + −   (2.5) 

Since vectors from Z  differ only in their 
component permutation, and vector y  is fixed, 

scalar products Ty y  and Tz z  are positive 

constants, and Tz z  does not depend on the choice 
of z . Therefore, in order to minimize the distance 

y z−  vector z  has to maximize scalar product 
Ty z . Let us prove that this is true only if vector z  

is induced by vector y . By contradiction: take a 

vector ẑ Z∈ , which is not in inducing relation with 
vector y . Therefore, at least for the two components 

ˆiz  and ˆ jz  of this vector, it is true that ˆ ˆi jz z<  i.e. 

ˆ ˆj iz z a= + , 0a >  and i jy y> . Now, scalar 

product ˆTy z  increases if components ˆiz  and ˆ jz  are 
swapped, while the other components remain in their 

places: 
ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ ˆ( )
i i j j i j j i

i j j i j i i j j i

y z y z y z a y z a

y z y z a y y y z y z

+ = − + + =

= + + − < +
  

since 0a >  and ( ) 0j iy y− < . 

Thus, vector ẑ  does not maximize the scalar 

product Ty z ; and, hence, proof by contradiction is 
completed. 

One should note that if vector y  induces several 
vectors from Z , then all of them (by definition of 
inducing relation) have the same value of scalar 
product with y  i.e. will be at the same distance 
from it. 

The lemma proven is a slightly more general 
analogue of the corresponding theorem from [1]. 

The set of permutations P  contains vectors that 
can be obtained from each other by all-possible 
component permutations. Therefore, according to 
the proven lemma, the permutation induced by 
vector 2x  is the closest to it among all permutations. 

The heuristic idea of choosing the permutation 
closest to the accurate solution naturally has to be 
such that, given the close position of the permutation 
chosen to the accurate solution, the increase of the 
cost function (quadratic form of matrixQ ) remains 
small enough.  

 
3. ANALYSIS 

This section presents the analysis of the 2-sum 
problem. It is performed by the author of this paper 
in a quite different way than those in papers [2] and 
[1] for exploring and justifying spectral algorithm. 

Let us consider permutations as vectors in n -
dimension Euclidian space; we will denote the set of 
permutations as P . The following identities for any 
p P∈  are elementary: 

2 2 2

( 1)1 2 ,
2
( 1)(2 1)1 2

6

T

T

n nn p u

n n nn p p

+
+ + + = =

+ +
+ + = =

K

K

  (3.1) 

Let V be a set of vectors nv ∈ R : 
( 1)

2
( 1)(2 1)

6

T

T

n nv u

n n nv v

+⎧ =⎪⎪
⎨ + +⎪ =
⎪⎩

  (3.2) 

It is obvious that P V⊂ . 
For further analysis of the 2-sum problem in the 

relaxed form we will use a set X  of admissible 
solutions.  X  is a set of non-zero vectors nx ∈ R , 
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satisfying the following conditions: 
1

0

T

T

x x

x u

⎧ =⎪
⎨

=⎪⎩
    (3.3) 

Note that all our further analyses can be similarly 
performed by considering the first constraint in a 
generalized form: Tx x l=  ( l ∈ R , 0l ≠ ). We 
suppose 1l =  for the purpose of laconic 
formulation. 

Consider a mapping of set V onto set X : 
    ( ), , , 0x v uα β α β α= +     ∈  ≠R   (3.4) 

By considering conditions (3.2) and (3.3) we can 
define constants α  and β : 

( )
( 1)( ) 0

2

T Tx u v u u
n n n

α β

α β

= + =
+

= + =
,        (3.5) 

and since 0α ≠ , we get 
1

2
nβ +

= − . 

Similarly we obtain:  
  

 

2

2

( ) ( ) 1

12
( 1)

T Tx x v u v u

n n

α β β

α

= + +  =   

⇒  =
−

(3.6) 

Note that the mapping (3.4) is an affine 
transformation that compresses and shifts vectors in 
V. 

Now, when expressing v  from (3.4), we can 
show the mapping inverse to (3.4) is in the following 
form: 

1 ( ) ( )v x u x uαβ α β
α

′ ′= − = + ,  (3.7) 

21 ( 1) ,
12
3( 1)

( 1)

n n

n
n n

α
α

β αβ

−′ = =     

+′ = − =
−

   (3.8) 

Let us denote as X%  a set of images of the 
transformation (3.4), the preimages of which are 
permutations from P . Since P V⊂ , then X X⊂% . 
Let the elements of set X%  be called representatives 
of the corresponding permutations. 

Thus, mappings (3.4) and (3.7) define the one-to-
one dependence between sets V  and X  (and 
between their subsets P  and X% ). 

Lemma 3.1.    ˆ ˆT Tx Qx x Qx >  ( (    

 if and only if   ˆ ˆT Tv Qv v Qv >  ( ( ;  

and also    ˆ ˆT Tx Qx x Qx =  ( (   

if and only if   ˆ ˆT Tv Qv v Qv =  ( ( , 
where ( )x v uα β= +( ( ; ˆ ˆ( )x v uα β= + ; 
ˆ,x x X∈( ; ˆ,v v V∈( .  
Proof follows from (3.4), (3.7) and the identity: 

2( ( )) ( ( )) TTy u Q y u y Q yα β α β α+ + = . 
In view of Lemma 3.1 we can analyze the 

discrete 2-sum problem not on set P , but on set X%  
and, correspondingly, examine its continuous variant 
on set X : 

minTx Qx
x X

⎧ →⎪
⎨

∈⎪⎩
   (3.9) 

This problem is similar to (2.3) and, according to 
the well-known theorem of Courant-Fischer, the 
minimum is reached on vector 2x  i.e. the second 
eigenvector of matrix Q ; and maximum on vector 

nx : 

2min{ } max{ }T T
nx X x X

x Qx x Qxλ λ
∈ ∈

=  ;   =    (3.10) 

This can also be shown in another way: by using 
the Lagrange method for finding the conditional 
extremum of a multivariable function. 

According to the above choice of permutation 
induced by vector 2x , on Step 3 of spectral 
algorithm, the later can be presented as two 
transfers: 

1) Transfer from vector 2x  to vector *x%  from 
X% , which is induced by 2x  (i.e. is the closest to it 

in X%  according to Lemma 2.1). Thus, an 
approximate solution of 2-sum problem on set X%  is 
obtained. 

2) Transfer from vector *x%  to the permutation it 
represents, according to (3.7), i.e. approximate 
solution of the 2-sum problem on set P  is obtained. 

The above sets and representations allow us to 
derive a simple proof of the following theorem, 
which was initially proved in [4] but using another 
approach. 

Theorem 3.1. The following upper and lower 
bounds hold for the 2-sum problem: 

2
2 2(1/12) ( 1)( 1)

(1/12) ( 1)( 1)n

n n n
n n n

λ σ
λ

− + ≤ ≤
≤ − +

. 

Proof. Let us prove the lower bound. Since 
X X⊂% : 

min{ } min{ }T T

x Xx X
x Qx x Qx

∈∈
≥

%%
% % , 

and taking into account (3.10) 

2min{ }T

x X
x Qx λ

∈
≥

%%
% % . 

In view of Lemma 3.1 and Corollary 1 it is true 
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that: 
2 2

2min{ } ( ) min{ } ( )T T

p P x X
p Q p x Qxα α λ

∈ ∈
′ ′= ≥

%%
% % . 

The substitution of value α′  from (3.8) 
concludes the proof of the lower bound for 2

2σ . The 
proof of the upper-bound is analogous. 

For clearer illustration of the following 
argumentation let us present a geometric 
interpretation of sets X  and X% . The equation 

1Tx x =  from (3.3) defines an n -dimensional 
hypersphere with radius 1 at the point of origin; and 
the equation 0Tx u =  defines an n -dimensional 
hyperplane that intersects the point of origin and is 
orthogonal to vector ,cu c ∈ R . Thus, set X  is an 
( 1)n − -dimensional hypersphere that is obtained 
from the intersection of the n -dimensional 
hypersphere with the n -dimensional hyperplane that 
intersects its center. Fig.1 is an illustration of the 
case 3n = . Hereinafter hypersphere will simply be 
called a sphere. 

A set X%  represents an ( 1)n − -dimensional 
polyhedron, the vertices of which are located on 
sphere X . It is easy to show that the permutations 
closest to each other, are those obtained from each 
other by simply permuting a pair of their 
components that differ by value 1; for example, 
( )1, 2,3, 4  and ( )1,3, 2, 4 . Similarly, the 
representatives of the permutations closest to each 
other are obtained from each other by permuting one 
pair of components that differ by value α . 

When 3n =  the permutations’ representatives 
are the vertices of the planar hexagon shown in Fig.2 
(this hexagon is, in fact, inscribed in the shaded 
circle shown in Fig.1); near the hexagon’s vertices 
the corresponding permutations are indicated. 

When 4n =  all permutations are located on the 
1 3n − =  dimensional sphere, illustrated in Fig.3. 

The pairs of permutations closest to each other are 
connected, with the edges forming the polyhedron. 
Note that Fig.3 is not a schematic picture, but a 3-
dimensional visualization made using Matlab.  

To calculate the 3-dimensional coordinates, all 
4!=24 permutations were first mapped into set X%  
according to (3.4). Then in plane 0Tx u = , the 
orthonormalized basis was chosen comprising 3 
vectors; and in this basis, the permutations are 
represented in 3 dimensions (the fourth component 
of all permutations is 0).  

Note that since the mapping (3.7) is an affine 
transform, the above description of the 
permutations’ representatives characterizes the 
geometry of the permutations themselves. 

Now, let us analyze possible increase of cost 
function value in problem (3.9) when transferring 
from vector 2x  to its nearest vector *x X∈ %% . It 
should be noted that the distance between vectors on 
sphere X  is, in fact, determined by the scalar 
product of these vectors because  

( ) ( ) 2(1 )TTx y x y x y x y− = − − = − ,  

where ,x y X∈ . According to (3.3) 

x X x X∈ ⇔ − ∈ , and considering the nearest 
vectors, it is assumed that the scalar product of any 
pair of vectors belongs to [ ]0,1  (when transferring 

from x  to x− , the value of the quadratic form of 
matrix Q does not change). 

If *
2x x≠% , then vector *x%  can be considered as 

located on the arc of sphere X , which connects 2x  

and some orthogonal to it vector z X∈ , 2 0Tz x =  
(see Fig. 4) : 

* 2

2

(1 ) , [0,1]
(1 )

ax a zx a
ax a z

+ −
=    ∈

+ −
%  (3.11) 

Let us call vector z  a spherical orthogonal 

continuation of vector 2x  through vector *x% . 
From (3.11) by the definition 

*
2 2( ) (1 )Tx x ax a z a+ − =%    

and so 
* 2 2

2 2 2( ) (( (1 ) ) ( (1 ) ))T Tx x ax a z ax a z a+ − + − =%

. 
Therefore we can obtain the following equations: 

2
* 2

2 2 2

2
* 2

2 2 2

( ) ;
( (1 ) )

(1 )( )
( (1 ) )

T

T

ax x
a a

ax x
a a

=      
+ −

−
1− =

+ −

%

%

 (3.12) 

Now, the cost function value of the problem (3.9) 
on vector *x%  can be represented as follows using 
(3.12): 

* *

2 2
2

2 2

* *2 2
2 22

(1 )
(1 )

( ) (1 ( ) )

T

T

T T T

x Qx

a a z Qz
a a

x x x x z Qz

λ

λ

=

+ −
= =

+ −

= + −

% %

% %

 (3.13)
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Fig. 1 – Geometry of the set X     Fig. 2 – Geometry of permutation, n=3 

 

Fig. 3. Geometry of permutations, n=4    Fig. 4. Spherical combination 

 

As easily seen from (3.13), it follows that the 
quadratic form of matrix Q  strictly increases along 
the arc connecting 2x  and z ; and with the fixed 

distance from 2x  to *x% , its value is defined by the 

value Tz Qz .  
Thus, the increase of cost function value in 

problem (3.9), when transferring from 2x  to *x% , 

depends both on the distance from 2x  to *x%  (the 
bigger the distance, the bigger the function value), 

and on the direction in which such a transfer is 
performed (i.e. on cost function value on the 
spherical orthogonal continuation of vector 

2x through vector *x% ). 
Matrix Q  is a normal matrix (because it is 

symmetric), so there is an orthogonal system formed 
by its eigenvectors. Setting 1 (1 )x n u=  an 
orthonormalized system of eigenvectors 
{ 1x , 2x ,…, nx }, 0 ( )T

i jx x i j=    ≠  is obtained, that 

1Tx x =

1

0

T

T

x x

x u

⎧ =⎪
⎨

=⎪⎩

1 u
n

(1,2,3) (1,3,2) 

(2,3,1) (2,1,3) 

(3,2,1) (3,1,2) 

z

2x * 2

2

(1 ) ,
(1 )

(0,1)

ax a zx
ax a z

a

+ −
=  

+ −

                    ∈

%

2

(1
)

ax

a
z

+
−
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is a basis of the space nR . In this basis, vector *x%  is 
presented as follows: 

*
2 32 3 nnx a x a x a x= + + +% K    (3.14) 

because * 0Tx u =% , and  

 
* * 2 2 2

2 3

* 2 2

1;

) (2 )

T
n

T
i i

x x a a a

x x a i n

= + + + =     

( =   ≤ ≤

% % K

%
     (3.15) 

From (3.14) and (3.15) it follows that 
* *

2 2 2
2 2 3 3

2 2 2
2 2 3
2 2
2 2 2

( )

(1 )

T

n n

n n

n

x Qx
a a a

a a a

a a

λ λ λ

λ λ

λ λ

=

= + + + ≤

≤ + + + =

= + −

% %

K

K
 (3.16) 

Note that we now come to the same result as in 
(3.13) if we suppose arg max{ }T

nx X
z x Qx x

∈
= = . 

Lemma 3.2. The following bound is true: 
* * * *2 2

2 22 3

* *2 2
2 22

( ) (1 ( ) )

( ) (1 ( ) )

T T T

T T
n

x x x x x Qx

x x x x

λ λ

λ λ

+ − ≤ ≤

≤ + −

% % % %

% %
 

where *x%  is the nearest vector to 2x  from X%  

(i.е. 2x  induces *x% ). 
Proof of the upper bound follows from (3.16) or 

from (3.13) using (3.10).  
The lower bound follows from (3.13) if we 

suppose arg min{ }T

x X
z x Qx

∈
=  with the additional 

restriction 2 0Tx x = ; in this case z = 3x  (as in 
(3.10) it follows from the Courant-Fischer theorem), 
and then 3

Tz Qz λ= . �  
Thus, the ‘worst’ transfer direction from 2x  to 

*x%  is an arc connecting 2x  and nx , although it can 

be compensated by the nearness of *x%  to 2x . 
Now, from the cost function decomposition in 

(3.16) it is clear that even after computing all 
eigenvectors/eigenvalues of the Laplacian Q , the 
problem of choosing a vector x X∈ %% , (even with 

guaranteed approximation) that minimizes Tx Qx% %  
remains hard because the cost function depends on 
the squares of coefficients of vector x%  
decomposition in the basis of Q  eigenvectors. 

Besides that, the computation of all 
eigenvectors/eigenvalues of large matrices is almost 
impossible in practice. Given this point of view, the 
heuristic idea of spectral algorithm consists in 
choosing *x% , which maximizes * 2 2

2 2)Tx x a ( =% ; 
owing to which one can expect a decrease in the 
coefficients corresponding to the bigger eigenvalues, 

and the value of the cost function will most likely be 
not much bigger than 2 2 2

Tx Qx λ = . 
It is interesting to determine how far vectors 

x X∈  and x X∈ %% , which are in inducing relation, 
can be distanced from each other. The following 
theorem answers this question. 

Theorem 3.2. Let x X∈ %%  be induced by vector 
x X∈  which has 1n  negative and 2n  positive 
components ( 1 2n n n+ = , and zero components are 
considered together with either negative or positive 
components). Then the following bound is true: 

1 2
2

3
( 1)

T n nx x
n

≥
−

% ,    

and equality is reached on the unique vector that 
has all positive components equal to each other and 
which stand on the same places as the positive 
components of vector x ; and where all negative 
components are equal to each other and stand on the 
same places as the negative components of vector 
x . 

The theorem has been proved by the author of 
this paper but the proof is too long and technical to 
present it here in full. The simplified scheme of the 
proof is the following: 

1. Consider the theorem as the statement 
about the unique solution of the 
constrained minimization problem with 
the cost function Tx x% . 

2. Prove that the minimum exists. 
3. Show that the minimum is unique. 
4. Show that only the vector described in the 

second part of the theorem could be the 
minimum point.  

From the geometrical point of view, the vectors 
which consist only of equal to each other positive 
and equal to each other negative components, pass 
through the ‘centers’ of the edges of the polyhedron 
of permutations representatives. So when 4n =  (see 
Fig. 3) the vectors ( 3 4, 1 12, 1 12, 1 12)− , 

( 1 12, 1 12, 1 12, 3 4)− − −  and 

( 1 4, 1 4, 1 4, 1 4)− −  pass through the 
centers of two hexagons and one quadrangle that 
share one vertex which is representative of unit 
permutation

1
(1, 2,3, 4)p = . 

Evidently, the value of the bound we obtained in 
Theorem 3.2 reaches its maximum value when 

1 2 2n n n= =  (approximately for odd n ), and its 
minimum on the points 1 2{ 1, 1}n n n=  = −  and 
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1 2{ 1, 1}n n n= −  = . That is why with unknown 1n  
and 2n  the following is true 

Corollary 1 from Theorem 3.2. Let x X∈ %%  be 
induced by vector x X∈ , then 

3
1

Tx x
n

≥
+

% .    

Asymptotical behavior of the bound when 
n → ∞  essentially depends on the ratio of 1n  and 

2n : 

  If 1 2 2
nn n= = ,  

then  
2

1 2
2 2

3 3 3lim lim
( 1) 4( 1) 4n n

n n n
n n→∞ →∞

= =
− −

, 

if 1 21, 1n n n=  = −  or 1 21, 1n n n= −  =  then 

  1 2
2 2

3 ( 1)lim lim 0
( 1) ( 1)n n

n n n
n n→∞ →∞

−
= =

− −
 

i.e. in the ‘worst case’ (for example, if 

1 21, 1n n n=  = − ) vectors Tx  and x%  are 
‘asymptotically orthogonal’. 

Applying the Theorem 3.2 to 2x  and *x%  we 

obtain: * 1 2
2 2

3
( 1)

T n nx x
n

≥
−

% , where 1n  and 2n  

correspondingly denote the number of positive and 
negative components in vector 2x . Substituting this 
bound in the inequality of Lemma 3.2 we obtain: 

* * 1 2 1 2
22 2

3 31
( 1) ( 1)

T
n

n n n nx Qx
n n

λ λ
⎛ ⎞

≤ + − =⎜ ⎟− −⎝ ⎠
% %  

( )2
1 2 2 1 22

1 3 ( 3 1)
1 nn n n n n

n
λ λ= + − −

−
    (3.21) 

Equality can be reached if in vector 2x  all the 
negative components equal c  and all the positive 
components equal k . Then all permutations where 
numbers 11, 2, ,nK  stand on the same places as in c  
in 2x , and numbers 1 1, ,n n+ K  stand on the same 
places as k  in 2x  are closest to 2x  in P  (in all 
there are 1 2! !n n  such permutations), and their 

representatives are closest to 2x  in X% . In this case 
spectral algorithm can choose any of these 
permutations and in the ‘worst case’ the chosen 
permutation will be located on the arc connecting 

2x  and nx . 
The asymptotical behavior of the bound (3.21) 

also depends substantially on the relation between 
1n  and 2n : 

  If 1 2 2
nn n= = ,  

then  * *
2

3 1lim
4 4

T
nn

x Qx λ λ
→∞

 = +% % , 

 if 1 21, 1n n n=  = −  or 1 21, 1n n n= −  = , 

then  * *lim T
nn

x Qx λ
→∞

 =% % . 

Nevertheless, the above bounds are usually not 
reached on the graphs of big sparse matrices from 
real-world applications (as described in Section 4) 
because the above described ‘pathological’ 
situations are not realized. To the contrary, the value 
of the quadratic form * *Tx Qx% %  usually is not much 
bigger than 2λ  while nλ  is several orders bigger 
than 2λ . 

Nevertheless, strictly speaking, with a fixed n  
we have only a finite number of usual Laplacians, 
but there are infinitely many weighted ones, whose 
components can differ greatly. The above analysis 
can be applied to any Laplacian, including a 
weighted Laplacian. The obtained bounds still hold 
without additional restrictions being imposed on a 
graph, e.g. the degrees of its vertices need not be 
bounded. 

 
4. COMPUTATIONAL RESULTS 

This section lists the results obtained for 
examining and illustrating the performance of 
spectral algorithm on Laplacians of real-world large 
sparse matrices. The matrices used were taken from 
the Harwell-Boeing and NASA collections that are 
in Tim Davis’ University of Florida Sparse Matrix 
Collection [9]. These matrices are often used for 
testing and comparing reordering algorithms for 
sparse matrices. All computations have been 
performed in Matlab 7 (Release 14, Service Pack 2); 
vectors 2x  and nx  were computed using eigs 
function (as defined in Section 2, 2x  and nx  are 
eigenvectors of the graph’s Laplacian corresponding 
to the 2nd and the largest eigenvalues). 

Table 1 presents the following data: 
n  is a matrix (graph) dimension; 
E  is the number of edges of a graph ( 2 E n+  

is the number of the non-zero matrix elements); 
Deg. min / max are minimum and maximum 

degrees of graph vertices; 
pos./neg. values in 2x  are numbers of positive 

and negative components in 2x ; 

2( )F x , *( )F x% , ( )F z , ( )nF x  are values of the 
Laplacian quadratic forms on the corresponding 
vectors; vector z  is the spherical orthogonal 
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continuation of vector 2x  through vector *x%  (these 
vectors were defined and discussed in Section 3); 

*
2

Tx x%  is the scalar product of vectors 2x  and *x%  

that shows the nearness of *x%  to 2x . 

 
Table 1. Experimentation with the real-world large sparse matrices (graphs)

 

Matrix n  E  
Deg. 
min / 
max 

pos./neg. 
values 
in 2x  

2( )F x
 

*( )F x%
 

( )F z  
 

( )nF x
 

*
2

Tx x%
 

CAN1054 1,054 5,571  5 / 34 558 / 496 5.93e-2 6.65e-2 8.56e-1 3.57e+1 0.995 

CAN1072 1,072 5,686  5 / 34 480 /  592 7.96e-2 8.78e-2 6.11e-1 3.57e+1 0.992 

BCSSTK15 1,505 5,406 3 / 34    90 / 1,415 4.24e-2 1.13e+0 1.35e+0 3.54e+1 0.418 

NASA1824 1,824 18,692  5 / 41 913 /  911 2.71e-1 3.58e-1 5.21e+0 4.42e+1 0.991 

NASA2146 2,146 35,052 13 / 35 1,066 / 1,080 1.35e-1 1.61e-1 1.88e+0 4.77e+1 0.992 

NASA2910 2,910 85,693  15/ 174 1,634 / 1,276 1.10e+0 1.74e+0 1.62e+1 1.76e+2 0.978 

NASA4704 4,704 50,026  5 / 41 2,438 / 2,266 8.26e-2 9.33e-2 2.36e+0 4.43e+1 0.998 

BARTH4 6,019 17,473  3 / 12 3,453 / 2,566 1.77e-3 2.91e-3 2.13e-2 1.34e+1 0.970 

BARTH 6,691 19,748  3 / 12 3,354 / 3,337 2.60e-3 2.68e-3 1.47e-1 1.34e+1 1.000 

SHUTTLE_EDDY 10,429 46,585 3 / 26 5,389 / 5,040 6.23e-4 2.28e-3 4.86e-2 2.74e+1 0.983 

BARTH5 15,606 45,878  3 / 10 6,816 / 8,790 7.70e-4 9.67e-4 5.55e-3 1.17e+1 0.979 

BCSSTK30 28,924 1,007,284   3 / 218 15,428 / 13,496 1.95e-2 2.84e-2 5.68e-1 2.22e+2 0.992 

BCSSTK32 44,609 985,046   1 / 215  7,079 / 37,530 6.00e-3 2.86e-2 5.15e-2 2.17e+2 0.71 
 

As we can see from Table 1, in most cases the 
closest representative to 2x  is very closely located 

(product *
2

Tx x%  is close to 1); and the value of 
*( )F x%  is not much bigger than 2( )F x , at least 
*( )F x%  is of the same order as 2( )F x . At the end of 

an arc (on vector z ) the value ( )F z  is at least one 

order bigger than the value *( )F x%  i.e. for *( )F x%  to 

be close to 2( )F x  the nearness of *x%  to 2x  is 
important. At the same time, the value ( )nF x  is in 
most cases at least one order bigger than ( )F z , 
which indicates the relatively ‘good’ direction of 
shifting along the arc (compare in the ‘worst’ case 

( )F z = ( )nF x  i.e. the arc connects 2x  and nx ). 
The example of a very ‘good’ direction is BARTH5 
( ( )F z =5.55e-3; ( )nF x =1.17e+1). It is interesting 
to note that matrices, where the above situation 
pertains, have a different size, structure and degree 
of sparseness. Some of them also have a very 
dispersed degrees of vertices in the associated graph 
(for example, in NASA2910 the minimum degree is 
15, and maximum 174; with the relatively small 
dimension 2,910n = ). Additionally, the close (in 

some cases almost equal) number of positive and 
negative components in vector 2x  is common for 
these matrices. 

A different situation pertains in BCSSTK32, and 
especially in BCSSTK15. In these *x%  is located 

fairly far from 2x . Because of this the value *( )F x%  
is much bigger than 2( )F x  and has the same order 
as ( )F z . These two matrices are characterized by a 
large number of components of one sign and a small 
number of another sign in 2x ; for BCSSTK15 the 
ratio is 90 : 1,415.  

From the geometrical point of view when the 
numbers of positive and negative components in 2x  
are close, it is located on the sphere X  ‘above’ 
‘small’ edge of the polyhedron of permutations (see 
Fig. 3); and that’s why we can expect the closest 
representative of permutation *x%  to be located very 

closely ( *
2

Tx x%  is close to 1). Otherwise, 2x  is 
located ‘above’ ‘big’ edge and, correspondent vector 

*x%  can be located fairly far away ( *
2

Tx x%  are 
substantially smaller than 1). In the worst case, 2x  
could be located ‘above’ the center of the ‘biggest’ 
possible edge, and the bound from Corollary 1 of 
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Theorem 3.2 could be reached. 
 

5. CONCLUSIONS 
Spectral algorithm provides a good balance 

between the computational cost and the accuracy of 
the approximate solution obtained for NP-complete 
2-sum problem. The analysis conducted shows that 
there are ‘pathological’ cases for spectral algorithm, 
and that these are due to the geometrical properties 
of permutations considered as vectors in Euclidian 
space. These conclusions are illustrated by the 
computational results obtained using Laplacians of 
graphs of big sparse matrices. It should be noted that 
spectral algorithm can even be used as an effective 
approximation algorithm for small dimensions 
graphs; for small graphs it is possible to compute all 
eigenvalues and eigenvectors, but this additional 
information would not fundamentally simplify the 
solution of a 2-sum problem in all cases. 

The proposed ‘geometrical’ approach enables the 
simple proof of the upper and lower bounds of the 2-
sum problem. Potentially it could turn out to be 
helpful for analysis or design of algorithms for other 
similar problems like p-sum, graph partitioning, etc. 

To the author’s knowledge, it is the first time 
strict (non-trivial) upper bounds are derived for the 
cost function of a 2-sum problem on an approximate 
solution provided by spectral algorithm. As the 
computational experiment shows, these bounds are 
usually not reached on the graphs of real-world large 
sparse matrices because the ‘pathological’ cases are 
not realized or are realized only partially.  
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